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Collision of polymers in a vacuum
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In a number of experimental situations, single-polymer molecules can be suspended in a vacuum. Here
collisions between such molecules are considered. The limit of high collision velocity is investigated numerically
for a variety of conditions. The distribution of contact times, scattering angles, and final velocities are analyzed.
In this limit, self-avoiding chains are found to become highly stretched as they collide with each other and have
a distribution of scattering times that depends on the scattering angle. The velocity of the molecules after the
collisions is similar to predictions of a model assuming thermal equilibration of molecules during the collision.
The most important difference is a significant subset of molecules that inelastically scatter but do not substantially
change direction.
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I. INTRODUCTION

Although polymer molecules are most commonly studied
in solution or in solid form [1], there has been increasing
technological use for them in a vacuum. They are often
prepared in this state as part of the technique used to identify
protein molecules with mass spectrometry [2].

Recently, the properties of single-chain molecules in a
vacuum were studied theoretically and by means of computer
simulation [3–7]. It was shown that such molecules have
unusual statistical properties and that the dynamics differ
substantially from those found for similar molecules in
solution. With no excluded volume, the lack of a solvent
means that the only damping that can occur is internal to
the chain and this leads to slowly damped oscillatory behavior
for time-dependent correlation functions of polymer position.
With excluded volume, the time constant for relaxation scales
with chain length N as N1.15±.05 substantially faster than for
corresponding chains in solution [1]. Oscillatory behavior is
quite pronounced for short chains [6] but is suppressed when
they are longer [3].

The equilibrium size of such chains is also influenced by
the conservation of angular momentum [4], and the exact
statistical properties of an ideal chain with this constraint can
be calculated. When the total angular momentum is zero, the
radius of gyration is smaller relative to a chain without this
constraint enforced. In experimental situations, these polymer
chains are often charged and are accelerated by an external
field. As far as the author is aware, there have been no
experiments that have measured their conformations in this
state. Such experiments would be very interesting and might
allow for the probing of additional features that could be used
to characterize the chemical composition of such chains. An
important aspect in understanding this situation are the nature
of collisions between chains.

In equilibrium, collisions will obey detailed balance and the
average properties of two chains before and after a collision
will be identical. Under the conditions necessary to perform
mass spectrometry, nonequilibrium considerations become
necessary. Because the molecules are charged and accelerated
by large fields, they acquire a high center-of-mass velocity.
It seems likely that under such circumstances, one would
have collisions occurring between molecules with high relative

velocities, as their charges and masses are not all identical.
Such collisions differ from most collisions in that they are
occurring between very large molecules and are expected to
have quite a different character than previously studied.

In addition, it should be possible to directly study col-
lisions between molecules with high relative center-of-mass
velocities using modifications to the highly sophisticated
apparatus that is in current use such as matrix-assisted laser
desorption/ionization mass spectrometry (MALDI MS). The
acceleration voltage typically of order order 10 kV [8]. So with
a single charge on a protein this amounts to a center-of-mass
kinetic energy of 104 eV. Compared to the center-of-mass
thermal energy at 400 K, this is over 105 times greater. It should
be noted that this large field does not cause further ionization of
the molecules because the acceleration occurs over centimeters
and so the electric field is still small compared with that needed
for ionization. There are many sophisticated variations [9] of
MALDI that suggest that modification of the apparatus for the
purpose of studying collisions should be feasible.

It should also be emphasized that MALDI is very complex
and that the way the physical situation is modeled below is
still quite approximate. It is hoped that some of the predictions
found by this analysis will motivate further experiments on this
very useful technique. Nevertheless, it is of interest to explore
situations where the collision velocities of molecules are much
larger than the thermal values given by the equipartition
theorem [10] and this is done in this paper.

Throughout this work we will consider collisions in the
center-of-mass frame. Transforming to other frames is straight-
forward. For highly inelastic collisions, such as the ones
described below, this is the most natural reference frame to use.

II. ANALYTICAL CALCULATION

In general, the dynamics of a collision between two
macromolecules is extremely complex and difficult to treat
theoretically. However, here we will make two assumptions
that will allow us approach this problem analytically and this
will be subsequently compared to simulation results.

The first and boldest assumption is that chains interact for
long enough to reach thermal equilibrium. It is not obvious that
this is the case, and our numerical results will show that it is
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a reasonable starting point but clearly not exact. It is expected
to work better if the interactions between the molecules are
strongly attractive. However, we will not simulate the attractive
case in this work, although it is an interesting problem and may
also be relevant to some experiments.

