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Spatial regulation of cell differentiation in embryos can be provided by morphogen gradients, which are
defined as the concentration fields of molecules that control gene expression. For example, a cell can use its
surface receptors to measure the local concentration of an extracellular ligand and convert this information into
a corresponding change in its transcriptional state. We characterize the time needed to establish a steady-state
gradient in problems with diffusion and degradation of locally produced chemical signals. A relaxation function
is introduced to describe how the morphogen concentration profile approaches its steady state. This function is
used to obtain a local accumulation time that provides a time scale that characterizes relaxation to steady state at
an arbitrary position within the patterned field. To illustrate the approach we derive local accumulation times for
a number of commonly used models of morphogen gradient formation.
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I. INTRODUCTION

A remarkable transformation of a fertilized egg into an
organism with multiple tissues and organs depends on spatial
control of cell differentiation [1]. This important function
can be provided by concentration fields of molecules that
act as dose-dependent regulators of gene expression. Known
as morphogen gradients, such concentration fields can be
established by reaction-diffusion mechanisms. For example,
a locally secreted ligand can diffuse through the tissue and
be degraded by cells or extracellular enzymes. Cells located
at different distances from the source of signal production are
exposed to different levels of this signal and, as a consequence,
express different genes that determine whether a cell dies,
divides, or differentiates [2].

A morphogen gradient was a purely theoretical concept for
a better part of the 20th century [3,4]. At the end of 1980’s, the
first morphogen gradients were identified in fruit fly develop-
ment. Shortly thereafter, morphogens were discovered in other
organisms, including vertebrates. Today morphogen gradients
are studied in a large number of systems [5–7]. Candidate
morphogens are identified by genetic approaches, purified
biochemically, and their distributions in tissues are visualized
by multiple imaging tools. As the experimental analysis of
morphogen gradients becomes increasingly quantitative, it is
important to develop a theoretical framework that can address
the dynamics of morphogen gradients and its interaction with
the patterned tissue.

In the simplest case, morphogens act locally. A cell
can use its surface receptors to measure the local value of
the extracellular morphogen concentration and translate this
information into a corresponding change in the activation
of its signaling pathways and gene expression [8,9]. The
question arises of whether or not the time of the morphogen
gradient formation is small compared to the time of the cell
differentiation. If so, then the cell fate is determined by the
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steady-state value of the local morphogen concentration. If
not, then the cell reads the local morphogen concentration that
changes with time. This question was first posed by Francis
Crick [10] who recognized its importance more than 40 years
ago.

In analyzing the question, one faces a conceptual problem
of how to characterize the local time required to establish
the gradient at a given point of the patterned field. To
the best of our knowledge, a systematic framework for
addressing this question is still lacking. In this paper, we fill
in this gap and provide such a framework for the simplest
models of morphogen gradient formation. We illustrate its
application by analyzing a number of reaction-diffusion
models. Some of the results derived in the present paper
have been reported in our recent short communication [11],
where the consideration is formulated in terms of the con-
centrations. Here we derive the results using the Green
function formalism, which is the most natural approach to the
problem.

The outline of the paper is as follows. The general formal-
ism is developed in the next section. In Sec. III the formalism
is used to find the local accumulation time for four models of
increasing complexity. The simplest situation when a localized
source of diffusing particles is located at the boundary of a
semi-infinite interval is considered in Sec. III A. The result
obtained is then generalized to the cases of a distributed source
of the particles and a finite interval in Secs. III B and III C,
respectively. A two-state model when diffusing particles can
reversibly bind to immobile traps and are degraded in both
mobile and immobile states with different rates is considered
in Sec. III D. One can skip the technical details and find
the expressions for the local accumulation time for the four
models in Eqs. (3.14),(3.20), (3.26), (3.38), and (3.39). These
expressions show how the local accumulation times depend
on the parameters of the models. These dependencies are
illustrated in Figs. 2 and 3. We illustrate the application of
our results to a real morphogen gradient in Sec. IV where we
calculate the local accumulation time for the gradient formed
by Decapentaplegic (Dpp), which is a bone morphogenetic
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protein ligand that controls pattern formation and growth in
the wing imaginal disk in Drosophila.

