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Geometrical content of Leslie coefficients
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In this work, we will study how the effective geometry acquired by nematic molecules under thermal vibration
contribute to the determination of the Leslie coefficients. To do this, we will divide this work in two sections. In
the first section, we present the geometrical fundamentals of the so-called Hess-Baalss (HB) approach [D. Baalss
and S. Hess, Phys. Rev. Lett. 57, 86 (1986)] where we show that its basic assumptions can be understood as a
geometrical interpretation of de Gennes’ passage from the microscopic to the macroscopic order parameter. In
the second section, we use an extended version of the HB approach [M. Simes, K. Yamaguti, and A. J. Palangana,
Phys. Rev. E 80, 061701 (2009)] to obtain the geometrical contribution to each Leslie coefficient. Our results
will be compared with experimental data, and we will show that the Miesowicz’s coefficients are connected as
long as the ratio α3/α4 between these Leslie coefficients can be considered small.
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I. INTRODUCTION

The anisotropic viscosity of liquid crystals (LCs) is one of
the most challenging properties of these materials [1]. It was
discovered in 1935 by Miesowicz [2,3] when he showed that
LCs exhibit a direction-dependent viscosity when submitted
to an external field. A large amount of experimental and
theoretical investigation has been devoted to this subject [4–30]
but a satisfactory microscopic theory for it has not been
found [15–17]. A widespread approach to the continuum
mechanics of the properties of nematic liquid crystals (NLCs)
is the Ericksen-Leslie-Parodi (ELP) approach [4–9]. The ELP
approach establishes that the nematic viscosity is determined
by six viscosity coefficients [Eq. (48)] that are connected by
the Onsager-Parodi relationship that shows that five of them
are effectively independent. There is also the hydrodynamic
theory of Martin, Parodi, and Pershan [8,9] which, according
de Gennes [1], is effectively equivalent to the ELP approach.
The kinetic approach of Doi is the most accepted microscopic
theory of nematic viscosity [18–23]. It produces expressions
free of adjustable parameters that capture the essence of
the phenomena, furnishing a semimicroscopic explanation to
the origin of their anisotropy. Nevertheless, it also presents
well-documented disagreements with experimental data. It is
unable to describe, for example, the regularities observed in
the viscosity data, mainly as the nematic crystalline regions
are approached [15–17].

Recently, through the so-called Hess-Baalss (HB) ap-
proach, which is defined in Refs. [24–28], it has been proposed
that many aspects of nematic viscosity can be better understood
if a geometrical point of view is considered [15–17,31–38]. It
must be clear that this approach does not intend to propose that
nematic viscosity is a geometrical problem; it is definitively a
dissipative many-body problem whose solution needs to be in
accord with the fundamentals of dissipative statistical mechan-
ics. Nevertheless, this circumstance does not forbid the study of
the role played by the geometry of the nematic molecule in this
dissipative problem. To capture the essence of this geometrical
contribution is the purpose of the HB approach and the aim of
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this work. The HB approach assumes that if one could imagine
a way by which nematic molecules could be continuously
deformed up to the point at which they become spherical, it
would be possible to observe a corresponding reduction of
the macroscopic anisotropies until they vanish. Conversely,
if the idealized spherical molecules of an isotropic liquid
could be deformed until they assumed the ellipsoidal form
of an idealized nematic molecule, the macroscopic physical
properties would be transformed similarly to those observed
on the NLCs. Nevertheless, the mathematical formulation of
the task proposed by this approach is not yet fully developed. A
consistent determination of all five Leslie coefficients in terms
of this geometrical transformation has not been done. The
purpose of this work is to use the HB approach to determine
the geometrical contribution to the viscosity coefficients of
the nematic phase. We will also give an exposition of the
fundamentals of such nematic geometry. In fact, a complete
exposition of this approach is not found in a single work.
Frequently, some important relations only are found when
specific results of a given work are correlated with results
contained in other works. In this paper we will give a detailed
exposition of the geometrical content of the HB approach
and use it to study the Onsager-Parodi relations [6], showing
that under the context of the HB approach these relations
acquire a geometrical interpretation that leads to a connection
with Miesowicz’s coefficients [31]. Without a clear exposition
of the exact meaning of this temperature-dependent nematic
geometry, the importance of this connection may not be fully
understood. The aim of this work is also to give a detailed
and quasi-self-contained exposition of the significance of such
results.

