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Bistability and resonance in the periodically stimulated Hodgkin-Huxley model with noise
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We describe general characteristics of the Hodgkin-Huxley neuron’s response to a periodic train of short
current pulses with Gaussian noise. The deterministic neuron is bistable for antiresonant frequencies. When the
stimuli arrive at the resonant frequency the firing rate is a continuous function of the current amplitude I0 and
scales as (I0 − Ith)1/2, characteristic of a saddle-node bifurcation at the threshold Ith. Intervals of continuous
irregular response alternate with integer mode-locked regions with bistable excitation edge. There is an even-all
multimodal transition between the 2 : 1 and 3 : 1 states in the vicinity of the main resonance, which is analogous
to the odd-all transition discovered earlier in the high-frequency regime. For I0 < Ith and small noise the firing
rate has a maximum at the resonant frequency. For larger noise and subthreshold stimulation the maximum firing
rate initially shifts toward lower frequencies, then returns to higher frequencies in the limit of large noise. The
stochastic coherence antiresonance, defined as a simultaneous occurrence of (i) the maximum of the coefficient
of variation and (ii) the minimum of the firing rate vs the noise intensity, occurs over a wide range of parameter
values, including monostable regions. Results of this work can be verified experimentally.
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I. INTRODUCTION

The Hodgkin-Huxley (HH) model [1] is a prime example
of a resonant neuron. It was originally developed to explain
experimental properties of the squid giant axon. Its behavior
under the influence of constant, periodic [2–6], and irregular
external current [7] has been studied extensively. It also served
as a starting point for a number of reduced models [8–10],
designed to preserve the key features, while being more
amenable to large-scale numerical simulations. However, a
full understanding of all qualitative properties of its solutions
has not been achieved yet.

Deterministic HH equations can have both periodic and
aperiodic, sometimes chaotic, solutions [11]. Theoretical
[12–14] and experimental [3,13] analysis revealed that near
the excitation threshold two solutions, the fixed point and the
limit cycle, may coexist. A simple such example is the HH
model driven by a constant current. As the current magnitude is
increased the neuron starts responding at a preferred frequency,
which is close to 50 Hz for the original HH parameter set.

The HH neuron in the presence of noise may display either
resonant or antiresonant behavior, depending on the signal
magnitude, frequency, and noise. The enhancement of weak
signals by noise is known as stochastic resonance [15–17]. The
opposite effect, stochastic antiresonance, in which a neuron’s
firing frequency is slowed down or even entirely stopped at
some intermediate noise level, received some attention [18–
20] recently. Depending on model parameters this behavior
is associated with bistability [18,19] or multimodality of the
response [21]. A relation between bistability and antiresonance
in integrator neurons was also studied recently [22].

In two previous papers on the HH model driven by periodic
sequence of short stimuli, we have shown that there is a
transition between odd-only and all modes at high frequencies
[21,23]. This transition is located between the locked-in
regions 2 : 1 and 3 : 1. The notation p : q means q output
spikes for every p input current pulses. The edges of individual
modes scale logarithmically in the vicinity of this singularity.
This theoretical analysis agrees well with experimental data

[24]. A natural question to ask is whether we can identify
analogous parity transition, involving even-only modes on
one side and all modes on the other side of the transition.
A preliminary study [25] showed that the even and odd modes
compete also near the main resonance. In the following we
analyze the resonance regime in detail, looking for signatures
of the even-all transition.

Our aim is to map the response diagram of the HH neuron
to a train of brief current pulses, rather than emulate typical
in vivo scenarios. Stimuli in the form of brief pulses are better
suited to reveal the internal dynamics of the neuron than signals
varying on the time scale of the main resonance. In the case of
the often used constant or sinusoidal input currents the neuron
dynamics is obscured by the drive that is always different from
zero. Gaussian noise is added to the model in order to reveal
additional features of the model’s dynamics. Although this
particular type of randomness may not necessarily occur in a
neuronal system we believe similar results will be obtained for
any fast-varying irregular component of the stimulus.

