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We consider a continuum model describing the dynamic behavior of nematic liquid crystal elastomers (LCEs)
and implement a numerical scheme to solve the governing equations. In the model, the Helmholtz free energy
and Rayleigh dissipation are used, within a Lagrangian framework, to obtain the equations of motion. The free
energy consists of both elastic and liquid crystalline contributions, each of which is a function of the material
displacement and the orientational order parameter. The model gives dynamics for the material displacement,
the scalar order parameter and the nematic director, the latter two of which correspond to the orientational order
parameter tensor. Our simulations are carried out by solving the governing equations using an implicit-explicit
scheme and the Chebyshev polynomial method. The simulations show that the model can successfully capture
the shape changing dynamics of LCEs that have been observed in experiments, and also track the evolution of
the order parameter tensor.
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I. INTRODUCTION

Liquid crystal elastomers (LCEs) are orientationally or-
dered solids, combining features of liquid crystals and elastic
solids. They were first proposed by de Gennes [1] and first
synthesized by Finkelmann et al. [2]. They consist of weakly
cross-linked liquid crystal polymers with orientationally or-
dered side- or main-chain mesogenic units. They exhibit
many new phenomena not found in either liquid crystals or
polymers. The salient feature of LCEs is the strong coupling
between mechanical deformation and orientational order. As
a consequence of this coupling, mechanical strains change the
order parameter and hence physical properties of LCEs, and,
conversely, external stimuli, such as light, affect orientational
order and can produce large shape changes [3–6].

Although many fascinating experimental results have been
obtained by studying the dynamic response of LCEs to external
stimuli [4,6–12], their dynamics is not fully understood. In this
paper, we implement a nonlocal continuum model [13], choose
and explicitly define a specific representation, and carry out
numerical simulations to explore the dynamic behavior. Our
work thus includes both modeling and simulation.

In the model, the Helmholtz free energy and Rayleigh
dissipation are combined, using a Lagrangian approach, to
obtain the dynamics. The free energy consists of both elastic
and nematic contributions and includes volume conservation.
As a special case of the continuum model, we choose a simple
local form of the nematic free energy, the Maier-Sauper free
energy, to describe nematic contributions. Our model considers
only the uniaxial phase of nematic LCEs, for which the order
parameter tensor can be expressed in terms of a scalar order
parameter and nematic director; direct contributions to the free
energy from spatial variations of the order parameter and direc-
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tor are neglected. These simplifications make our model more
tractable, both theoretically and numerically. Subsequently,
the governing equations can be derived explicitly using both
conserved and nonconserved order parameter dynamics. We
thus obtain the time-dependent equations for the displacement,
scalar order parameter, and nematic director.

The equations obtained are more complicated than the
standard Navier-Stokes equations in the Eulerian frame. First,
besides the pressure term and the viscous term, there is also an
elastic term in the velocity equation. Second, our equations are
written in a Lagrangian frame. This choice is straightforward
for capturing the orbit as well as the dynamics within each
particle in the LCE sample. Indeed, Eulerian coordinates are
not well suited to our problem since the domain occupied by
the LCE sample varies in time. Moreover, the derived velocity
equation is very stiff due to the presence of different time scales
in the problem. Simulation is therefore a fascinating but very
formidable problem. In this work, we employ the Chebyshev
polynomial method [14] to discretize the spatial derivatives in
the dynamical equations. This method, as a typical spectral
method, can achieve high accuracy and is particularly well
suited to our simulation as our system is nonperiodic. We
also apply the popular implicit-explicit (IMEX) schemes
for the time discretization of the equations. Specifically, a
combination of the second-order Adams-Bashforth method
for explicit terms and the Crank-Nicolson method for implicit
terms [14–16] is used.

The paper is organized as follows. In Sec. II, we give
the details of the model as well as the derivation of the
governing equations. To obtain the equations, we first calculate
the derivatives of the free energy and dissipation densities
with respect to the principal variables, that is, material
displacement, order parameter, and nematic director, and then
apply the appropriate conserved/nonconserved dynamics for
each of the variables. In Sec. III, we present the numerics
for solving the equations and then show the results of our
simulations. Conclusions are given in Sec. IV.
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II. MODELING NEMATIC LCES

To describe the dynamics of LCEs, in addition to orien-
tational order, one needs to track the time evolution of the
position of the cross-links of the LCE network. In the case
of uniaxial nematic LCE, the sample can be characterized by
the displacement, order parameter, and nematic direction at
each Lagrangian lattice site, corresponding to a cross-link.
Our work is to study how these key variables evolve in time
when the sample is subjected to external stimuli. To this end,
we represent the continuum model in terms of these variables,
derive the governing equations, and implement the simulation
by solving the equations numerically.

Our continuum model consists of the elastic free energy
density and the nematic free energy density with coupling
between orientational order and deformation of the network, a
Rayleigh dissipation function, and a volume preserving term
in the free energy. The governing equations are derived from
these by applying the appropriate dynamics for each key
variable. In what follows, the expressions for the free energy
and the dissipation densities and their derivatives are discussed.

A. The free energy

The free energy in our model is composed of elastic
and nematic contributions. The elastic free energy describes
the nonlocal interaction between connected cross-links of
elastomers, while the nematic free energy represents the
anisotropic dispersion interactions of the mesogenic con-
stituents.