II. THERMAL GEOMETRY AND THE NEMATIC GRAIN

A. The geometry of the nematic molecule

A simple way to give a geometrical basis to the anisotropies
observed in nematic materials is to attribute to the microscopic
anisotropies of their constituent molecules the source of the
anisotropies observed on a macroscopic scale. This idea
constitutes de Gennes’ passage from a microscopic to a
macroscopic order parameter [1] [see Eq. (3) below] and is
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also the heart of the HB approach. We will begin this study
by establishing a connection between these two approaches,
showing how the de Gennes formulation for the passage
between the microscopic and macroscopic order parameter
has a straightforward geometrical interpretation, and is the
appropriate tool to provide a formal foundation for the HB
approach to the nematic viscosity.

Let us consider some fundamentals of the order-parameter
concept. These ideas are well know [1], but as they are essential
to understand the geometrical approach that we will take to the
nematic LC theory, we will review them here. So, consider that

Q̂ij (
−→̂
n ) = − 1

3δij + n̂i n̂j (1)

describes the microscopic anisotropy of some physical quan-
tity. It is the microscopic order parameter [1], where n̂ is the
corresponding rigid axis of the molecular-micellar symmetry,
while

Qij (�n) = − 1
3δij + ninj (2)

is the corresponding macroscopic order parameter, which
describes macroscopic anisotropies, where �n is the associated
director [1]. From now on, variables with a hat, such as

−→̂
n , are

microscopic variables. When a variable appears without a hat it
is a macroscopic variable, such as �n, which is the director. The
connection between the microscopic order parameter Q̂ij (

−→̂
n )

and the macroscopic order parameter Qij (�n) is made by
assuming that the microscopic rigid axis of a nematic molecule−→̂
n is a random variable that oscillates so fast that when
Q̂ij (

−→̂
n ) is averaged, on the time and/or in the neighborhood

of a point, that average determines the macroscopic order
parameter Qij (�n). In mathematical terms, we would have [1]

〈Q̂ij (
−→̂
n )〉 = S Qij (�n), (3)

where 〈x〉 stands for the statistical average of the random
variable x. Notice, as a consequence of the ergodic hy-
pothesis [39], that the statistical average of this expression
considers spatial and temporal mean over the aggregate of
molecules-micelles around a given point. Consequently, when
the microscopic order parameter is averaged to obtain a
macroscopic one, a non-null value of S implies the existence
of a macroscopic molecular ordering that defines a non-null
�n in the neighborhood of every point. Below we will give a
geometrical interpretation for this local macroscopic ordering
that we will refer to as nematic grain. To obtain an expression
for S in terms of

−→̂
n and �n it is enough to multiply the above

expression by the macroscopic order parameter Qji(n) and
take the trace of the resulting expression

Qji(n)〈Q̂ij (n̂)〉 = S Qji(n)Qij (n), (4)

to obtain

S = 3
2

[ − 1
3 + 〈(−→̂n · �n)2〉]. (5)

In Eq. (4) we have used the usual repeated indices sum rule.
From now on, repeated indices will be subject to it.

To see how these basic ideas about the meaning of the
order parameter can acquire a geometrical interpretation, let
us consider two analytic expressions, the first for a sphere Ŝ,

and the second for an ellipsoid Ê. The equation of a sphere Ŝ

with radius
−→̂
r is given by

Ŝij xixj = 1, Sij = δij

r̂2
, i = {1,2,3}. (6)

Otherwise, if r̂1, r̂2, and r̂3 are the dimensions of an ellipsoid
Ê along the orthonormal directions �p, �q, and �r respectively,
the equation of Ê is be given by

Êij xixj = 1, Êij = p̂i p̂j

r̂2
1

+ q̂i q̂j

r̂2
2

+ r̂i r̂j

r̂2
3

, i = {1,2,3}.
(7)