The second assumption is that the initial relative velocity
is much larger than the internal energy of a chain. Although
not as crucial as the first assumption, we will see that it leads
to a regime with a dependence on much fewer independent
parameters than the general case. This makes it much easier to
test numerically.

A. The thermal limit

We first examine what happens if two chains collide that
have an arbitrary number of monomers N1 � 1 and N2 � 1
and corresponding masses M1 = mN1 and M2 = mN2. We
will consider the collision in the center-of-mass reference
frame so, initially, the total momenta of the molecules are
PI and −PI , respectively. We will also assume, as we do in
subsequent sections, that collisions are nearly head-on so there
is little angular momentum about the center of mass.

We assume that each chain is large enough to be well
described as being in thermal equilibrium with temperatures
T1 and T2 and that the internal energy is extensive so the initial
energy is the sum of internal energy plus center-of-mass kinetic
energy. This gives an initial total energy for the system of

EI = N1u(T1) + N2u(T2) + P 2
I

2

(
1

M1
+ 1

M2

)
, (1)

where u(T ) is the internal energy per monomer.
After the collision has taken place and the molecules have

separated, the energy in center-of-mass degrees of freedom
is only 3kBT and, by the assumption of large N , is very
small compared to the internal energy. Therefore to a good
approximation

EF = (N1 + N2)u(TF ), (2)

where TF is the final temperature of both chains. By the
assumption that the chains have equilibrated thermally, after
the collision, the two chains are at the same temperature.
Equating EI to EF from the above two equations

(N1 + N2)u(TF ) = N1u(T1) + N2u(T2) + P 2
I

2

(
1

M1
+ 1

M2

)
.

(3)

Therefore, the final temperature can be computed from the
initial temperatures and PI .

This can be simplified further in the limit where the
center-of-mass kinetic energy is small compared to the internal
energy, or the heat capacity, c(T ), is almost constant, so for
both chains i = 1,2

u(Ti) = u(TF ) + Nic(TF )(Ti − TF ), c(T ) ≡ ∂u(T )

∂T
(4)

so Eq. (3) yields

TF = N1T1 + N2T2

N1 + N2
+ P 2

I

2mc(TF )

(
1

N1
+ 1

N2

)
. (5)

The first term is the weighted average temperature that the
two systems would have if brought in contact. The second is
the additional increase in temperature due to the energy in the
center-of-mass kinetic energies of the molecules.

Now we focus on the limit where the initial internal energy
of the chains are negligible compared with the kinetic energy
in the center of mass.

B. The high-collision-velocity limit

Aside from the number of monomers, self-avoiding chains
are characterized by a mass per monomer m, step length l,
and an excluded volume parameter. Excluded volume can
be understood as an effective hard core radius that prohibits
monomers from getting closer than a certain distance. In the
limit where PI is very large and the internal energy of a chain is
kept constant, the internal energy of a chain becomes negligible
in comparison with the center-of-mass kinetic energy. During
a collision, we will see that, typically, a substantial fraction
of this momentum is transferred into internal kinetic energy
of the chains. Therefore, in this limit, the internal energy of a
chain before a collision can be neglected, and we can set the
initial kinetic energy of the chains equal to zero. In this case,
with only hard core potentials, the scattering of self-avoiding
chains depends only on velocity as a prefactor. The angular
dependence of scattering becomes independent of PI , and the
distribution of the final scattered momentum PF depends only
on PF /PI . This is an interesting limit to consider because
of the lack of dependence on the chains’ temperature, and,
therefore, this will be studied in detail below.

Because the velocities of monomers relative to the center
of mass for a single chain is very small in comparison with
the relative collision velocity, the angular momentum relative
to the center of mass of a chain before the collision can be
neglected as well. However, the angular momentum of the two
chains relative to each other cannot in general be neglected. As
mentioned above, because of the large number of parameters
that we are considering we will consider only situations where
the total angular momentum of the system is zero, that is,
head-on collisions of the center of masses.

The distribution of resulting directions emerging from the
collision is an interesting quantity to examine. The angle
of deflection θ (the inclination angle) after a collision can
be anisotropic, but the azimuthal angle φ must always be
isotropic. We use the convention that π/2 > θ � 0 is the
direction of forward scattering. This is shown in Fig. 1.