II. THE MODEL AND RESULTS

We consider the stochastic HH model with the classic
parameter set and rate constants [1],

C
dV

dt
= −INa − IK − IL + Iapp + Cξ (t), (1)

where noise is given by the Gaussian process 〈ξi(t)〉 = 0,
〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′) and D is expressed in mV2/ms.
INa, IK , IL, and Iapp, are the sodium, potassium, leak, and
external current, respectively. C = 1 μF/cm2 is the membrane
capacitance. The input current is a periodic set of rectangular
steps of height I0 and width 0.6 ms, which is an order
of magnitude below the resonant pulse width [20] and
does not interfere with the neuron’s internal dynamics. The
deterministic (stochastic) HH equations are integrated using
the fourth-order Runge-Kutta algorithm (the second-order
stochastic Runge-Kutta algorithm [26]), respectively. The
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FIG. 1. Response diagram in the noiseless case for stimulation
by rectangular current pulses of width τ = 0.6 ms and height I0. The
top (bottom) panel shows the high (intermediate) frequency regime.
Bistable regions are marked “b”. Some smaller bistable areas remain
unlabeled. They are limited by a dotted line from above and a solid
line from below. Labels 1, 2, 3, and 4 mark regions with 1 : 1, 2 : 1,
3 : 1, and 4 : 1 mode locking, respectively. The resonance area near
Ti = 17 ms is dominated by the 3 : 1 state and higher order states.
The second resonance near Ti = 34 ms is dominated by the 2 : 1
mode. Higher modes appear near the threshold at Ti � 34 ms.

simulations are carried out with the time step of 0.001 ms
and are run for 400 s, discarding the initial 4 s.

Figure 1 shows the response diagram in the Ti − I0

plane without noise, where Ti is the stimulus period. The
main resonance is located at Ti � 17 ms. The second order
resonance is present at Ti � 34 ms and the third one at Ti �
51 ms (not shown). The dotted line separates the region with
a single solution from the area where two solutions coexist.
Bistable solutions appear between the resonant regions near
Ti = 11 ms and Ti = 23 ms. In these regimes the transition
to excitability occurs via the subcritical Hopf bifurcation. The
picture is more complicated at the frequencies above 250 Hz,
where the quiescent state often coexists not with a limit cycle
but with a set of irregular orbits. The boundaries of bistable

FIG. 2. The firing rate as a function of the current pulse height
at the resonance Ti = 17.5 ms. Here τ = 0.6 ms. Near the firing
threshold fo is approximately a square root function of the pulse
amplitude. Further away from the threshold the dependence of fo on
I0 between the mode-locked states is irregular and nonmonotonic.

FIG. 3. Details of the response diagram at the resonance. Borders
of even (odd) mode-locked states are shown with broken (continuous)
lines, respectively. The dotted lines mark the transitions to repetitive
firing. Areas enclosed by the dotted line and continuous or broken
lines are bistable. Numbers 2, . . . ,5 indicate the states 2 : 1, . . . ,5 : 1.
The states beyond 7 : 1 are not shown. Filled squares indicate the
parity multimodal transition between even-only and all modes.

regions are determined with a simple continuation algorithm.
The initial conditions of each run with a new value of a
bifurcation parameter are equal to the end values from the
previous iteration.

The firing rate fo/fi depends continuously on I0 between
the tip of the resonance at Ti � 17 ms and the bistable area,
which begins at Ti � 20 ms. Here fo, fi is output, input
frequency, respectively. For 14 ms < Ti < 17 ms bistable in-
tervals with integer p/q ratio alternate with irregular response,
whose long-time average is a continuous function of I0 and Ti .
Earlier, Clay reported [27] an irregular graded response near
the excitation edge within a revised HH model [28] stimulated
by 1-ms rectangular current pulses and trains of half-sine
waves. This variability was attributed to the deterministic
nonlinear dynamics of the model.

For Ti � 17 ms the firing rate is approximately a square
root function of the deviation from the threshold current
amplitude (see Fig. 2). This dependence is characteristic of a
saddle-node bifurcation [29]. The scaling fo/fi ∼ (I0 − Ith)β ,
with β = 1/2 is reminiscent of a mean-field second-order
phase transition, with fo/fi playing the role of an order
parameter. The same exponent is obtained for a relaxation time
near Ic � 6.264 μA/cm2 for a constant current I [30], where
Ic is the value of I at the saddle-node bifurcation. Below Ic the
neuron returns to quiescence after emitting a series of spikes.
The relaxation time, defined as the time from the first to the last
spike, diverges as (Ic − I )�, where � � 1/2. Similar values

FIG. 4. Sample voltage trace in the chaotic regime near the
transition between even-only and all modes. The applied current
pulses are shown with dotted lines. There is only one odd multiple
(7 : 1) of the input period in this sample. Here Ti = 13.9 ms and
I0 = 10.75 μA/cm2.
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FIG. 5. The Poincare section of the membrane potential near
the bistable region and irregular regime for current amplitude I0 =
10.65 μA/cm2. The values of V (t) in each run are recorded at the
points t = nTi , where n = 1,2, . . .. The lowest and the highest flat
branches on the left belong to the 2 : 1 states. The middle one belongs
to the steady state. It undergoes a period doubling bifurcation on
approach to the irregular regime above Ti = 13.3 ms.

of � were obtained for the Morris-Lecar and FitzHugh-
Nagumo models [30].