Furthermore, as �p, �q, and �r form a local orthonormal basis, any
vector �x can be written in terms of them. In components, �x can
be written as xi = pi(pjxj ) + qi(qjxj ) + ri(rjxj ) = (p̂i p̂j +
q̂i q̂j + r̂i r̂j )xj , from which follows the completeness relation
follows:

p̂i p̂j + q̂i q̂j + r̂i r̂j = δij . (8)

Using this equation in Eq. (7) we arrive at

Êij = δij

r̂2
3

+
(

1

r̂2
1

− 1

r̂2
3

)
p̂i p̂j +

(
1

r̂2
2

− 1

r̂2
3

)
q̂i q̂j . (9)

At this point we will use the idea of the order parameter
to continue the development of our geometrical approach. To
do that, observe that the ellipsoid described above has only
two axes of symmetry,

−→̂
p and

−→̂
q , and not three. Due to the

completeness relation in Eq. (8) only two axes are necessary.
Consequently, we will need two microscopic order parameters,
one for each symmetrical axis,

Q̂ij (
−→̂
p ) = − 1

3δij + p̂i p̂j , Q̂ij (
−→̂
q ) = − 1

3δij + q̂i q̂j .

(10)

Using the definitions of microscopic order parameter in Eq. (9)
it is found that

Êij = 1

3

(
1

r̂2
1

+ 1

r̂2
2

+ 1

r̂2
3

)
δij +

(
1

r̂2
1

− 1

r̂2
3

)
Q̂ij (

−→̂
p )

+
(

1

r̂2
2

− 1

r̂2
3

)
Q̂ij (

−→̂
q ), (11)

which shows that the microscopic ellipsoidal matrix Êij can be
written as a sum of two kinds of terms. The first is proportional
to δij , which, according Eq. (6), represents a sphere with a
radius r̂s given by

1

r̂2
S

= 1

3

(
1

r̂2
1

+ 1

r̂2
2

+ 1

r̂2
3

)
. (12)

The second is proportional to two microscopic order pa-
rameters, Q̂ij (

−→̂
p ) and Q̂ij (

−→̂
q ). To understand our further

developments, observe that in Eq. (11) the order parameter
only expresses the direction of the microscopic deformation.
The amount of the deformation is given by the expressions
(1/r̂2

1 − 1/r̂2
3 ) and (1/r̂2

2 − 1/r̂2
3 ) in front of each order

parameter. In the next section we will take the thermal average
of Eq. (11) and the terms describing this amount of deformation
will become temperature dependent.
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B. The thermalized molecule: the nematic grain

Let us assume that we have an ensemble of ellipsoidal
molecules forming a liquid crystal. Because, according
Eq. (11), the microscopic deviation from the spherical ge-
ometry of each of these molecules is proportional to the
microscopic order parameters, we can use the statistical media
of each term of Eq. (10) that appears in Eq. (11) to find the
mean value of Êij on this ensemble. That is,

〈Êij 〉 = 1

3

(
1

r̂2
1

+ 1

r̂2
2

+ 1

r̂2
3

)
δij +

(
1

r̂2
1

− 1

r̂2
3

)
〈Q̂ij (

−→̂
p 〉

+
(

1

r̂2
2

− 1

r̂2
3

)
〈Q̂ij (

−→̂
q )〉

= 1

3

(
1

r̂2
1

+ 1

r̂2
2

+ 1

r̂2
3

)
δij +

(
1

r̂2
1

− 1

r̂2
3

)
SpQij (p)

+
(

1

r̂2
2

− 1

r̂2
3

)
SqQij (q), (13)

where we have generalized Eq. (3) along the directions
−→̂
p and−→̂

q , assuming that 〈Q̂ij (
−→̂
p )〉 = Sp Qij ( �p) and 〈Q̂ij (

−→̂
q )〉 =

Sq Qij (�q), where Sp and Sq are the two scalar order parameters
describing the thermal vibrations of the two independent
director directions,

−→̂
p and

−→̂
q respectively. We have also

assumed that the microscopic dimensions of the grain r̂1, r̂2,
and r̂3 do not change with temperature. Now, for each of these
order parameters we can use the macroscopic definition of
order parameter,