When two chains collide, they remain in contact for some
period of time, tc, that depends on the precise details of
the initial configurations of the chains. Because the chains
are flexible, we expect to have highly inelastic collisions. In
the limit of a very long tc, much longer than the relaxation of
a chain, the two chains will have fully thermalized. We will
now describe what we expect in this limit.

C. Thermal and high velocity limit

When the chains are in contact for long enough that they
have fully equilibrated, the energy in the velocity degrees of
freedom will then be described by the equipartition theorem
[10] with the caveat that they strictly obey conservation of
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FIG. 1. A collision in the center-of-mass frame. Polymers A and
B move toward each other as shown by the solid line. After the
collision they come apart as shown by the dashed lines. The angle θ

is the angle of deflection.

energy, momentum, and angular momentum. For a large
number of monomers, momentum and angular-momentum
conservation make a negligible correction to the energy in
each degree of freedom. The initial energy is

E = 1

2m
PI

2

(
1

N1
+ 1

N2

)
. (6)

Assuming thermal equilibrium, when the two chains collide,
we can define a temperature T , and statistical mechanics gives
the relationship between this and the energy E. The average
total kinetic energy is 〈K〉 = (N1 + N2)df kBT /2, where df

are the number of degrees of freedom per monomer, so in the
special case of an athermal system, E = K so

kBT = PI
2

df m

(
1

N1
+ 1

N2

)
N1 + N2

= PI
2

df m(N1N2)
. (7)

Here athermal is taken to mean any system whose partition
function is independent of temperature, for example, systems
with only constraints in the allowed regions of phase space,
such as hard core interactions.

We would like to calculate the average center-of-mass
energy of both molecules after the collision. The position and
momentum degrees of freedom are independent so we need
only consider kinetic energy corresponding to particles with
momenta pj,1, and pj,2 where the first subscript, j , indexes the
monomer, and the second subscript indexes the polymer

K = 1

2m

(
N1∑
j=1

p2
j,1 +

N2∑
j=1

p2
j,2

)
. (8)

The probability of finding the system with a given set
of momenta is proportional to exp(−βK), subject to the
constraint

N1∑
j=1

pj,1 +
N2∑
j=1

pj,2 = 0. (9)

We would like to find the probability distribution of the total
momentum of one chain

P1 =
N1∑
j=1

pj,1. (10)

This problem is mathematically identical to the problem of a
Gaussian ring polymer with N1 + N2 monomers. In particular,
one can regard the particle momenta as displacement vectors
between nearest neighbors. Then P1 can be interpreted as the
displacement of two monomers separated by N1 monomers.
For the purposes of this calculation, this is the same as two
linear chains in parallel of lengths N1 and N2. Therefore,
probability distribution of P1 is

P (P1) ∝ e
− βP1

2

2 ( 1
M1

+ 1
M2

)
. (11)

Therefore 〈
P 2

1

〉 = 3kBT Mr, (12)

where 1/Mr = 1/M1 + 1/M2 is the reduced mass.
Alternatively, this result can be seen by considering a gas

in thermal equilibrium and considering the joint momentum
distribution of two molecules of mass M1 and M2, P (p1,p2) ∝
exp(−βK). We are interested in the distribution of momentum
in the center-of-mass reference frame. The kinetic energy K

is the sum of the internal plus center-of-mass kinetic energy.
Because the internal momenta are equal and opposite, the
internal term KI is

KI = P1
2

2

(
1

M1
+ 1

M2

)
(13)

and is independent of the center-of-mass momentum. This
implies the distribution of P1 is of the form of Eq. (11).

In the athermal limit, we can use the value of T given by
Eq. (7) and substitute that into Eq. (12), obtaining

〈
P1

2
〉 = 3

PI
2

df (N1 + N2)
. (14)

Therefore, the variance of the final center-of-mass speed of
chain 1, vc.m.,1,F , is related to its initial speed vc.m.,1,I as

〈vc.m.,1,F
2〉 = 3

v2
c.m.,1,I

df (N1 + N2)
. (15)

In a gas of molecules with a large number of internal degrees
of freedom, the distribution of total molecular energy is highly
peaked. The standard deviation of this energy is smaller than
the mean by a factor of 1/

√
N . In the limit of large N we can

ignore fluctuations in this energy. In thermal equilibrium, we
would like to know the distribution of center-of-mass speeds
seen that result from a collision.