II. LOCAL ACCUMULATION TIME

Consider particles injected into an interval of length L

(0 < x < L) with reflecting boundaries. The particles diffuse
with diffusivity D and are degraded with the rate constant k.
The source of the particles, q(x), is independent of time. It is
characterized by the total injection rate Q:

Q =
∫ L

0
q(x)dx, (2.1)

and the normalized injection density pq(x):

q(x) = Qpq(x),
∫ L

0
pq(x)dx = 1. (2.2)

The interval is free from particles when injection begins at
t = 0. The particle concentration c(x,t) at point x and time t

satisfies

∂c

∂t
= D

∂2c

∂x2
− kc + q(x), 0 < x < L, (2.3)

with initial and boundary conditions

c(x,0) = 0 ,
∂c(x,t)

∂x

∣∣∣∣
x=0,L

= 0. (2.4)

As t → ∞, c(x,t) approaches its steady-state (ss) value
css(x):

css(x) = lim
t→∞ c(x,t). (2.5)

Our goal is to characterize the kinetics of this process at an
arbitrary observation point x.

To begin with, we introduce the local relaxation function
R(t |x) defined as

R(t |x) = c(x,t) − css(x)

c(x,0) − css(x)
= 1 − c(x,t)

css(x)
. (2.6)

The ratio c(x,t)/css(x) is the fraction of the steady-state
concentration of the particles accumulated at point x by time t .
Denoting this fraction by W (t |x), we can write

R(t |x) = 1 − W (t |x), W (t |x) = c(x,t)

css(x)
. (2.7)

As time increases from zero to infinity, W (t |x) increases from
zero to unity while the relaxation function decreases from unity
to zero.

We can use W (t |x) or R(t |x) to introduce the function
φ(t |x) defined by

ϕ(t |x) = ∂W (t |x)

∂t
= −∂R(t |x)

∂t
. (2.8)

This function can be interpreted as the local probability
density of time associated with the formation of the steady-
state concentration profile at point x. Then the mean time
τ (x) is

τ (x) =
∫ ∞

0
tϕ(t |x)dt =

∫ ∞

0
R(t |x)dt, (2.9)

which is the local accumulation time that characterizes the
process at point x.

For linear models of morphogen gradient formation, the
local accumulation time can be found analytically, based on the
relation between the local accumulation time and the particle
propagator or the Green’s function G(x,t |x0). The latter is the
probability density of finding the particle at point x at time t

conditional on the particle being at x0 at t = 0. The propagator
satisfies

∂G

∂t
= ∂2G

∂x2
− kG, 0 < x < L, (2.10)

with initial and boundary conditions

G(x,0|x0) = δ(x − x0),
∂G(x,t |x0)

∂x

∣∣∣∣
x=0,L

= 0. (2.11)

Using the propagator, the particle concentration profile at
time t can be written as

c(x,t) =
∫ t

0
dt ′

∫ L

0
G(x,t − t ′|x0)q(x0)dx0. (2.12)

Substituting here q(x0) = Qpq(x0) [Eq. (2.2)], we arrive at

c(x,t) = Q

∫ t

0
〈G(x,t − t ′|x0)〉qdt ′, (2.13)

where 〈G(x,t |x0)〉q is the propagator G(x,t |x0) averaged over
the particle starting point x0 with the normalized injection
density pq(x0):

〈G(x,t |x0)〉q =
∫ L

0
G(x,t |x0)pq(x0)dx0. (2.14)

The Laplace transform of c(x,t) [Eq. (2.13)] is

ĉ(x,s) =
∫ ∞

0
c(x,t)e−st dt = Q

s
〈Ĝ(x,s|x0〉q, (2.15)

where 〈Ĝ(x,s|x0)〉q is the Laplace transform of the averaged
propagator. The steady-state concentration css(x) can be
expressed in terms of this Laplace transform at s = 0:

css(x) = lim
s→0

sĉ(x,s) = Q〈Ĝ(x,0|x0)〉q . (2.16)

We use Eqs. (2.15) and (2.16) to present the Laplace
transform of the relaxation function, Eq. (2.6), in terms of
the Laplace transform of the averaged propagator:

R̂(s|x) = 1

s

[
1 − 〈Ĝ(x,s|x0)〉q

〈Ĝ(x,0|x0)〉q

]
. (2.17)