Qij ( �p) = (− 1
3δij + pipj

)
, Qij (�q) = (− 1

3δij + qiqj

)
,

(14)

in Eq. (13), to obtain

〈Êij 〉 =
(

1

3r̂2
1

(2Sp + 1) + 1

3r̂2
2

(1 − Sq)

+ 1

3r̂2
3

(1 − 2Sp + Sq)

)
pipj +

(
1

3r̂2
1

(1 − Sp)

+ 1

3r̂2
2

(2Sq + 1) + 1

3r̂2
3

(1 − 2Sq + Sp)

)
qiqj

+
(

1

3r̂2
1

(1 − Sp) + 1

3r̂2
2

(1 − Sq)

+ 1

3r̂2
3

(1 + Sp + Sq)

)
rirj . (15)

We have also used the macroscopic version of Eq. (8). Finally,
by comparing this expression with Eq. (7) we see that this
equation describes a macroscopic ellipsoid

〈Êij 〉 = 1

r2
1

pipj + 1

r2
2

qiqj + 1

r2
3

rirj (16)

with dimensions

1

r2
1

= 1

3r̂2
1

(2Sp + 1) + 1

3r̂2
2

(1 − Sq) + 1

3r̂2
3

(1 − 2Sp + Sq),

1

r2
2

= 1

3r̂2
1

(1 − Sp) + 1

3r̂2
2

(2Sq + 1) + 1

3r̂2
3

(1 − 2Sq + Sp),

1

r2
3

= 1

3r̂2
1

(1 − Sp) + 1

3r̂2
2

(1 − Sq) + 1

3r̂2
3

(1 + Sp + Sq).

(17)

This result shows that after the thermal average defined at
Eq. (3) an ensemble of ellipsoidal nematic molecules acquire
a macroscopic thermalized geometry that is also ellipsoidal.
Their dimensions depend on the order parameters and, of
course, on the temperature: this is the nematic grain. For
example, at the isotropic phase we have that Sm = Sn = 0
and

1

r2
1

= 1

r2
2

= 1

r2
3

= 1

3

(
1

r̂2
1

+ 1

r̂2
2

+ 1

r̂2
3

)
, (18)

which shows that at isotropic phase the nematic grain assumes
the effective form of a sphere. Otherwise, at low temperatures,
where Sm = Sn = 1, we have that

1

r2
1

= 1

r̂2
1

,
1

r2
2

= 1

r̂2
2

,
1

r2
3

= 1

r̂2
3

, (19)

showing that at very low temperatures it is ellipsoidal.
In synthesis, these results show that the definition of

tensorial order parameters [Eqs. (1)–(5)] realizes the passage
from the microscopic ellipsoid-shaped nematic molecule to a
thermalized macroscopic object, the nematic grain that is also
ellipsoidal. These facts allow us to name as thermal geometry
the relation contained in Eq. (17). Please note that this is
a direct consequence of the definition of microscopic and
macroscopic order parameters, nothing more.

For future use, let us specialize the above expressions for
the uniaxial case, which is the situation found more frequently.
For this case we have, r̂2

2 = r̂2
3 and Sq = 0, which gives

1

r2
1

= 1

3

(
1

r̂2
1

(2S + 1) + 2

r̂2
2

(1 − S)

)
,

(20)
1

r2
2

= 1

r2
3

= 1

3

(
1

r̂2
1

(1 − S) + 1

r̂2
2

(2 + S)

)
,

where we have made S ≡ Sp, to be in accord with the usual
notation in which the uniaxial scalar order parameter is named
as S. This result shows that a thermalized microscopic uniaxial
molecule produces a nematic grain that is also uniaxial, r2

2 =
r2

3 . Therefore, similarly to Eq. (9),

〈Eij 〉 = 1

r2
2

δij +
(

1

r2
1

− 1

r2
2

)
pipj

= 1

3

(
1

r2
1

+ 2

r2
2

)
δij +

(
1

r2
1

− 1

r2
2

)
Qij ( �p). (21)

As we have described above, the thermal ellipsoidal shape
depends not only on the nematic order parameter Qij ( �p), but
also on the thermalized geometry of the nematic grain 1/r2

1 1 −
1/r2

2 . If we write this expression in the form

〈Eij 〉 = 1

r2
2

[
1

3

(
2 + r2

2

r2
1

)
δij −

(
1 − r2

2

r2
1

)
Qij ( �p)