To derive this distribution, assume we have just two
molecules in a container with periodic boundary conditions
with total center-of-mass momentum of zero. Assume the size
of the container is much larger than the size of a molecule and
that the system is in thermal equilibrium. Such a system is
expected to be ergodic and hence be able to reach thermal
equilibrium. The distribution of the center-of-mass speed
measured at one time is Maxwellian. This differs from the
distribution of speeds that are measured after a collision.
In the latter case, we are not measuring speeds at arbitrary
times but, rather, after a collision. This difference in sampling
alters the distribution. After a collision the center of mass of
molecule 1 will move in a straight line with speed vc.m.,1,F

until it suffers another collision. The time spent in this state
before undergoing another collision will be ∝ 1/vc.m.,1,F . So
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to compensate for this, the distribution of final speeds must be
multiplied by an extra factor of vc.m.,1,F so

P (vc.m.,1,F )dvc.m.,1,F ∝ v3
c.m.,1,F e

− v2
c.m.,1,F

2σ2
x dvc.m.,1,F . (16)

Here σ 2
x is the variance of one of the components of the final

velocity, and therefore σ 2
x = 〈v2

c.m.,1,F 〉/3 or, using Eq. (15),

σ 2
x = v2

c.m.,1,I

df (N1 + N2)
. (17)

For a gas in thermal equilibrium, the distribution of speeds
of molecules striking a wall is well known from the study of
effusion [11] and this is the form that is expected in that case
as well.

The distribution of directions for the final velocity in this
limit should be isotropic. The only subtlety being that the
total angular momentum Lt is conserved, so if Lt is zero,
it might be thought that this would preclude the two chains
rotating relative to each other and that this would cause them
separate in a way that preserves their initial relative orientation.
However, it is still possible to rotate the two chains by circular
motion of only parts of them. For example, if an end monomer
rotates by one revolution, this will cause the rest of the system
to compensate by rotating in the opposite direction. This will
cause a rotation in the relative positions of the two chains,
without changing the total angular momentum. Therefore, in
the limit of long collision times, the relative orientation of the
two chains is not conserved and the final direction should be
isotropic.

In terms of the variable

z ≡ cos θ, (18)

the distribution of z should be uniform. For this reason we will
use z rather than θ to characterize the results of the simulations
discussed below.

Note that the above consideration could apply to any large
molecules undergoing collisions, not just polymers. The only
thing required is that they remain in contact for sufficiently
long that thermal equilibrium is established.

D. Simulation

We model self-avoiding chains as was done previously [3].
The distance between links is maintained at a constant value
of l = 1. The chain is modeled as freely hinged and there is
no chain stiffness. A repulsive potential between all monomers
was included. If the distance between two monomers is r , their
potential was taken to be V (r) = 40[1 − (r/ l)2]5. For r > l,
V (r) = 0. A diverging hard core was not used for the sake
of efficiency. The potential at the center is very high, making
chain crossing exceedingly unlikely and no chain crossing was
observed.

Rigid links were chosen to avoid equilibration problems
that can occur due to the quasi-one-dimensional nature of this
system [12,13]. The simulation method solves Newton’s laws
for this system so all conservation laws are well satisfied. It
also implements the rigid link constraints in an efficient way,
using O(N ) operations for every integration step. The method
is described in detail in Ref. [7]. Many collisions were studied
with different initial configurations of the chains and their

statistics were analyzed. We took the initial center speed of
chains to be 1, and m = 1. The time step for the simulations
was 0.02.

The chains were initially equilibrated for many relaxation
times. For example, for N = 128 the equilibration time was
40 000 steps. Then their velocities were made negligibly small
by applying a large damping for many damping times so their
final velocities were less than 10−8. These chains were given
their initial center-of-mass speeds vc.m.,1,I = 1 in the direction
between the two center of masses. This way there was no initial
internal energy of the chains, corresponding to the limit of high
relative collision velocity. The chains were initially separated
by at least half of their total chain length. This ensures that
they are well separated before a collision takes place. To obtain
adequate statistics, many collisions, about 104, were used with
different random initial conditions.

The length of time they remained in contact was determined
by monitoring how the center-of-mass velocity vc.m. changed.
Before a collision, as the chains approach each other, vc.m.

remains constant, but then as soon as the chains collide,
there will be a change in this velocity. The point where vc.m.

first changes signals the start of a collision. In order for a
collision to be considered over, vc.m. had to remain constant
for all subsequent times. Time evolution was not stopped until
the chains had completely separated from each. This was
implemented by requiring that the evolution continue if there
were two monomers from different chains that were closer than
half their original separation at the start of the simulation. This
eliminated the cases where the two chains appeared to have
separated but later collided again. The final speeds were also
recorded, as was the angle of deflection θ of the chains after
the collision (again, with the convention that π/2 > θ � 0 is
forward scattering).