According to the definition of τ (x) [Eq. (2.9)], the local
accumulation time is the Laplace transform of the relaxation
function at s = 0:

τ (x) = lim
s→0

R̂(s|x). (2.18)

Substituting here R̂(s|x) given in Eq. (2.17) and using
L’Hospital’s rule we obtain

τ (x) = − 1

〈Ĝ(x,0|x0)〉q
d〈Ĝ(x,s|x0)〉q

ds

∣∣∣∣∣
s=0

= − d ln〈Ĝ(x,s|x0)〉q
ds

∣∣∣∣∣
s=0

. (2.19)
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This formula, which is one of the main results of the present
paper, establishes the relation between the local accumulation
time and the particle propagator. Below we use this result to
characterize the dynamics of gradients in several commonly
used reaction-diffusion models.

III. ILLUSTRATIVE EXAMPLES

As an introduction to specific examples, we consider the
relaxation to the steady state of the total number of particles,
N (t), accumulated in the system by time t :

N (t) =
∫ L

0
c(x,t)dx. (3.1)

The kinetic equation describing the dynamics of N (t) can be
obtained by integrating Eq. (2.3) with respect to x from zero
to L. The result is

dN(t)

dt
= −kN (t) + Q. (3.2)

Solving this equation with the initial condition N (0) = 0
we obtain

N (t) = Nss(1 − e−kt ), (3.3)

where Nss = Q/k is the total number of particles in the system
at steady state.

The relaxation function of the total number of particles,
RN (t), is defined as

RN (t) = N (t) − Nss

N (0) − Nss

= 1 − N (t)

Nss

. (3.4)

Substituting here N (t), given in Eq. (3.3), we arrive at

RN (t) = e−kt . (3.5)

The accumulation time τN that characterizes accumulation of
the particles in the system is

τN =
∫ ∞

0
RN (t)dt = R̂(s)|s=0 = k−1, (3.6)

as might be expected for the kinetics described by the rate
equation in Eq. (3.2).

A. Localized source, semi-infinite interval

As a first application of the general formalism, consider
the case of a semi-infinite interval, L → ∞, with the particle
source localized on its reflecting boundary at x = 0. This
model is commonly used as the first step in the analysis of
morphogen gradient dynamics [12–15]. In this case,

pq(x) = δ(x), (3.7)

and the averaged propagator takes the form

〈G(x,t |x0)〉q = G(x,t |0) = 1√
πDt

e− x2

4Dt
−kt , (3.8)

where we have used the solution for the propagator G(x,t |0),
which can be readily obtained.
The Laplace transform of this propagator is given by

Ĝ(x,s|0) = 1

λ
√

1 + s/k
e−(x/λ)

√
1+s/k, (3.9)

where λ = √
D/k is a characteristic length. This length

specifies the steady-state concentration profile, which in this
case is given by

css(x) = Nss

λ
e−x/λ. (3.10)

The length λ has a simple physical interpretation. To illustrate
this we use the fact that the product kĜ(x,0|0) is the
probability density of distance x from the origin to the point
where the particle was degraded. The mean value of this
distance is ∫ ∞

0
x[kĜ(x,0|0)]dx =

√
D

/
k =λ, (3.11)

where we have used the formula in Eq. (3.9). Thus, λ is the
mean distance traveled by the particle to its degradation point.

Substituting the Laplace transform of the propagator,
Eq. (3.9), into Eq. (2.17), we find the Laplace transform of
the relaxation function:

R̂(s|x) = 1

s

[
1 − Ĝ(x,s|0)

Ĝ(x,0|0)

]

= 1

s

⎡
⎣1 − 1√

1 + s
/
k

e−(x/λ)(
√

1+s/k−1)

⎤
⎦ . (3.12)

Inverting this Laplace transform we obtain

R(t |x) = 1

2

[
erf c

(√
kt − x

/
λ

2
√

kt

)

+e2x/λerf c

(√
kt + x

/
λ

2
√

kt

)]
, (3.13)

where erf c(z) is the complementary error function [16]. As
might be expected, the larger the distance from the origin to
the observation point x, the slower the relaxation function
approaches zero (Fig. 1). The local accumulation time can be
found using R̂(s|x) in Eq. (3.12):