]
, (22)

we recognize the term

e = 1 − r2
2

r2
1

(23)
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as the eccentricity of a uniaxial ellipsoid. Nevertheless, as
r1 and r2 are temperature dependent, this eccentricity is the
thermalized eccentricity of the nematic grain, which would be
distinguished form the microscopic eccentricity ê,

ê = 1 − r̂2
2

r̂2
1

, (24)

which, of course, does not depend on the temperature. A
straightforward use of Eq. (20) shows that

e = 3 S ê

3 − ê(S − 1)
. (25)

From this equation we see that as the isotropic phase is
approached we have that S → 0 giving e → 0. Otherwise,
as the temperature is reduced, S → 1, we find that e → ê,

which reproduces the microscopic value of the eccentricity. In
terms of e, Eq. (22) becomes

〈Eij 〉 = 1

[3 − ê(S − 1)]r2
2

{[3 + ê(1 − 2S)]δij − 3 S êQij ( �p)}.
(26)

Let us finish this section by making an observation about the
values that are hoped for ê, the microscopic eccentricity of the
nematic molecule. Suppose, for example, a typical calamitic
nematic molecule where its length is five times its width. For
this geometry Eq. (24) gives that ê = 24/25 ≈ 0.96, which is
very close to 1. Since for any sound value of this ratio we would
always find ê ≈ 1, for practical applications of this theory
we can assume that, for a calamitic nematic molecule, ê =
1. Under this approximation, the macroscopic eccentricity e

would be completely determined by the scalar order parameter

e = 3 S

4 − S
. (27)

Likewise, under these conditions, we have

〈Eij 〉 = 1

(4 − S)r2
2

[2(2 − S)δij − 3 S Qij ( �p)]. (28)

C. Conformal transformation

In the preceding, we have shown that the thermal geometry
of a nematic grain can be seen as a result of the sum of two
types of terms: a spherical term and the deformations from this
spherical shape that are proportional to the order parameters.
This separation of 〈Eij 〉 into two parts contains the essence of
the HB hypothesis [24–28]. We can interpret this separation in
terms of the HB hypothesis by stating that the spherical part of
the decomposition of 〈Eij 〉 would correspond to an isotropic
fluid, while the addition of the remaining terms deforms it,
making what could be described as a LC. Accordingly, a NLC
can be conceived as a normal liquid in which its spherical
molecules have been deformed to attain an ellipsoidal form. In
this section, we will look for the microscopic and macroscopic
versions of these transformations. Later, we will show how
these transformations work.

Consider that at a point of our sample we have a vector
�s that is submitted to an elongation r̃1, r̃2, and r̃3 of all its

components in the directions
−→̂
p ,

−→̂
q , and

−→̂
r , respectively.

Analytically, this elongation will be

−→̂
x = r̃1

−→̂
p (

−→̂
p · −→̂

s ) + r̃2
−→̂
q (

−→̂
q · −→̂

s ) + r̃3
−→̂
r (

−→̂
r · −→̂

s ), (29)

which can be put in the form

x̂i = r̃1p̂i(p̂j ŝj ) + r̃2q̂i(q̂j ŝj ) + r̃3r̂i(r̂j ŝj )

= (r̃1p̂i p̂j + r̃2q̂i q̂j + r̃3r̂i r̂j )ŝj . (30)

Therefore,

∂x̂i

∂ŝj

= r̃1p̂i p̂j + r̃2q̂i q̂j + r̃3r̂i r̂j . (31)

Using the completeness relation in Eq. (8), this becomes

∂x̂i

∂ŝj

= r̃3δij + (r̃1 − r̃3)p̂i p̂j + (r̃2 − r̃3)p̂i p̂j . (32)

Furthermore, using the definition of the tensorial order
parameter in Eq. (10), we obtain

∂x̂i

∂ŝj

= 1

3
(r̃1 + r̃2 + r̃3)δij + (r̃1 − r̃3)Q̂ij (

−→̂
p )

+ (r̃2 − r̃3)Q̂ij (
−→̂
q ). (33)

A straightforward calculation shows that the inverse of this
equation is given by