III. RESULTS

Figure 2 shows the distribution of scattering angles as a
function of z, as defined in Eq. (18). For N = 32, there is more
scattering backward, that is, in the direction of negative z.

FIG. 2. (Color online) The distribution of scattering angles θ .
The horizontal axis is z = cos θ . The highest curve on the left is for
N = 32, the middle N = 64, and the lowest N = 128.
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FIG. 3. (Color online) The distribution of collision times t for a
chain with N = 128 (lower graph) and N = 64 (upper graph), and
the same distribution excluding those where the scattering angle is
greater than π/2. The latter distribution has a sizable dip at t ≈ 150
for N = 128.

For larger N , this changes and for N = 128, the effect of
backward scattering is much weaker. Instead, there is a strong
peak for z = 1. This means that a substantial fraction of
collisions deflect the polymers by a very small amount. We
will discuss this further below.

Assuming an athermal model, the temperature given by
Eq. (7) is kBT = 1/2. The distribution of collision times is
shown in Fig. 3 for N = 128 (lower graph) and N = 64 (upper
graph). The average time computed from this distribution,
for N = 128, is 210. This is comparable but larger than the
equilibrium relaxation time trel seen for similar simulations
of equilibrium systems. The latter was determined from
measuring the time dependent autocorrelation function as has
been described previously; see Ref. [3], Fig. 3. This suggests

that, during the majority of these collisions, the system should
be close to thermal equilibrium. There are two sets of data
shown on each plot in Fig. 3. One where all scattering angles
are included (triangles), the second includes only forward
scattering, z > 0 (squares). With only forward scattering, there
is a prominent dip in the distribution at t ≈ 150 (N = 128).
For longer times, the two curves converge quite closely.
The reason for this unusual small t behavior will also be
discussed.

The distribution of final velocities is shown in Fig. 4(a). The
smooth curve without error bars is a fit to the form expected
in the thermal limit, Eq. (16). Note that there is a much longer
tail in the simulation data. If, instead, one excludes strong
forward scattering, z > 0.9, as shown in Fig. 4(b), the fit to
the thermal distribution is much improved. The fit gives σx =
0.064, for N = 128, whereas the predicted value from Eq. (17),
the thermal limit, is 0.044. This uses a value of df = 2, which is
the number of kinetic degrees of freedom per monomer for this
model because it has links of constant length. This value should
be correct in the high-temperature limit. The distribution in
Fig. 4(b) is still slightly too wide and this suggests that low final
velocities are suppressed compared to the thermal prediction.

The distribution of the maximum end-to-end distances, R,
occurring during scattering is shown in Fig. 5 for N = 64
and N = 128. There is typically substantial stretching that
occurs during a collision. For comparison, statistics for the
end-to-end distance Re for N = 128 were calculated in thermal
equilibrium for a total angular momentum of zero. The same
chain has an rms end-to-end separation of

√〈R2
e 〉 = 17.5,

However, the maximum in Fig. 5 is at R = 38 and has a
significant tail stretching to past R = 90. After the chains have
separated, the stretching will disappear and tend toward their
equilibrium values.

To summarize what we have learned so far, collisions
between self-avoiding chains in a vacuum appear be quite close
to what one would expect in the thermal limit. For the longest
chain studied, N = 128, the scattering is close to isotropic
with the exception of a spike for strong forward scattering.
The time that the chains remain in contact is typically longer
than a relaxation time. The distribution of final speeds appears
quite comparable to what one would expect from a thermal
distribution except for collisions coming from strong forward

(a) (b)

FIG. 4. (Color online) (a) The distribution of final collision speeds v, including all scattering angles and N = 128. (b) The same distribution
ignoring those where cos θ < 0.9. For comparison the distribution for L = 64 is also shown. The smooth lines are fits to the data as described
in the text.
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FIG. 5. (Color online) The distribution of the maximum end-to-
end distances, R, occurring during scattering for chains with N = 64
and 128.

scattering. Finally, at some point while the chains are in a
collision, they are typically quite stretched.

From this it appears that these chain collisions are highly
inelastic and they have properties close to that of collisions
in the thermal limit. However, there are some interesting
deviations from this limit as was noted above. There appears to
be a fraction of collision where the angle of scattering is very
small. If these chains are excluded, then the collisions have
statistics much closer to that of the thermal limit. A simple
explanation for this would be that this subpopulation of chains
are not actually colliding. However, their final velocities differ
substantially from their initial ones, so this effect is clearly
more subtle. By observing such strong forward-scattering
collisions it appears that their behavior can be understood as
follows.