1. The elastic free energy

Let α denote an initial material position in the LCE
sample and x(α,t) be the location of that point at time t .
To describe the nematic ordering in the LCE cross-linking
network, an effective dimensionless step length tensor L
is introduced, written as L = I + 2μQ, where Q is the
orientational order parameter tensor, I is the identity matrix,
and μ is the dimensionless step-length anisotropy. In the
uniaxial phase case, Q = S( 3

2 nnT − 1
2 I), where n represents

the unit vector along the average alignment direction of the
molecular symmetry axes and S is the scalar order parameter
describing the degree of alignment of the molecular axes with
n [17].

In the undeformed state, the probability density of finding
in the LCE sample a polymer chain of length L starting at α

and ending at α′ can be written as

P0(α,α′) =
(

3

2πLb

)3/2

(det L0)−1/2

× exp

(
−3(α′ − α)T L−1

0 (α′ − α)

2Lb

)
,

where L0 = I + 2μQ0 is the effective step length at the initial
state [5] and b is the persistence length. Since Q0 is assumed
to be slowly varying compared to the distance between
cross-links, we evaluate Q0 and L0 at position (α′ + α)/2. We
recognize that the Gaussian distribution does not describe short
chains well; we use it for simplicity, as in Ref. [5]. Although the

derivation here is for main-chain LCE, the models are expected
to provide at least a qualitative description of side-chain LCEs
as well.

At time t , the probability density of finding a polymer
ending at x(α,t) and x(α′,t) shares the same form as
P0(α,α′) with L0(α) being replaced by L(α,t). The free
energy of the particular polymer initially ending at α and
α′ is −kT ln[P (x(α,t),x(α′,t))], where k is the Boltzmann’s
constant and T is the temperature. The total elastic free energy
at time t is

Fel = 1

2

∫
d3αFel = 1

2

∫
d3α

∫
d3α′ρcP0(α,α′)

×(−kT ln[P (x(α,t),x(α′,t))]) =
∫

d3α

∫
d3α′H (α,α′)

×
(

3

2Lb
(x(α′,t) − x(α,t))T L−1(x(α′,t)

−x(α,t)) + 1

2
ln det L

)
, (1)

whereFel is the elastic free energy density,

H (α,α′) =
(

1

2
ρckT

)(
3

2πLb

)3/2

(det L0)−1/2

× exp

(
−3(α′ − α)T L−1

0 (α′ − α)

2Lb

)
,

and ρc is the number density of cross-links. We note that
H (α,α′) = H (α′,α).

2. Nematic free energy

Perhaps the most successful description of nematic order is
Maier-Saupe theory. Here, the single particle potential is

EMS = −UρlcSP2(cos θ ) + 1

2
UρlcS

2,

where U is an interaction strength, ρlc is the number density of
the liquid crystalline constituent, and S is the scalar parameter
defined as S = 〈P2(cos θ )〉, where θ is the angle between the
symmetry axis of a mesogen and the nematic director n. P2 is
the second Lagrange polynomial.

The nematic free energy can be written as

Fnem =
∫

d3α

[
− ρlckT ln

(∫
exp

(
− EMS

kT

)
d�

)]

=
∫

d3α

[
1

2
ρ2

lcUS2 − ρlckT

× ln

(∫
exp

(
SUρlcP2(cos θ )

kT

)
d�

) ]
, (2)

where d� = sin θdθdφ, and θ is the polar while φ is the
azimuthal angle.

To simplify the expression for Fnem, we take the Taylor’s
series expansion of the integrand and obtain a Landau-de
Gennes form for the free energy density:

Fnem = 1

2
CaS

2 − 1

3
CbS

3 + 1

4
CcS

4 + O(S5), (3)
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where

Ca = 1
5ρlckT

(
ρlcU

kT

)2 (
5kT
ρlcU

− 1
)

,

Cb = 1
35ρlckT

(
ρlcU

kT

)3
.

Cc = 1
175ρlckT

(
ρlcU

kT

)4
.

In the expressions for Ca and Cb, 5kT /ρlcU = T/T ∗ ≈5/6
and ρlc = 200

3 ρc, so we write Ca and Cb as

Ca = 500
(

T
T ∗ − 1

)
ρckT ,

Cb = 400ρckT ,

Cc = 500ρckT ,

where T ∗ � 355 K, the limit of undercooling of the isotropic
phase, is very near the nematic-isotropic transition tempera-
ture.

The nematic free energy can therefore be approximated by

Fnem =
∫

d3α

(
1

2
CaS

2 − 1

3
CbS

3 + 1

4
CcS

4

)
.

3. The Rayleigh dissipation function

The total dissipated power in the system is

R =
∫

d3αRd , (4)

and the Rayleigh dissipation function (dissipated
power/volume) is

Rd = 1

2
γ1D : D + γ2D : Q̇ + 1

2
γ3Q̇ : Q̇,

where D = (∇xu + ∇xuT )/2 is the symmetric rate-of-strain
tensor and u = ẋ and γi are viscosities.

To be consistent with the variable of integration α in the
expressions for the free energy, we rewrite the rate-of-strain D
in terms of the Lagrangian coordinates. Indeed, note that the
relation

∇α ẋ = (∇xu)F,

where F = ∂x
∂α

is the deformation gradient, and then

D = 1

2
[(∇α ẋ)F−1 + F−T (∇α ẋT )].