∂ŝj

∂x̂i

= 1

3

(
1

r̃1
+ 1

r̃2
+ 1

r̃3

)
δij +

(
1

r̃1
− 1

r̃3

)
Q̂ij (

−→̂
p )

+
(

1

r̃2
− 1

r̃3

)
Q̂ij (

−→̂
q ). (34)

In order to understand how the HB approach acts, let us
suppose that we have a molecule of an isotropic fluid that,
hypothetically, has a spherical symmetry. Under this condition
the equipotential surfaces generated by this molecule would
also have a spherical form, as given by Eq. (6). Suppose we
assume that this spherical surface has been obtained from the
deformation,

ŝi = ∂ŝi

∂x̂j

x̂j , (35)

of a ellipsoidal surface, as given by Eq. (7) where we have
used the notation ŝi to assign the coordinates of the spherical
surface and x̂i to assign coordinates of the ellipsoidal surface.
Therefore, we can start from Eq. (6) and write the sequence of
operations

Ŝij ŝi ŝj = 1 → Ŝij

(
∂ŝi

∂x̂k

x̂k

) (
∂ŝj

∂x̂l

x̂l

)

= 1 → Ŝij

∂ŝi

∂x̂k

∂ŝj

∂x̂l

x̂kx̂l = 1 → Oklx̂kx̂l = 1, (36)

where the operator

Okl = Ŝij

∂ŝi

∂x̂k

∂ŝj

∂x̂l

(37)

expresses the result of the action of the HB transformation
over the sphere. Using Eq. (34), a straightforward calculation
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shows that

Okl = Sij

∂ŝi

∂x̂k

∂ŝj

∂x̂l

= 1

3

(
1

(r̂ r̃1)2
+ 1

(r̂ r̃2)2
+ 1

(r̂ r̃3)2

)
δij

+
(

1

(r̂ r̃1)2
− 1

(r̂ r̃3)2

)
Q̂ij (

−→̂
p ) +

(
1

(r̂ r̃2)2
− 1

(r̂ r̃3)2

)

× Q̂ij (
−→̂
q ). (38)

When we compare this equation with the equation de-
scribing an ellipsoid [Eq. (11)], we see that the quantities
r̃1, r̃2, and r̃3 actually act as parameters of deformation.
The original sphere of radius r̂ has been deformed to an
ellipsoid, according to the rules r̂ → r̂ r̃1, along the direction
�p; r̂ → r̂ r̃2, along the direction �q; and r̂ → r̂ r̃3, along the
direction �r .

If we identify these transformations with the microscopic
ellipsoidal parameters defined at Eq. (11), r̂ r̃1 ≡ r̂1, r̂ r̃2 ≡ r̂2,
r̂ r̃3 ≡ r̂3, where r̂1, r̂2, and r̂3 are the microscopic ellipsoidal
dimensions defined in Eq. (7), we find that the deformations
are given by

r̃1 = r̂1

r̂
, r̃2 = r̂2

r̂
, r̃3 = r̂3

r̂
. (39)

This is a satisfying result. The transformation defined in
Eqs. (33) and (34) can be taken as the transformation that
realizes the aim of the HB approach: to find an operator that
transforms spheres with radius r into ellipses with dimensions
r̂1, r̂2, and r̂3 along the perpendicular directions

−→̂
p ,

−→̂
q , and−→̂

r , respectively.
The above deformations are microscopic. In exact analogy

with the above procedures, we can also define the macroscopic
deformations, r̄1, r̄2, and r̄3. As the aim of such transformations
is to make symmetric spherical objects become ellipsoidal
objects, and vice versa, and the equation that is the basis of
these operations is Eq. (38), it is clear to see that if

∂xi

∂sj

= 1

3
(r̄1 + r̄2 + r̄3)δij + (r̄1 − r̄3)Qij ( �p) + (r̄2 − r̄3)Qij (�q),

(40)

∂sj

∂xi

= 1

3

(
1

r̄1
+ 1

r̄2
+ 1

r̄3

)
δij +

(
1

r̄1
− 1

r̄3

)
Qij ( �p)

+
(

1

r̄2
− 1

r̄3

)
Qij (�q), (41)

are the assumed macroscopic counterparts of Eqs. (33)
and (34), respectively, we will arrive at the macroscopic
version of Eq. (38)

r̄1 = r1

r
, r̄2 = r2

r
, r̄3 = r3

r
, (42)

where r1, r2, and r3 are the macroscopic ellipsoidal axes
defined in Eq. (17).