The dynamics of chains during collisions can be understood
in terms of two factors, entanglement effects and transfer

of momentum. During strong forward-scattering collisions,
it appears from visualizations that the chains do strongly
collide but only weakly entangle. Different parts of the chains
come into contact and when they do, these parts collide very
inelastically. That is, they do not bounce off one another
but remain in contact for some length of time. Therefore
momentum transfer between the chains is still inelastic. If two
inelastic masses collide, even with unequal mass, their final
velocity will still be along the same line as the initial velocities.
Therefore, all such inelastic collisions do not change the final
direction. Because the chains have not entangled, they move
past each other but have not remained in contact long enough
to thermalize. Their final directions are almost unchanged but
their speeds have been substantially reduced due to momentum
transfer.

The above observations can be seen by examining two
dimensional distributions, for N = 128 in Fig. 6. In Fig. 6(a),
the distribution of collisions is binned in terms of final
collision speed, v, and z. One can see that for strong forward
scattering, z ≈ 1, there are a large number of collisions with
final speeds much larger than the thermal velocity. In Fig. 6(b),
the distribution of collisions is binned as a function of collision
time t and z. Again, for strong forward scattering, there
is a high peak for atypically short times, indicating that
the collisions are weaker than for other scattering angles.
Therefore, these strong forward-scattering collisions are short
and do not slow down the chains all the way to their thermal
values.

The plots in Figs. 3 and 4 are obtainable from these
two-dimensional distributions. The enhancement in short time
collision frequency seen in Fig. 3 for z > 0 is therefore caused
by the subset of strong forward-scattering collisions, discussed
above, that collide only for short times. All other collisions
that more completely thermalize usually remain in contact for
longer times. The fact that there is a dip in the distribution of
Fig. 3 when considering collisions with z > 0 suggests that the
quasithermal chains having z > 0 have a peak in their collision
time distribution at t ≈ 200.

(a)
(b)

FIG. 6. (a) The probability density as a function of final speed v, and the amount of deflection z = cos θ . (b) The probability density as a
function of collision time t , and the amount of deflection z = cos θ .
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FIG. 7. (Color online) (a) The normalized distribution of angular
momentum for chains of length N = 128 is shown (triangles) and a
fit to the data as described in the text is shown by the smooth curve.

The distribution of angular momentum of the center of mass
of a chain after a collision is shown for N = 128 in Fig. 7.
Note that the distribution goes to zero for small values of L

because we are considering the distribution of the magnitude of
the angular momentum analogous to the Maxwell distribution
of speeds. However, the three-dimensional distribution of the
angular momentum is not expected to be Gaussian. It has
already been calculated exactly for a gas of noninteracting
phantom chains in a vacuum [14]. The normalized distribution
of angular momentum was shown to be

P (L′)dL′ = π2L′

8

tanh
(
L′ π

4

)
cosh2

(
L′ π

4

)dL′, (19)

where L′ is proportional to the magnitude of the normalized
angular momentum L′ = αL, with α given by

α =
√

12

Nl
√

mT
. (20)

The most important qualitative difference between this and a
three-dimensional Gaussian distribution is that this distribution
decreases exponentially with large L. The exact form of this
for a self-avoiding walk is not known but is expected to have a
similar dependence on L. Indeed, for the case of a self-avoiding
polymer ring it was shown [4] that for large L, ln[P (L)] ∼
−L10/9. Therefore Eq. (19) was used to fit the data in Fig. 7
instead of a three-dimensional Gaussian distribution but with
α as an adjustable parameter. Denoting the fitted value of α

by αd , we find that αd/α = 0.47. Therefore, the theoretical
estimate assuming the thermal limit and phantom chains is
about a factor of 2 from the simulation data. Despite this lack
of quantitative agreement, the fit by Eq. (19) is closer to that
of a three-dimensional Gaussian distribution.

IV. EFFECTS OF FIELD

In the above analysis, we have assumed that there is no
external electric field acting on the chains, which meant that
we could use conservation of energy and conservation of
momentum. Both of these are not conserved when a field

is applied. We now examine to what extent an external field
changes the energy and momentum of the system.