4. Volume preserving term in the free energy

The above free energy presents no restrictions on the sample
volume. It is known, however, from experiments, that most
rubbers and LCEs are nearly volume conserving [5,18]. We
therefore introduce a term controlling volume:

Fvol = 	

2

∫
d3α(J − 1)2, (5)

where J = det(F) and 	 is a positive constant.

B. Derivation of the governing equations

The equations of motion are determined via a Lagrangian
approach, by extremizing the action in the presence of
dissipation. The Lagrangian is given by

L =
∫

d3α(Ekin − F),

where Ekin is the kinetic energy density andF is the free energy
density. The reactive forces are obtained from the variation of
the free energy, while dissipative forces are obtained from the
variation of the dissipation function. Following Ref. [13], we
use the notation that if

F [φ] =
∫

F(φ(α))d3α, (6)

then

lim
ε→0

1

ε
[F [φ + εg] − F [φ]] =

∫
δF
δφ

gd3α. (7)

Note that this differs somewhat from a more conventional
notation [19], but it is dimensionally consistent and maintains
consistency with our previous work [4].

The equations of motion for the system are

∂

∂t

δEkin

δẋ
+ δF

δx
+ δRd

δẋ
= 0, (8)

δF
δS

+ δRd

δṠ
= 0, (9)

and

δF
δn

+ δRd

δṅ
= 0, (10)

where we have assumed that the kinetic energy associated
with changes in the scalar order parameter S and the nematic
director n can be neglected. To derive the equations of motion
for the displacement (x), order parameter (S), and nematic
director (n), one needs to calculate the derivatives ofFel,Fnem,
and Fvol with respect to x, S, and n and of the kinetic energy
Ekin and dissipation Rd with respect to ẋ, Ṡ, and ṅ.

1. Derivatives of elastic free energy

The elastic free energy is given by Fel = ∫
d3αFel(α) where

Fel(α) =
∫

d3α′H (α,α′)
(

3

2Lb
(x(α′,t) − x(α,t))T

×L−1(x(α′,t) − x(α,t)) + 1

2
ln det L

)
. (11)

We calculate the derivative of the free energy den-
sity and illustrate the method in some detail. Let y =
y(α) be an arbitrary function. For convenience, we de-
note �xi = xi(α′,t) − xi(α,t), �yi = yi(α′) − yi(α), and
g(x) = (x(α′,t) − x(α,t))T L(α,t)−1(x(α′,t) − x(α,t)). Then
for |ε| 	 1,

g(x + εy) = L−1
ij (α,t)(�xi + ε�yi)(�xj + ε�yj )

= g(x) + εL−1
ij (α,t)(�xi�yj + �xj�yi) + O(ε2).
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One gets

lim
ε→0

1

ε
(g(x + εy) − g(x)) = L−1

ij (α,t)(�xi�yj + �xj�yi),

and then

lim
ε→0

1

ε
(Fel[x + εy] − Fel[x])

=
∫

d3α

∫
d3α′H (α,α′)

(
3

2Lb

)
× L−1

ij (α,t)(�xi�yj + �xj�yi)

=
∫

d3α

∫
d3α′H (α,α′)

(
3

2Lb

)
× [ − 2[L−1

ij (α,t) + L−1
ij (α′,t)]�xiyj (α)

]
.

Therefore, the derivative of the elastic free energy density Fel

is

δFel

δx
= −2

∫
d3α′H (α,α′)

(
3

2Lb

)
×[L−1(α,t) + L−1(α′,t)](x(α′,t) − x(α,t)).

We proceed similarly to calculate δFel/δS, and get

δFel

δS
=

∫
d3α′H (α,α′)

[
1

2

−6μS

(1 − μS)(1 + 2μS)
+ 3

2Lb

1

(1 − μS)2
(x(α) − x(α′))T

(
I − 3(2μ2S2 + 1)

(2μS + 1)2
nnT

)
(x(α) − x(α′))

]
.

(12)

We next find δFel/δn. Proceeding as above, we obtain

δFel

δn
=

∫
d3α′H (α,α′)

3

2Lb

−6μS

(1 − μS)(2μS + 1)
[(n · (x(α) − x(α′)))(x(α) − x(α′)) − (n · (x(α) − x(α′)))2n]. (13)

The purpose of the nonlocal description in the model
rather than a gradient expansion is to ensure that no artifacts
arise in the dynamical equations due to truncation of the
gradient expansion when the variation is carried out [20].
Once the derivatives have been evaluated, gradient expansions
can safely be carried out. Since evaluation of the integrals is
cumbersome and computationally expensive, we turn here to
long-wavelength expansions of the integrands and apply these
to δFel/δx, δFel/δS, and δFel/δn.

Let α′ − α = ( 3
2Lb

)−1/2L1/2
0 β; then

d3α′ =
(

3

2Lb

)−3/2

det(L0)1/2d3β,

H (α,α′) =
(

1

2
ρkT

) (
3

2πLb

)3/2

(det L0)−1/2 exp(−β · β),

L−1(α,t) + L−1(α′,t) � 2L−1(α,t) + ∂L−1

∂α

(
3

2Lb

)−1/2

L1/2
0 β,

and

x(α′) − x(α) � ∂x
∂α

(
3

2Lb

)−1/2

L1/2
0 β + 1

2

∂2x
∂α1∂α2

(
3

2Lb

)−1/2

L1/2
0 β1

(
3

2Lb

)−1/2

L1/2
0 β2.