Finally, for future use, let us write the uniaxial versions of
these transformations for the case where r̄2 = r̄3,

∂xi

∂sj

= 1

3
(r̄1 + 2r̄2) δij + (r̄1 − r̄2) Qij ( �p)

= r̄2δij + (r̄1 − r̄2) pipj , (43)

∂sj

∂xi

= 1

3

(
1

r̄1
+ 2

r̄2

)
δij +

(
1

r̄1
− 1

r̄2

)
Qij ( �p)

= 1

r̄2
δij +

(
1

r̄1
− 1

r̄2

)
pipj . (44)

In Sec. III, we will give an example of how these transforma-
tions act on physical quantities and we will study the nematic
viscosity from the point of view of the HB approach.

III. A GEOMETRICAL APPROACH TO THE LESLIE
COEFFICIENTS

A. The eccentricity and the Onsager relation

Previously, we have seen that the operators dxi/dsj and
dsi/dxj [Eqs. (40) and (41)] transform spherically symmetric
objects into ellipsoidal objects, and vice versa. According to
the HB approach these transformations transcend the geometri-
cal scenario in which they have been deduced. They transform
all mathematical quantities describing spherical symmetric
objects into the corresponding quantities in an ellipsoidal
geometry. Consequently, when they act in a mathematical
quantity of an isotropic liquid, they will transform it into the
corresponding mathematical quantity of a nematic liquid. In
this section we will apply this prescription to study the nematic
viscosity of a uniaxial sample. It will be assumed that the
stress tensor σij of a LC composed of uniaxial particles should
be obtained through the application of Eqs. (43) and (44)
[17,32–35] on η∂lv

k, which is the stress tensor of an isotropic
liquid, where η is the corresponding isotropic viscosity and
∂ivj is the gradient of the isotropic fluid velocity. Namely, it is
assumed that

σij = dsl

dxi

dxj

dsk
(η∂lv

k). (45)

According to this proposition, after the full development of
this equation only one parameter would be free: the viscosity
η of the virtual isotropic liquid. All other parameters would
be determined by the geometry of the nematic cell, which
are contained in the transformations in Eqs. (43) and (44).
This is the reason why we have studied the geometry of the
nematic grain that, save for η, would completely determine
the nematic viscosity. Notwithstanding its strong physical
appeal and conceptual simplicity, this approach never gives
a complete explanation of the phenomenology observed in the
LC’s viscosity. We have explained this in a previous work [31].
In essence, Eq. (45) does not take into account all the degrees
of freedom of an anisotropic particle. For an observer at the
laboratory the velocity �v of an extended anisotropic rigid body
is composed of two terms,

�v = �vc + �w × �ρ, (46)

one considering the motion of the its center of mass �vc and
the other considering the rotation of its internal points (which
are assigned by the parameter �ρ) around the center of mass,
where �w is the instantaneous angular velocity. Both of these
terms produce dissipation, but the latter is not contained in
Eq. (45), even after the application of the HB transformation.
The absence of this rotational term makes the HB approach
incomplete, hindering, for example, the correct use of the
Onsager theorem [31], as we will see.
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In order to resolve these problems and construct a model
that embraces the content of Eq. (46), the form of the isotropic
stress tensor has been modified with the introduction of two
viscosity coefficients, one for the shearing flow and the other
for the rotational flow of a liquid, i.e.,

σij = 2
dsl

dxi

dxj

dsk
(η1Aij + η2Ninj ), (47)

where Aij = (∂ivj + ∂jvi)/2 and �N = [�̇n − ( �w × �n)] repre-
sent the shearing flow and the rotational flow, respectively. η1

is the extension of the viscosity term already present in the
usual HB approach and η2 has been introduced to attend to the
rotational viscosity.