Figure 3 shows the bifurcation diagram near the tip of the
resonance. The synchronized states alternate with irregular
firing. There are small bistable regions where the quiescent
state coexists with a limit cycle. We have calculated their
boundaries for states up to order 5 : 1. It is likely that they
extend all the way to the tip of the resonance. The behavior
in the intermediate regions is chaotic due to a competition
between odd and even modes [23]. An example of V (t)
dependence for a point located between states 2 : 1 and
3 : 1 is shown in Fig. 4. This sample contains only one odd
multiple of the input period. Odd interspike intervals vanish in
the vicinity of the 2 : 1 state. Careful analysis of the interspike
interval histograms (ISIHs) reveals a transition between the set
of even and the set of all modes. This parity transition of ISIH

FIG. 7. Minimum of the firing rate between the 2 : 1 and 3 : 1
states for the noiseless stimulus. The state 4 : 1 is located near the
2 : 1 mode.

in the HH model could be tested experimentally in a squid
axon experiment, similar to the odd-all transition discovered
earlier [21,24].

The transition between quiescence and chaotic firing
marked by the dotted line in the intermediate zones between
the locked-in states occurs via period doubling (see Fig. 5).
The lowest and the highest values of V below Ti � 13.24 ms
belong to the 2 : 1 limit cycle. The line slightly below V =
−65 mV, splitting above Ti = 13 ms, is associated with the
steady state.

The even, odd multiples of Ti dominate near the states with
even, odd p/q ratio, respectively (see Fig. 6, left). This is a
general property of regimes of irregular firing. Starting from
the 2 : 1 mode, the histogram weight is gradually transferred
to the 4 : 1 mode, which dominates for Ti slightly below the
even-all transition point Tea. On the other side of Tea, h5 = 1
over a narrow interval.

The histogram of the dominant modes for D > 0 is shown
in Fig. 6 (right). Some weight is now transferred to lower

FIG. 6. Histograms of the lowest order modes for D = 0 (left) and D = 10−5 (right) at I0 = 10.75 μA/cm2. This is an irregular firing
regime between the states 2 : 1 and 3 : 1. Data in the noisy case are Bezier-smoothed averages.
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FIG. 8. The firing rate as a function of Ti in the intermediate
region between the 2 : 1 and 3 : 1 states for D = 10−5 and Ti =
10.75 ms. The competition of odd and even modes manifests itself as
a minimum of the firing rate.

modes. The 4 : 1 and 5 : 1 modes are still well pronounced
over a range of Ti but they are now mixed with 2 : 1 and 3 : 1
modes, respectively. Noise extends the range of presence of
high order modes around Tea, as expected.

The average firing rate between nearby n : 1 and (n+1) : 1
states often has a narrow local minimum due to the presence
of slower modes. The minima are more pronounced near the
excitation threshold along the left edge of the resonance tip in
Fig. 3, where Ti < 17 ms. One such valley is shown in Fig. 7.
Here the 4 : 1 mode dominates in a narrow range of parameter
values below the parity transition.

The firing rate minimum is robust to small levels of noise,
as can be seen in Fig. 8. The minimum of fo occurs for Ti �
Tea, where modes of both parity are available. In the odd-all
transition of the high-frequency regime [23] the minimum fo

was similarly located close to the transition, on the side of all
modes.

It is well known that the HH neuron has a tendency to
spike in bursts when subjected to a noisy stimulus in a bistable
regime. If the deterministic system is prepared in one of high
order bistable states from Fig. 3, the addition of noise results
in slow bursts, where the ISI within a burst is a high integer
multiple of Ti . An example is shown in Fig. 9, where each
burst’s ISI is equal to 3Ti . We expect slow bursts of order
6 : 1 and higher to be found in a more detailed calculation.

For stimuli below the deterministic threshold, noise acti-
vates firing with maximum response at the resonant frequency
(see Fig. 10). When noise is larger, excitations into the 2 : 1

FIG. 9. Sample voltage trace in the bistable regime of the state
3 : 1 under the influence of small noise. The most common form of
response consists of 3:1 bursts separated by longer silent intervals.
Here Ti = 13.9 ms, I0 = 10.75 μA/cm2, and D = 10−3.