The external field is typically quite high, of order
E = 2 × 104 V/m. If the collision times are sufficiently long,
energy and momentum gained from the external field will
invalidate both conservation laws. To estimate the size of this
effect, we note that the collision time is typically of the same
order as the relaxation time. We found previously [3] that the
relaxation time is of order the time it takes the chain to travel
its own radius of gyration, with a velocity being given by the
root-mean-square velocity for the chain’s center of mass in
thermal equilibrium.

The typical amount of ionization is of order one electronic
charge e, therefore, the change in energy due to the external
field 	U ∼ eERg . This should be compared with the thermal
energy ET in the chain which is proportional to the number
of degrees of freedom of the whole chain and kBT , that is,
ET ∼ Ndf kBT . Therefore, the ratio is

	U

ET

∼ eERg

Ndf kBT
. (21)

Because these chains are self-avoiding Rg ∼ lN3/5, where
for proteins and many polymers, l ∼ 10−9 m. Conservatively
taking T to be approximately room temperature, kBT ≈
1/40 eV, and df = 1, we have that 	U/ET ≈ 10−3/N0.4. As
is evident, the effect of the field is small under these conditions.
In addition it becomes even smaller for a molecule having a
larger number of degrees of freedom per monomer, df , as one
would have with a protein molecule. Higher temperature also
decreases the size of the effect. However, longer collision times
imply that the numerator should be increased. But because
collision times are still of the same order as the relaxation time,
this does not invalidate this analysis. Therefore the external
field in realistic cases only weakly breaks conservation of
energy.

Similarly we can estimate to what extent the momentum is
altered by the external field. Typical thermal momentum PT

for a chain is

P 2
T ∼ 2MkBT , (22)

where M is the total mass of the chain. The center-of-mass
momentum due to the external field PE is P 2

E = 2	UM .
Therefore, using the above estimates for different experimental
parameters,

P 2
E

P 2
T

∼ 	U

kBT
∼ eERg

kBT
≈ N0.610−3. (23)

Therefore, for large chains the additional momentum will
always dominate the collisional momentum and must therefore
be taken into account. However, the crossover to that regime
occurs when N = 105 monomers. For most applications, the
number of monomer units N < 500 and the effect of the field
is not important. As mentioned above, higher temperatures
will decrease the importance of momentum nonconservation.

The model used here should best apply to singly ionized
chains. Multiple charges on a polymer will lead to strong
repulsive forces that will cause stretching and alter equilibrium
properties. Although this situation can also be modeled [3], it
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leads to additional parameters that makes the analysis much
more complex.

V. DISCUSSION

It is of interest to examine the scaling of collisions with
N . The radius of gyration of a swollen chain is R ∼ Nν with
ν ≈ 3/5 in three dimensions. According to our assumption that
the initial kinetic energy of the chains are zero, the probability
that a monomer from chain A will collide with chain B is
obtained by looking at the projection of the density of chain
B into a two-dimensional plane. The average density of this
projection is proportional to the probability of a collision. The
projected density is proportional to N/R2 ∼ N1−2ν ≈ N−1/5.
Therefore as N → ∞ the probability that a given monomer in
chain A will collide with chain B goes to zero. On the other
hand, the total number of contact points in chain A is N4/5.
Therefore, for large N , the molecules will suffer a collision
but the above argument suggests that the number of monomers
actually making contact will be a small fraction of the total.

If the amount of time that these points remain in contact
is not long enough, the chains will pass each other at some
reduced center-of-mass velocities. If the collisions of contact
points are highly inelastic, only the speed of the chains, but
not their direction, will change. Entanglements will change
the above arguments considerably. Only one entanglement
between two chains can cause their relative velocity to go
to zero. For long-enough chains, one would expect that
entanglements would then dominate the collisions. However,
their effects usually become dominant only for chains larger
than N ≈ 500, as has been seen with the study of topological
effects in flexible polymer rings [15]. To understand the details
of the dynamics of these collisions analytically is particularly
difficult in light of the topological nature of the interactions and
is beyond the scope of the present work. I would hypothesize
that the effects of entanglements will strongly suppress these
forward-scattering collisions for long-enough chains.

If the chains are of different sizes, then their behavior will
depend on their relative sizes. From the above discussion,
the probability that a single monomer will collide with a
polymer of N1 links is ∝ N

−1/5
1 . Therefore, if a second

polymer is of length N2 < N1, the probability of one collision

is approximately ∝ N2/N
1/5
1 . In other words, the second

molecule is unlikely to collide if N2 
 N
1/5
1 . For chains of

comparable sizes, the above results suggest that collisions will
still be strongly inelastic and will also show behavior close
to the thermal limit. The departure from this due to forward
scattering will increase as the mass difference increases.