τ (x) = R̂(0|x) = τN

2

(
1 + x

λ

)
, (3.14)

FIG. 1. Time dependencies of the local relaxation function R(t |x)
given in Eq. (3.13) at several observation points: x = 0 , 2λ , 5λ.
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where τN = 1/k [Eq. (3.6)]. For x � λ, τ (x) ≈ τN/2, whereas
for x 
 λ, τ (x) ≈ (1/2)

√
τNτD(x), where τD(x) = x2/D is

the characteristic time of diffusive passage of distance x. The
linear dependence of the relaxation time on x is counterin-
tuitive. Based on general arguments, one might expect that
the relaxation time is determined by the largest of the two
characteristic times τN and τD(x). While this is true for x � λ,
the general arguments fail for x 
 λ.

Note that the relaxation function in Eq. (3.13) can be
obtained by substituting the solution for c(x,t) obtained in [17]
into the definition of R(t |x) [Eq. (2.6)]. The authors of this
work suggested the following phenomenological approxima-
tion for the time-dependent concentration profile: c(x,t) =
c(0,t) exp[−(x/λ(t))p(t)], where λ(t) is a time-dependent
length scale and p(t) is the exponent that monotonically
decreases with time. The approximation is constructed so
that c(x,t) has the same structure as css(x) [Eq. (3.10)];
namely, the concentration is scaled by its value at x = 0 and
its dependence on x is exponential. As t → ∞, the length
scale approaches its steady-state value, λ = √

D/k, while
the exponent approaches unity. As a result, the distribution
approaches the steady-state exponential profile, Eq. (3.10).
The structure of the phenomenological approximation is
qualitatively different from that used in our approach, in which
the time-dependent concentration at point x is scaled by its
steady-state value. According to the definition of the relaxation
function, Eq. (2.6), we have c(x,t) = [1 − R(t |x)]css(x).

B. Distributed source, semi-infinite interval

Our second example is motivated by the recent experiments
in the early Drosophila embryo, where it has been proposed
that the length scale of the patterning gradient is controlled
by the spatial distribution of the source of signal production
[18]. Consider the case of a distributed source of the particles
injected into a semi-infinite interval, x > 0, terminated by a
reflecting boundary at x = 0. We assume that the normalized
injection density is

pq(x) = 1

lq
e−x/lq , (3.15)

where lq in the mean injection length:

lq =
∫ ∞

0
xpq(x)dx. (3.16)

As lq → 0, pq(x) tends to δ(x) and we recover the situation
discussed in Sec. III A.

Using the method of images, we find the propagator of a
particle injected at x0, x0 > 0, at t = 0:

G(x,t |x0) = G(x + x0,t |0) + G(x − x0,t |0). (3.17)

The Laplace transform of this propagator is

Ĝ(x,s|x0) = Ĝ(x + x0,s|0) + Ĝ(x − x0,s|0). (3.18)

Averaging this propagator over x0 with the normalized injec-
tion density given in Eq. (3.15), we obtain

〈Ĝ(x,s|x0)〉q = λe−(x/λ)
√

1+s/k − lq
√

1 + s/ke−x/lq

k
√

1 + s/k
[
λ2 − l2

q(1 + s/k)
] , (3.19)

FIG. 2. Local accumulation time τ (x|lq ) given in Eq. (3.20), for
several values of the injection length, lq = 0 , λ/2 , 3λ/2 , ∞.

where we have used the formula for the Laplace transform of
the propagator given in Eq. (3.9).

Substituting the averaged propagator [Eq. (3.19)] into
Eq. (2.19), we find the accumulation time at point x for an
arbitrary value of the injection length, τ (x|lq):

τ (x|lq) = τN

2

[(
1 + x

λ

)
λe−x/λ

λe−x/λ − lqe
−x

/
lq

+ 2l2
q

l2
q − λ2

]
.