FIG. 10. The firing rate as a function of Ti for different noise lev-
els and I = 10 μA/cm2, about 0.1 μA/cm2 below the deterministic
threshold.

state occur more frequently and the maximum of the firing
rate shifts toward Ti = 20 ms. This maximum is a result of
the interplay between the 1 : 1 mode and the 2 : 1 mode. The
relative frequency of participation of the 2 : 1 mode grows
sharply for intermediate noise levels in the neighborhood of
the bistable regime for Ti � 20 ms.

For signals with a periodic subthreshold component noise
may play the role of a frequency selector. In a network with
some elements firing in unison at the resonant frequency the
remaining uncorrelated neurons also play an important role.
The intensity of their background activity may select the firing
rate of a network.

The dependence of CV on Ti for fixed noise intensity is
shown in Fig. 11. As expected, the most coherent response
occurs near the resonance. The minimum near Ti = 20 ms
for suprathreshold inputs follows the left edge of the 1 : 1
region from Fig. 1. For stimuli below threshold there is a deep
minimum at the resonance and a large maximum in the bistable
regime for Ti > 20 ms.

For suprathreshold stimulation in the resonance regime the
firing rate in general increases monotonically as a function of
D with the exception of states having p/q values close to 1,
(see Fig. 12). Starting in the 1 : 1 state at D = 0, increasing
noise slows down the response by annihilating some of the
action potential spikes. The minimum fo/fi is reached at an
intermediate D. In the limit of large noise fo approaches
the inverse of the refractory period. The CV maxima are
caused by redistribution of histogram weight among several
principal modes (see Fig. 12). This effect was described earlier
as stochastic coherence antiresonance [21]. Maximization
of spike train incoherence was shown earlier to occur in

FIG. 11. The coefficient of variation as a function of Ti for
different pulse amplitudes. The noise intensity if fixed at D = 0.2.
The local minimum at larger I0 follows the left edge of the 1 : 1
regime.
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FIG. 12. The firing rate and CV as a function of D for several
values of I0 and Ti = 17 ms. Maximum of CV at intermediate values
of D is due to the multimodal distribution of interspike intervals.

the FitzHugh-Nagumo [31] and leaky integrate-and-fire [32]
models. However, in those studies the maxima of CV were not
accompanied by the minima of fo/fi .

Figure 13 shows the response diagram in the presence of
noise. The tip of the resonance is broadened and shifted to
higher frequencies. The 3 : 1 state vanishes completely for D

slightly larger than 10−3. Higher-order states are more sensitive
to noise and are quickly washed out. The bistable area at the
edge of the 2 : 1 state shrinks more gradually. When bistability
is finally eliminated, fo remains discontinuous over part of
that border. For D = 10−2 the discontinuity occurs below Ti �
10.5 ms. Above Ti � 10.5 ms the firing rate is a continuous
function of I0. The behavior in the immediate vicinity of Ti =
10.5 ms seems to be weakly irregular. A more detailed study
would be needed for a proper description of this area. The loss
of stability by the 2 : 1 state in favor of the quiescent state and
further transition to bursting are illustrated in Fig. 14.

The reaction to noise at high frequencies is qualitatively
different from behavior at near-resonant frequencies (see

FIG. 13. The response diagram in the presence of noise. Solid
lines are the boundaries of the main mode-locked states without noise
(see also Fig. 1). The broken and dotted lines are boundaries for
D = 10−3 and 10−2, respectively.

FIG. 14. Sample dependence of V (t) for three intensities of noise,
from top to bottom: D = 0.001, 0.01, and 0.03. The spiking action
is switched off for intermediate values of D. Here Ti = 11 ms, I0 =
10.5 μA/cm2.

Fig. 15). In the top panel of Fig. 15 the firing rate drops almost
everywhere for small D. This is easy to understand if we recall
that the odd-all multimodal transition [21,23] occurs just below

FIG. 15. Typical behavior of the average firing rate in the regime
of high (top) and moderate frequency (bottom) for different noise
levels. At high frequencies and small noise the response is initially
slowed down over an entire plateau, starting from both edges. At the
lower diagram fo is held steady in the central part of the plateau,
decreasing at the left edge and increasing at the right edge. The
average firing rate in the central part of the plateau is preserved up to
D � 0.1. The irregular nonmonotonic behavior in the deterministic
case is smoothed out for very small levels of noise.
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FIG. 16. Bifurcation diagram near the excitation threshold as a
function of the current pulse width. The input period is set at Ti =
17 ms. At τ = 17 ms the input current is constant. The details of
the antiresonant limit with bistable behavior are shown in the inset.
Solid lines mark the excitation threshold. The dotted lines are the
boundaries of the 1 : 1 state.