To make the expression of δFel/δx clear, we here consider its ith component(
δFel

δx

)
i

= −2π−3/2

(
1

2
ρckT

) ∫
d3β exp(−β · β)[Lij

−1(α)
∂2xj

∂αp∂αq

L1/2
0,pmβmL1/2

0,qnβn + ∂Lij
−1(α)

∂αs

(
L1/2

0

)
sm

βm(FL1/2
0 )jnβn].

(14)

We recall the useful identities: if Mp = ∫ ∞
−∞ ηp exp(−η2)dη, then M0 = √

π , M2 = M0/2, and M4 = 3M0/4. Then(
δFel

δx

)
i

= −
(

1

2
ρckT

)
∂(L−1FL0)ip

∂αp

(15)

or

δFel

δx
= −

(
1

2
ρckT

)
∇α · (L−1FL0). (16)

Proceeding similarly,

δFel

δS
= π−3/2

(
1

2
ρckT

) ∫
d3β exp(−β · β)

1

(1 − μS)2

[
βT L1/2

0 FT FL1/2
0 β − 3(1 + 2μ2S2)

(1 + 2μS)2
(βT L1/2

0 FT n)2

]
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+π−3/2

(
1

2
ρckT

) ∫
d3β exp(−β · β)

−3μ2S

(1 − μS)(1 + 2μS)

=
(

1

2
ρckT

)
1

2(1 − μS)2

[
tr(FL0FT ) − 3(1 + 2μ2S2)

(1 + 2μS)2
tr(nnT FL0FT )

]
−

(
1

2
ρckT

)
3μ2S

(1 − μS)(1 + 2μS)
, (17)

and

δFel

δn
=

(
1

2
ρckT

)
π−3/2

∫
d3β exp(−β · β)

−6μS

(1 − μS)(2μS + 1)

[(
nT FL1/2

0 β
)
FL1/2

0 β − (
nT FL1/2

0 β
)2

n
]
. (18)

For simplicity, we denote G = FL1/2
0 . The pth ele-

ment of
∫

d3β exp(−|β|2)(nT Gβ)Gβ is π3/2

2 niGij Gpkδjk =
π3/2

2 GpkGT
kini . Therefore,∫
d3β exp(−β · β)(nT Gβ)Gβ = π3/2

2
GGT n

= π3/2

2
FL0FT n.

Moreover, as (nT FL1/2
0 β)2 = βT L1/2

0 FT nnT FL1/2
0 β, one gets∫

d3β exp
( − β · β

)
(nT FL1/2

0 β)2 = π3/2

2
tr(nnT FL0FT ).

Consequently,

δFel

δn
=

(
1

2
ρckT

) −3μS

(1 − μS)(1 + 2μS)

×[FL0FT − tr(nnT FL0F
T )I]n.

2. Derivatives of nematic free energy density

The nematic free energy can be approximated by

Fnem =
∫

d3α

(
1

2
CaS

2 − 1

3
CbS

3 + 1

4
CcS

4

)
.

The derivative of the free energy density with respect to S is

δFnem

δS
= CaS − CbS

2 + CcS
3,

and the derivatives with respect to x and n are all zero.

3. Derivatives of volume preserving term in the free energy

The volume conserving term does not depend on ẋ, S, n,
Ṡ, and ṅ. We want to find δFvol/δx. Proceeding as before, we
obtain

lim
ε→0

1

ε
(Fvol[x + εy] − Fvol[x])

= 	

∫
d3α

[
tr

(
F−1 ∂y

∂α

)
(J − 1)J

]
, (19)

and, after integrating by parts and requiring J = 1 on the
boundary, we obtain

δFvol

δx
= −∇α · (	(J − 1)JF−T ). (20)

4. Derivatives of Rayleigh dissipation

We write the dissipation as

R =
∫

d3α

(
1

2
γ1D : D + γ2D : Q̇ + 1

2
γ3Q̇ : Q̇

)

=
∫

d3α(Rd1 + Rd2 + Rd3). (21)

Since R1 is independent of x, S, n, Ṡ, and ṅ, we calculate the
derivative δRd1/δẋ. Proceeding as before, we obtain

d

dε
[R1(ẋ + εẏ)]ε=0 = γ1

∫
d3α[tr(DF−T ∇α ẏT )], (22)

and integration by parts gives

δRd1

δẋ
= −γ1∇α · (DF−T ).

A calculation similar to that above shows that
δRd2

δẋ
= −γ2∇α · (Q̇F−T ).

We note that Q̇ = Ṡ( 3
2 nnT − 1

2 I) + 3
2S(ṅnT + nṅT ). Then

simple calculations yield

δRd2

δṠ
= γ2D :

(
3

2
nnT − 1

2
I
)

and
δRd2

δṅ
= 3γ2S[Dn − (nT Dn)n].

Similarly, we obtain

δRd3

δṠ
= 3

2
γ3Ṡ,

and
δRd3

δṅ
= 9

2
γ3S

2ṅ.