(3.20)

As lq → 0, this reduces to τ (x) given in Eq. (3.14). At lq = λ,
the result simplifies:

τ (x|lq = λ) = τN

4

(
3 + x2

λ(x + λ)

)
. (3.21)

As illustrated in Fig. 2, in our model the delocalization of
the source slows down the formation of the steady-state
concentration profile at small x and accelerates this process
at large x. As follows from Eq. (3.20), τ (0|lq) is always larger
than τ (0|0):

τ (0|lq) = τ (0|0)

(
1 + lq

λ + lq

)
. (3.22)

Large-x asymptotic behavior of τ (x|lq) depends on whether lq
is smaller or larger than λ:

τ (x|lq) →
x→∞

{
τ (x|0), lq < λ

τ (0|0)
2l2

q

l2
q−λ2 , λ < lq.

(3.23)

As lq → ∞ (uniform injection of particles), τ (x|lq) becomes
independent of x and takes its asymptotic value τ (x|∞) =
2τ (0|0) = τN = 1/k.

C. Localized source, finite interval

We now discuss how a finite length L of the interval affects
the kinetics of the formation of the steady-state concentration
profile. In addition to problems with morphogen gradients,
this case is also relevant for the analysis of intracellular
concentration profiles; a number of examples can be found
in recent publications [19–24]. Consider the case when the
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FIG. 3. Local accumulation time τL(x) given in Eq. (3.26), for
intervals of different length L = λ/2 , 2λ , 4λ , ∞.

source of the particles is localized near the reflecting boundary
at x = 0, and the normalized injection density is given by
Eq. (3.7). In this case, the averaged propagator, Eq. (2.14), is
identical to the propagator of a particle that starts from the left
boundary of the interval:

〈GL(x,t |x0)〉q = GL(x,t |0), (3.24)

where the subscript L is used to indicate the length of the
interval. The Laplace transform of GL(x,t |0) is given by the
following expression:

ĜL (x,t |0) = cosh[(L − x)
√

(s + k)/D]√
(s + k)D sinh[L

√
(s + k)/D]

. (3.25)

Using this result, one can find the local accumulation time
from Eq. (2.19):

τL(x) = τN

2

[
1 + L

λ
coth

(
L

λ

)
− L − x

λ
tanh

(
L − x

λ

)]
.

(3.26)

As L → ∞, τL(x) reduces to τ (x) derived for the problem
with a semi-infinite interval. When L � λ, the accumulation
time is independent of x and is identical to τN = 1/k. In the
opposite limiting case, L 
 λ, τ (x) is larger than τ∞(x) inside
the interval and close to τ∞(0) and τ∞(L) at its ends. This is
illustrated in Fig. 3.

D. Two-state problem

Finally, we consider the case where diffusing particles can
reversibly bind to immobile traps and are degraded, with
different rates, in both mobile and immobile states [25,26].
This two-state model is used for gradients that are formed by
locally secreted proteins that diffuse through the extracellular
medium and bind to cell surface receptors, which both
transduce the signal and limit its spatial range by mediating
ligand degradation [27–30]. To analyze this case, we use a
two-state model in which injected particles can be in mobile
(m) and immobile (im) states. Transitions between these states
are described by the rate constants α and β. In each state,
particles are degraded with the rate constants km and kim,

respectively. We assume that particles are injected into the
mobile state by a localized source located near the reflecting
boundary at x = 0 of a semi-infinite interval, x > 0.

The particle propagator has two components, Gm(x,t) and
Gim(x,t), which satisfy

∂Gm

∂t
= D

∂2Gm

∂x2
− (km + α)Gm + βGim, (3.27)

∂Gim

∂t
= αGm − (kim + β)Gim, (3.28)

with the initial and boundary conditions

Gm(x,0) = δ(x), Gim(x,0) = 0,
∂Gm(x,t)

∂x

∣∣∣∣
x=0

= 0.

(3.29)

The problem can be readily solved in Laplace space. The
result is

Ĝm(x,s) = 1√
Dσ

e−x
√

σ /D, (3.30)

Ĝim(x,s) = α

kim + β + s
Ĝm(x,s), (3.31)

where

σ = km + α + s − αβ

kim + β + s
. (3.32)

We use the two components of the propagator to describe
time-dependent concentration profiles of mobile and immobile
particles, cm(x,t) and cim(x,t), respectively:

cm(x,t)=Q

∫ t

0
Gm(x,t ′)dt ′, cim(x,t)=Q

∫ t

0
Gim(x,t ′)dt ′.

(3.33)