VI. CONCLUSIONS

In this work, collisions between polymers in a vacuum have
been examined. This is quite an unusual situation because
collisions typically occur between much smaller molecules,
and, consequently, new features of this situation are expected.
The focus here is on chains where the initial relative center-
of-mass velocity is so large that the initial internal thermal
energy of the molecule can be ignored. This is an interesting
limit to consider because for athermal chains, the magnitude
of the initial velocity factors out.

Typically, in a collision of such long molecules, they remain
in contact for long enough to be close to equilibrium so they
can be described by thermal averages. The final velocities
and scattering angles are close to such averages. However, the
main discrepancy with this description is due to a class of
collisions that strongly forward scatter and remain in contact
for a relatively short amount of time. This is evidence of
strongly inelastic collisions of subsections of the chains. It is
expected that for long-enough chains, N > 500 entanglement
effects will diminish the frequency of these kinds of collisions.

The behavior as a function of initial center-of-mass angular
momentum has not yet been investigated. When this quantity
is large, it is expected to lead to chain configurations that
are highly stretched [4] as a result of angular momentum
conservation and could also lead to interesting behavior during
the collision.

In future work, it would be interesting to consider the case of
chains with strong attractive forces as this may also be relevant
to experiments and has interesting physical consequences.
For example, chains at temperatures that are initially below
the coil-globule transition will tend to stick together for
low-enough relative velocities. However, beyond a threshold
velocity, they would be expected to heat enough on impact to
become swollen and then separate from each other.

[1] P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell
University Press, Ithaca, NY, 1985).

[2] F. Hillenkamp and J. Peter-Katalinic (eds.), MALDI MS: A
Practical Guide to Instrumentation, Methods and Applications
(Wiley, New York, 2007).

[3] J. M. Deutsch, Phys. Rev. Lett. 99, 238301 (2007).
[4] J. M. Deutsch, Phys. Rev. E 77, 051804 (2008).
[5] A. Mossa, M. Pettini, and C. Clementi, Phys. Rev. E 74, 041805

(2006).
[6] M. P. Taylor, K. Isik, and J. Luettmer-Strathmann, Phys. Rev. E

78, 051805 (2008).
[7] J. M. Deutsch, Phys. Rev. E 81, 061804 (2010).
[8] C. A. Barnes and N. H. L. Chiu, Int. J. Mass Spectrom. 279, 170

(2009).

[9] J. H. Moon, S. H. Yoon, and M. S. Kim, Bull. Korean Chem.
Soc. 26, 763 (2005).

[10] F. Reif, Fundamentals of Statistical and Thermal Physics
(McGraw-Hill, New York, 1965), p. 248.

[11] F. Reif, Fundamentals of Statistical and Thermal Physics
(McGraw-Hill, New York, 1965), Sec. 12, Chap. 7,
p. 273.

[12] E. Fermi, J. Pasta, and S. Ulam, Los Alamos Document LA-
1940, 1955.

[13] For a review, see G. P. Berman and F. M. Izrailev, Chaos 15,
015104 (2005), and references therein.

[14] M. Brunner and J. M. Deutsch, Phys. Rev. E, e-print
arXiv:1008.3668v1 [cond-mat.soft] (in press).

[15] J. M. Deutsch, Phys. Rev. E 59, R2539 (1999).

051801-8

http://dx.doi.org/10.1103/PhysRevLett.99.238301
http://dx.doi.org/10.1103/PhysRevE.77.051804
http://dx.doi.org/10.1103/PhysRevE.74.041805
http://dx.doi.org/10.1103/PhysRevE.74.041805
http://dx.doi.org/10.1103/PhysRevE.78.051805
http://dx.doi.org/10.1103/PhysRevE.78.051805
http://dx.doi.org/10.1103/PhysRevE.81.061804
http://dx.doi.org/10.1016/j.ijms.2008.10.006
http://dx.doi.org/10.1016/j.ijms.2008.10.006
http://dx.doi.org/10.5012/bkcs.2005.26.5.763
http://dx.doi.org/10.5012/bkcs.2005.26.5.763
http://dx.doi.org/10.1063/1.1855036
http://dx.doi.org/10.1063/1.1855036
http://arXiv.org/abs/arXiv:1008.3668v1
http://dx.doi.org/10.1103/PhysRevE.59.R2539