By combining these, we obtain the derivatives of the Rayleigh
dissipation as

δRd

δẋ
= −γ1∇α · (DF−T ) − γ2∇α · (Q̇F−T ),

δRd

δṠ
= γ2D :

(
3

2
nnT − 1

2
I
)

+ 3

2
γ3Ṡ,

and
δRd

δṅ
= 3γ2S[Dn − (nT Dn)n] + 9

2
γ3S

2ṅ.
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5. The equations of motion

We now derive the equations of motion governing the time
evolution of the velocity u of the elastomer and of the nematic
order parameter Q, expressed in terms of S and n. Recall that
the dynamics is given by

∂

∂t

δEkin

δẋ
+ δF

δx
+ δRd

δẋ
= 0, (23)

δF
δS

+ δRd

δṠ
= 0, (24)

and

δF
δn

+ δRd

δṅ
= 0, (25)

where Ekin is the kinetic energy density, F is the free energy
density, and Rd is the Rayleigh dissipation function.

First consider the Lagrangian flow map x(α,t). Recasting
the kinetic energy from the current to the initial configuration
gives

Ekin =
∫

�(t)
d3xEkin

=
∫

�(t)
d3x

(
1

2
ρm(x,t)u(x,t) · u(x,t)

)

=
∫

�(0)
d3α

(
1

2
ρm(x(α,t),t)ẋ(α,t) · ẋ(α,t)J (α,t)

)

=
∫

�(0)
d3α

(
1

2
ρm(α,0)ẋ(α,t) · ẋ(α,t)

)
, (26)

where we use mass conservation ρm(x(α,t),t)J (α,t) =
ρm(α,0), with ρm the mass density of the liquid crystal
elastomer. We then have

δEkin

δẋ
= ρmẋ = ρmu, (27)

and subsequently

∂

∂t
(ρmu) + δ(Fel + Fnem + Fvol)

δx
+ δRd

δẋ
= 0,

or

ρm

∂u
∂t

=
(

1

2
ρckT

)
∇α · (L−1FL0) + ∇α · (	(J − 1)JF−T )

+γ1∇α · (DF−T ) + γ2∇α · (Q̇F−T ). (28)

We remark that the coupling of strain and orientational order,
the salient aspect of liquid crystal elastomers, is implicit in the
first term of the right-hand side. Since L = I + 2μQ, spatial
variations of the order parameter give rise to stresses, and in
turn, to elastomer motion.

Next, consider the dynamics of the order parameter ex-
pressed through the variables S and n. Since the Lagrangian
L does not depend on Ṡ or ṅ, the equations of motion give

δ(Fel + Fnem + Fvol)

δS
+ δRd

δṠ
= 0,

δ(Fel + Fnem + Fvol)

δn
+ δRd

δṅ
= 0,

or

3γ3

2

∂S

∂t
= −

(
1

2
ρckT

)
1

2(1 − μS)2

×
[

tr(FL0FT ) − 3(2μ2S2 + 1)

(2μS + 1)2
tr(nnT FL0FT )

]

+
(

1

2
ρckT

)
3μ2S

(1 − μS)(1 + 2μS)

− [
CaS − CbS

2 + CcS
3
] − γ2D :

(
3

2
nnT − 1

2
I
)

,

(29)

and

9γ3S
2

2

∂n
∂t

=
(

1

2
ρckT

)
3μS

(1 − μS)(1 + 2μS)

×(FL0FT − tr(nnT FL0FT )I)n. (30)

Equations (28), (29), and (30) are the equations of motion for
the nematic liquid crystal elastomer system.

We make these equations of motion nondimensional by
introducing the following dimensionless quantities:

u′ = u
u

, α′ = α

b
, t ′ = t

τ
,

where b is the step length of liquid crystal and constants u and
τ are to be determined.

Equation (28) becomes

ρm

u

τ

∂u′

∂t ′
=

(
1

2
ρckT

)
1

b
∇α′ · (L−1FL0)

+1

b
∇α′ · (	(J − 1)JF−T )

+γ1
u

b2
∇α′ · ((∇α

′ uF−1 + F−T ∇α′uT )F−T ),

(31)

where we let γ2 = 0 for simplicity for the time being. Letting
u = b/τ and τ = γ3/ρckT , the above equation reads:

λ
∂u′

∂t ′
= 1

2
∇α′ · (L−1FL0) + ∇α′ · (	′(J − 1)JF−T )

+ γ1

2γ3
∇α′ · ((∇α

′ uF−1 + F−T ∇α′uT )F−T ), (32)

where λ = ρckTρmb2/γ 2
3 and 	′ = 	/ρckT .

With this choice of parameters we have

∂S

∂t
′ = − 1

6(1 − μS)2

[
tr(FL0FT )

− 3(1 + 2μ2S2)

(1 + 2μS)2
tr(nnT FL0FT )

]

+ μ2S

(1 − μS)(1 + 2μS)

+ 200

3

[
−5

(
Tem

360
− 1

)
S + 4S2 − 5S3

]
, (33)
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where Tem = Tem(α′,t ′) is a temperature function depending
on location α′ and time t ′.

∂n
∂t

′ = μS

3S2(1 − μS)(1 + 2μS)
[FL0FT − tr(nnT FL0FT )I]n.