As t → ∞ the concentration profiles approach their steady
states,

cm,ss(x) = Q

∫ ∞

0
Gm(x,t)dt = QĜm(x,0),

(3.34)

cim,ss(x) = Q

∫ ∞

0
Gim(x,t)dt = QĜim(x,0).

We introduce a two-component local relaxation function with
the components Rm(t |x) and Rim(t |x) defined as

Rm(t |x) = cm(x,t) − cm,ss(x)

cm(x,0) − cm,ss(x)
= 1 − cm(x,t)

cm,ss(x)
,

(3.35)

Rim(t |x) = cim(x,t) − cim,ss(x)

cim(x,0) − cim,ss(x)
= 1 − cim(x,t)

cim,ss(x)
.

We use these functions to define local accumulation times
τm(x) and τim(x):

τm(x)=
∫ ∞

0
Rm(t |x)dt=R̂m(s|x)|s=0=−d ln Ĝm(x,s)

ds
|s=0,

τim(x)=
∫ ∞

0
Rim(t |x)dt=R̂im(s|x)|s=0=−d ln Ĝim(x,s)

ds
|s=0,

(3.36)
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where R̂m(s|x) and R̂im(s|x) are the Laplace transforms of the
relaxation function components.

It is convenient to introduce a renormalized degradation
rate constant in the mobile state, k#

m, defined by

k#
m = km + αkim

kim + β
, (3.37)

and the length scale λ# defined in terms of k#
m: λ# =

√
D/k#

m.
Using these quantities, the two local accumulation times can
be written as

τm(x) = 1

2k#
m

[
1 + αβ

(kim + β)2

] (
1 + x

λ#

)
, (3.38)

τim (x) = τm (x) + 1

kim + β
. (3.39)

The fact that τim(x) > τm(x) is not surprising since the
particles are injected into the mobile state. As expected,
τm(x) in Eq. (3.38) reduces to the accumulation time τ (x)
in Eq. (3.14) as β → ∞.

IV. CONCLUDING REMARKS

We have developed a general approach for characterizing
the local kinetics of the morphogen gradient formation. The
approach is based on consideration of the relaxation function,
which describes relaxation of the concentration to its steady-
state value at an arbitrary location within the patterned field.
This function is used to introduce the local accumulation time
that provides a time scale characterizing local accumulation of
the morphogen. Our approach is illustrated by consideration of
a number of commonly used models that account for diffusion
and degradation of locally produced chemical signals.

To illustrate the application of our results to real mor-
phogen gradients, we calculate the local accumulation time
for the gradient formed by Decapentaplegic (Dpp), a bone
morphogenetic protein ligand that controls pattern formation
and growth in the wing imaginal disk in Drosophila [31].
Dpp was one of the first discovered morphogen gradients and
is one of the few gradients for which there are quantitative

measurements of diffusivity, degradation time, and positions
of the gene expression boundaries established by the gradient
[32,33]. Dpp is secreted from the anteroposterior compartment
boundary in the wing disk, diffuses in the extracellular space,
and is degraded as a consequence of its binding to cell
surface receptors. Based on the fluorescence recovery after
photobleaching (FRAP) experiments, the Gonzalez-Gaitan
group reported that Dpp has a lifetime of ∼66 minutes
and an effective diffusivity of 0.01 μm2/sec, which leads
to λ = √

D/k = 20 μm. The most distant gene expression
boundary controlled by the Dpp gradient is located 40 μm
from the site of Dpp production. Substituting these values into
Eq. (3.14), we get the local accumulation time of 99 min. This
estimate can be compared to the time scale of cell divisions
in the wing disk, which is always greater than 3 hours. Based
on this analysis we can conclude that the relaxation time of
the Dpp gradient is smaller than the characteristic time of
tissue growth. We emphasize that this analysis is based on the
simplest model of the Dpp gradient. In the future, it can be
extended to more complex models [30].

We have shown that both the relaxation function and the
local accumulation time are independent of the total injection
rate. Moreover, the local accumulation time can be expressed
in terms of the propagator that describes the fate of a single
particle. This is a consequence of the linearity of the considered
models. Linear models are applicable when the morphogen
concentration is not too high. When the concentration is high
enough, such models fail and nonlinearity of the degradation
process must be taken into account [34].
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