I0 = 20 μA/cm2. The slow modes are easily available in this
regime and small perturbations suffice to switch the system
among different trajectories. The firing rate drops over the
entire 3 : 1 plateau due to the appearance of the 5 : 1, 7 : 1,
and other odd modes. For larger D also the even modes are
sampled by the system and fo/fi increases.

At moderate, near-resonance frequencies, the central part
of the 2 : 1 plateau in the lower part of Fig. 15 is more robust
to noise. The average fo is preserved for D up to 0.1. Noise
induces both the 1 : 1 mode as well as the 3 : 1 and slower
modes. However, the participation rate of the 1 : 1 mode is
balanced by the slower modes in such a way that average
fo/fi remains close to 2. This type of resilience to noise,
characteristic of the resonance regime, can also be seen in
other mode-locked states.

Finally, let us briefly describe the role played by the current
pulse width τ . Figure 16 shows the excitation threshold as a
function of τ for a resonant drive, Ti = 17 ms. Initially the
threshold decreases as the inverse of τ . For τ > 8 ms the
tip of the resonance (shown in Fig. 3) gradually becomes
narrower and vanishes. The threshold rises again and reaches
maximum near τ = 17 ms, when I (t) = const. Bistability
appears above τ � 16 ms. It is clear that stimulation by a
constant current forces the neuron into an antiresonant regime.
The bifurcation diagram in Fig. 16 implies that the addition of
any charge-unbalanced component to the constant stimulus
takes the system away from this antiresonant limit. The
precise nature of such a component, whether deterministic
or stochastic, is not important. What matters is the amount of
charge delivered within approximately 4 ms from the stimulus
onset.

III. CONCLUSIONS

We studied the response of the HH neuron to a periodic
pulse current with a Gaussian noise. The global bifurcation
diagram in the Ti − I0 plane has a rich structure near
the excitation threshold, where resonant regimes alternate
with antiresonant ones. The model is bistable between the
resonances and in the limit of high-frequency stimulation.

The firing rate is a continuous function of I0 for Tres �
Ti < 20 ms. The scaling of the firing rate with (I0 − Ith)1/2 is
a signature of a saddle-node bifurcation at the threshold. For
Ti � Tres bistable regions are separated by areas of irregular
response with no well defined threshold and approximately
continuous dependence of fo/fi on input parameters. As Ti

approaches Tres from below, the subcritical Hopf bifurcation
gradually softens. Bistable regions occupy smaller portions
of the parameter space and disappear before Ti = Tres. The
change of the type of neuronal excitability is important in the
context of preventing the so-called dynamical diseases, such as
epilepsy, Alzheimer’s, and Parkinson’s disease. It was shown
in the HH [33,34] and the Hindmarsh-Rose [35] models that
this could be obtained by introducing an additional control
function. We demonstrated that the threshold behavior can
also be altered by selecting the frequency and amplitude of
external current.

For subthreshold stimuli noise enables spiking in the
vicinity of the resonance. The stimulus frequency, for which
the maximum firing rate is obtained, depends on the magnitude
of noise. For large D, the maximum fo occurs for Ti > Tres.
It would be interesting to investigate the same regime in a
HH network where the connectivity pattern of neurons as well
as their individual properties might lead to the emergence
of subpopulations of neurons firing with different average
frequencies in response to a correlated input with background
noise. It was shown earlier by several authors that both the
background noisy activity [36,37] and correlated inputs [38]
are important in explaining the neuronal response in vivo.
Qualitative results of this work do not depend on the precise
functional form of the current pulse provided the width of each
pulse does not exceed 4 ms. This invariance of the bifurcation
diagram in the Ti − I0 plane is not surprising because for short
pulses the HH neuron’s threshold is determined by the amount
of charge delivered per pulse [39].

We have also found a new even-all multimodal transition
occurring between the states 2 : 1 and 3 : 1 close to the main
resonance. For input period Ti below this singularity only even
response modes exist. Both even and odd modes appear above
the transition. This effect is accompanied by a minimum of
the firing rate, located close to the parity transition, on the side
of all modes. Similar transitions may exist in other excitable
systems.

Our results are also relevant to studies of auditory nerve
fiber responses to electric stimulation [40–43]. At low stimu-
lation rates auditory nerve fibers fire regularly and are locked
in to applied stimulus. At high stimulation rates these fibers
respond irregularly. Some researchers attributed this effect to
physiological noise [44,45]. However, an analysis within the
FitzHugh-Nagumo model showed that the firing irregularities
at high frequencies may be caused by deterministic dynamical
instability [42,43]. We have found similar instabilities in the
HH model. They appear at high stimulation frequencies and
along the excitation threshold. Both of these regimes are
relevant to studies of hearing sensitivity.
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