(34)

This equation preserves the length of the director n, as required.
Finally, the deformation matrix F satisfies

∂F
∂t

′ = ∇α′u, (35)

while (again) the Lagrangian map x satisfies

∂x
∂t

′ = u. (36)

III. NUMERICAL RESULTS

We present simulations of the dynamics of an LCE
sample—using Eqs. (32)–(36) when exposed to external
illumination and subject to two different boundary conditions.
The LCE sample is taken as box shaped, as in Fig. 1(a). In the
first set of simulations, zero-stress boundary conditions are
imposed over the sample surface (i.e., the sample is “free”). In
the second case, one end of the sample is anchored to a wall,
with the remainder free. In either case, gravitational loads
are neglected. Numerically, the difference between these two
cases lies only in the treatment of the velocity on one face of
the sample. However, the dynamics the two cases present are
quite different, as observed in [4].

A. Methods

To discretize the equations of motion, one needs to consider
suitable schemes for approximating both spatial derivatives
and time derivatives. Here we employ the spectral Chebyshev
polynomial method to discretize spatial derivatives with high
efficiency and accuracy [14]. As for time discretization, we use
a popular implicit-explicit scheme that is a combination of the
second-order Adams-Bashforth scheme for the explicit term
and the Crank-Nicolson scheme for the implicit term [14–16].

We now outline the Chebyshev polynomial method and
the implicit-explicit time-stepping method. The dynamics
is simulated in the Lagrangian domain �(0) = [−a,a] ×
[−b,b] × [−c,c], which by definition is fixed in time. This
is trivially mapped to the cube [−1,1]3. This cubic domain is
then discretized in each direction on the Gauss-Lobatto points
(e.g., in the first coordinate, α1,j = cos(jπ/N ),j = 0(1)N ).
This allows allows spatially dependent fields, such as u or
F, that are represented discretely on these points to also be
represented efficiently, via Fast Fourier Transform (FFT), as
finite sums of Chebychev polynomials [14]. The Chebychev
representation can then be used to provide highly accurate
derivative approximations upon the grid. To illustrate in one
dimension, let u(x) be defined on [−1,1] and approximated
by uN (x) = ∑N

p=0 apTp(x) where Tp is the pth Chebychev
polynomial. The ap’s are determined by requiring uN to
interpolate u at the Gauss-Lobatto points. This Chebychev
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FIG. 1. (Color online) The shape evolution of the LCE sample due
to an inhomogeneous distribution of temperature. Panel (a) shows the
initial state of the LCE sample, panels (b) and (c) are two intermediate
states, and panel (d) represents the equilibrium state. Panels (e) and
(f) present the shapes of the LCE sample at the equilibrium state
[panel (d)] from two different perspectives. In this experiment, the
temperature drops linearly from the top of the LCE sample to its
bottom and is distributed uniformly on each horizontal slice. The
temperature spatial distribution is maintained during the evolution
process. This numerical experiment simulates the physical one shown
in Fig. 4 in [4].

representation allows us to construct approximations to
u(p)(x), at the Gauss-Lobatto points, that have the form

u
(p)
N (xi) =

N∑
j=0

d
(p)
ij uN (xj ), i = 0(1)N,

where [d (p)
ij ] is the the pth Chebyshev differentiation matrix

(see [14]). Since our three-dimensional grid is of tensor product
form, derivatives are easily gotten by application of such
matrices along lines of constant coordinate of the discretized
data.

The LCE dynamics in which we are interested takes place in
the overdamped regime; that is, the Reynolds number, λγ3/γ1,
associated with viscous fluid damping is very small. Hence,
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FIG. 2. (Color online) The order parameter (S) distribution for the
top [panel (a)], middle [panel (b)], and bottom [panel (c)] horizontal
slices of the LCE sample at the equilibrium state. The order parameter
is close to zero on the top slice while it is close to one on the bottom
slice. It is the inhomogeneous distribution of the order parameter that
leads to internal stress and thus results in the shape changes of the
LCE sample. Moreover, the order parameter slightly varies on each
of these slices, suggesting the elastic effect on the order parameter.

if we retain ut in the dynamics, we must implicitly treat the
viscous damping so as to avoid extreme constraints on the
time step that would be imposed by using an explicit scheme.
Here, we choose a popular implicit-explicit method which is
described for a typical time-dependent equation:

du

dt
= f (u) + νg(u),

with f (·), g(·) being the nonlinear and linear terms, respec-
tively. We apply a second-order Adams-Bashforth method to
the nonlinear terms and Crank-Nicholson averaging to the
linear term, or

un+1 − un

�t
= 3

2
f (un) − 1

2
f (un−1) + ν

2
[g(un+1) + g(un)],

(37)

where �t is the time-step size and un is the approximation of
u(n�t). This scheme involves solution values on three time
levels. The first time step is taken by setting u−1 = u0 = u(0)
(see [14]).

B. Treatment of interior and boundary points

Note that Eqs. (33) and (34) involve no spatial derivatives
and are solved directly by the second-order Adams-Bashforth
method without using the Chebyshev approximation. More
care must be taken with the momentum Equation (32) as
it is a source of stiffness in the numerical treatment and
its advancement involves boundary conditions. This is an
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FIG. 3. (Color online) The nematic direction (n) distribution for
the top slice of the LCE sample at the initial and the equilibrium
states. Panel (a) represents the nematic direction on the top slice at
the initial state. Panels (b), (c), and (d) illustrate the nematic direction
on the top slice for different perspectives at the equilibrium state.

important issue, since distinct boundary conditions result in
completely different behaviors of the LCE sample. In what
follows, we mainly discuss how to handle the equation for
both boundary and interior points.

The three-dimensional grid using the Gauss-Labatto points
is composed of both surface and interior points. To update the
velocity at the interior points, we need to solve a large linear
system gotten by applying the implicit-explicit method for the
velocity Equation (32), coupling this to boundary conditions.
For a “free” LCE sample, this is a condition of zero stress,
which under discretization of velocity gradients in the viscous
stress provides a coupling condition of the boundary velocities
to the interior velocities.

The velocity Equation (32) can be discretized as follows:

un+1 − un

�t
= 3

2

[
1

λ
∇ ·

(
	(J − 1)JF−T + 1

2
L−1FL0

)]n

− 1

2

[
1

λ
∇ ·

(
	(J − 1)JF−T + 1

2
L−1FL0

)]n−1

+ γ1

4γ3
∇ · [(∇uF−1 + F−T ∇uT )F−T ]n+1

+ γ1

4γ3
∇ · [(∇uF−1 + F−T ∇uT )(F−T )]n,

where [·]n represents the value at n�t . This equation amounts
to a large linear system for the unknown velocity un+1 at
the interior points. Couplings within the matrix arise through
expansion of spatial derivatives (that is, gradients and a tensor

051703-8



MODELING AND SIMULATION OF LIQUID-CRYSTAL . . . PHYSICAL REVIEW E 83, 051703 (2011)

divergence) through the Chebyshev expansion of the velocity.
Despite the many entries in the matrix generated through the
derivatives, the matrix is nonetheless rather sparse, and we
explicitly construct the entries and store this sparse matrix.
Once the boundary conditions are appropriately integrated, we
solve this large system using the iterative Generalized minimal
residual (GMRES) method [21].

Surface values of velocity are either additional unknowns or
are specified as in the case of having an anchored surface where
u = 0 on that face. The former is the case of the zero-stress
boundary condition. In the Lagrangian frame, using Nanson’s
formula [18], this boundary condition can be written as[

	(J − 1)I + 1

2
L−1FL0FT

]
· JF−T ν0

+ γ1

2γ3
[(∇αuF−1 + F−T ∇αuT )] · JF−T ν0 = 0, (38)

where ν0 denotes the outward normal unit vector to the time
invariant surface ∂�(0) = ∂�. In our method, this vector ν0

takes different values at the side, edge, and corner points on the
boundary of the cubic volume of the LCE sample. Specifically,
ν0 takes value from the set

{(±1,0,0),(0, ± 1,0),(0,0, ± 1)}
at the side points,{

1√
2

(±1, ± 1,0),
1√
2

(±1, ∓ 1,0),
1√
2

(±1,0, ± 1),

1√
2

(±1,0, ∓ 1),
1√
2

(0, ± 1, ± 1),
1√
2

(0, ± 1, ∓ 1)

}
at the edge points, and{

1√
3

(±1, ± 1, ± 1),
1√
3

(±1, ± 1, ∓ 1),

1√
3

(∓1, ± 1, ± 1),
1√
3

(∓1, ± 1, ∓ 1)

}
at the corner points.

We rewrite the boundary condition Equation (38) as[(∇αuF−1 + F−T ∇αuT
)]

F−T ν0 = Aν0,

where A = − 2γ3

γ1
[ 1

2 L−1FL0 + 	(J − 1)JF−T ]. This bound-
ary condition is evaluated at the (n + 1)st time step. Given that
all of the dynamics equations, bar that for the velocity u, are
treated explicitly, we can consider F and A as being considered
known and the velocity gradients as unknowns. Gradients are
either tangential to the sample surface and hence only couple
together boundary points (upon approximation of gradients
using the Chebyshev representation), or normal to the surface
and hence couple together boundary and interior points.

This yields a closed set of equations for un+1 at the interior
points and on those surface upon which a zero-stress boundary
condition is imposed. As said above, this system is solved via
the GMRES iterative method [21].

C. Simulations

Before proceeding, we discuss the choice of dimensionless
parameters. These include the coefficient of acceleration λ =
ρckTρmb2/γ 2

3 , the viscosity ratio γ1/γ3, the coefficient for
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FIG. 4. (Color online) The shape evolution of the LCE sample due
to an inhomogeneous distribution in temperature. Panel (a) shows the
initial state of the LCE sample, panels (b) and (c) are two intermediate
states, and panel (d) represents the equilibrium state. Panels (e) and
(f) present the shapes of the LCE sample at the equilibrium state
[panel (d)] from two different perspectives. This experiment shares
the same condition as the previous simulation in Fig. 1 except that a
lateral surface of the LCE sample is fixed. This numerical experiment
simulates the physical one shown in Fig. 2 in [4].

volume conservation 	, and the anisotropy of step length μ

appearing in the tensor L. Taking typical values [4], we have
λ = O(10−3) and γ1/γ3 = O(101−2). Hence, inertial forces in
the material are quite small. Ideally, we should choose a very
large value of 	 to enforce material incompressibility, but this
imposes a severe time-step restriction in our numerical scheme.
We use 	 = 103. The parameter μ lies in the range [0,1.0]. A
large value of μ corresponds to a large order parameter, which
accelerates the deformation process of the LCE sample. We
use μ = 0.9 in the simulations.

We now consider the simulated dynamics of the first case
of a “free” LCE sample being exposed to illumination from
above. In this simulation, the sample size is 8 × 8 × 1, with
N1 = 32, N2 = 32, and N3 = 10 points being used in each
direction, respectively. The initial data used were u0 ≡ 0,
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FIG. 5. (Color online) The order parameter (S) distribution for the
top [panel (a)], middle [panel (b)], and bottom [panel (c)] horizontal
slices of the LCE sample at the equilibrium state. The order parameter
is close to zero on the top slice while it is close to one on the bottom
slice. It is the nonhomogeneous distribution of the order parameter
that leads to internal stress and thus results in the shape changes of
the LCE sample. Moreover, the order parameter slightly varies on
each of these slices and oscillates near the fixed lateral surface of the
LCE sample, suggesting both the elastic effect and the effect due to
the anchored surface on the order parameter.

n0 ≡ ŷ, X0 ≡ α, and s0 ≡ s̄, where s̄ is the constant value
found as the minimizer of the Landau–de Gennes free energy
density (3) given a uniform temperature throughout the sample
corresponding to 290 K (in dimensional units). As discussed
earlier, we neglect thermal diffusion and assume that the
temperature is uniform in each horizontal slice of the sample,
decreasing linearly from top (420 K) to bottom (290 K).
Although this is an approximation, we find that the dynamics
driven by this temperature field captures the salient aspects of
the observed response [4].

Figure 1 shows the deformation process from this initial
configuration. The final result—a saddle shape—is very
similar to that observed in the experiment of Palffy-Muhoray
et al. (see Fig. 4 of [4]). The evolution proceeds in three
stages: an initially slow and small bending, followed by rapid
and large deformation, and finally a slow relaxation to a
terminal shape. This dynamics is driven by the evolution of the
orientational order parameter, s, as it adjusts its values (low on
the top and higher on the bottom) in response to the imposed
temperature gradient. The inhomogeneous spatial distribution
of orientational order, especially through the thickness of the
LCE sample, gives rise to large stresses and hence creates
a strong driving force toward changing the shape of the
sample.

The last two plots of Fig. 1 show the late-time-deformed
sample from two different perspectives. Here one finds that
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FIG. 6. (Color online) The nematic direction (n) distribution for
the top slice of the LCE sample at the initial and the equilibrium
states. Panel (a) represents the nematic direction on the top slice at
the initial state. Panels (b), (c), and (d) illustrate the nematic direction
on the top slice for different perspectives at the equilibrium state.

the length along the y axis has become shorter, while that
along the x axis has increased. This is again due to the time
evolution of the order parameter. At the top surface, given
its increased temperature, the degree of order of the rodlike
mesogens decreases. Since these mesogens are initially aligned
along the y direction, this loss of order leads to a contraction of
the sample along the y direction and corresponding extensions
along the x and z directions. Since the temperature is different
on each horizontal layer, the degree of contraction also is also
different. It is this difference in contraction and expansion
through the thickness of LCE sample that results in the
observed saddle-shaped deformation.

The simulation shows that as the dynamics progresses, the
order parameter in each horizontal layer converges to nearly
constant values essentially determined by the temperature
assigned to that layer [see Eq. (33)], though somewhat affected
also by elastic effects induced by coupling to n. This is
illustrated in Fig. 2, which shows that the order parameter
generally assumes smaller values at the top and larger values
on the bottom, but also varies (slightly) within each layer.

We also study the dynamics of nematic director n. In
Fig. 3, the nematic director on the top surface of the sample
is compared at the initial and equilibrium states. For the
equilibrium state, three perspectives are given from which one
can easily discern the evolution of the nematic director. Similar
director distributions on the other layers of the sample can be
observed.

The dynamics of the second simulation can be explored
similarly. In this simulation, all initial conditions and spatial
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temperature distributions are as in the first example, except that
one lateral surface of the sample is fixed, and the dimensions
of the LCE sample are now 4 × 8 × 1, which is narrower in
the x direction. In this simulation, we used N1 = 24, N2 = 48,
and N3 = 10 in x,y,z directions, respectively.

Figure 4 shows the deformation process. Again, the result
is very similar to that observed in actual experiment (see Fig. 2
of [4]) with the sample bending upward at its free end. As the in
first simulation, the deformation proceeds through three stages,
with the sample also contracting along the initial nematic
direction and extending in the other two orthogonal directions.
This is illustrated the Figs. 4(e) and 4(f). All these phenomena
share the underlying physics as in the first simulation.

In Fig. 5, the order parameter distributions within the top,
middle, and bottom layers of the sample in the equilibrium state
are shown. The order parameter within each layer is nearly
constant within each layer, though with small oscillations
caused by boundary effects. However, when compared with
Fig. 2 for the first simulation, one finds that the basic
deformation pattern is different and asymmetric due to the
anchoring boundary condition used in this experiment.

Figure 6, shows the disposition of the nematic director on
the top surface of the LCE sample, again comparing the initial
and the equilibrium states. For the equilibrium state, three
perspectives are shown. We see that the nematic director bends
upward, and the bending increases with distance from the fixed
side of the sample. Similar director dynamics are observed in
the other layers.

IV. CONCLUSIONS

In this paper, we derived the equations of motion for an
LCE sample in the long-wave limit and implemented their
numerical solution. Our numerical experiments demonstrate
that the model is capable of describing the dynamics of nematic
LCEs when exposed to external stimuli such as illumination.
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