The results obtained with the introduction of this new term
are very stimulating, and are the basis of the developments
presented in this paper. When we substitute Eqs. (43) and (44)
in Eq. (47) and compare the ensuing equations with the ELP
form of the stress tensor [4–9],

σij = α1ninjnknlAkl + α2niNk + α3njNk + α4Aij

+α5niAjknk + α6njAiknk, (48)

where α1, α2, α3, α4, α5, and α6 are the Leslie coefficients [5]
that are subject to the Parodi relation [6], α2 + α3 = α6 − α5,
we arrive at

α1 = (r1 − r2)2

r1r2
η1, α2 = r1

r2
η2, α3 = 0,

(49)

α4 = η1, α5 = r1 − r2

r2
η1, α6 = r2 − r1

r1
η1.

Before studying the consequences of the above relations, we
must be aware that these equations cannot be the final answer
to the nematic viscosity problem. From them we see that we
would have α3 = 0, which clearly does not agree with the
experimental facts. Nevertheless, we recall that the value of
α3 is always very small, according to de Gennes [1]. For
N-(4-Methoxybenzylidene)-4-butylaniline (MBBA), its value
corresponds to only 1.5% of the value of α4, the isotropic
term. So, although this is not the final solution of the viscosity
problem, we will continue by considering the above relations
as an approximation for the case where α3 can be disregarded.
We will show that this is indeed the case and that the above
results dominate the experimental data when the ratio α3/α4 is
small. For now, let us assume these equations and study their
consequences.

Using the definition of Miesowicz’s coefficients [1], m1 =
(α4 + α5 − α2) /2, m2 = (α3 + α4 + α6) /2, m3 = α4/2, in
Eq. (49), we arrive at

m1 = r1

2r2
(η1 − η2) , m2 = r2

2r1
η1, m3 = η1

2
. (50)

Due to the form of these equations, it is possible to construct
an expression combining the Miesowicz’s coefficients,

σ = m3

m1

m3

m2
= η1

η1 − η2
, (51)

which depends only on the coupling constants η1 and η2.
Consequently, σ could be used to measure the relative values
of η1 and η2. If, for example, the experimental data reveal
that σ = 1, we would have η2 ≈ 0, and the introduction of

FIG. 1. (Color online) Parameter σ = m2
3/m1m2 vs the uni-

formized nematic temperature scale [15–17,36,37]. The use of the
Onsager relation in the stress tensor obtained from the extended
HB approach, proposed in Ref. [31], leads to the prediction that σ

would assume values around σ ≈ 1/2. Furthermore, as the N-I phase
transition is approached the effective anisotropy of the nematic grain
is diminished and the value of σ would increase, approaching the
value σ = 1. The experimental data exhibited in this graph [10–14]
completely confirm these predictions. Although the compounds can
be easily recognized by their abbreviated names in the figure, their
scientific names and the authors of the measurements can be found
in the quoted references.

η2 in Eq. (47) would not have experimental support. In order
to verify what the experimental results say about the values
of η1 and η2, we have collected experimental data of nematic
viscosity from the literature [10–14] and, in order to have a
broad panorama of the range of the nematic phase in which
η2 exists, only those data encompassing the entire range of the
nematic phase have been considered. The results are shown in
Fig. 1, where a uniformized temperature scale was constructed
[15–17,36,37] in such a way that, for the nematic-crystalline
transition, the temperature T = 0 was attributed, while, for the
nematic-isotropic (N-I) transition, the temperature T = 1 was
attributed. The distribution of experimental data shows that
along the entire range of the nematic phase one has σ ≈ 1/2.

This is a gratifying result because it clearly indicates that
η2 �= 0, showing that the introduction of this new viscosity
coefficient has strong experimental support. Furthermore, the
quasiconstancy of σ along the entire nematic phase also
indicates that the non-null values of η2 are not accidental
characteristics of a given region of the nematic phase, but
that the term that we have added is always present. Finally,
it must be noted that in the neighborhood of the N-I phase
transition a slight increase of the value of σ is observed. This
growth is a consequence of the approximation of the N-I phase
transition region; at the isotropic phase we would have σ = 1.
Of course, this growth in the value of σ does not increase
continuously to σ = 1 because the N-I phase transition is
discontinuous.

Another striking result that follows from Eq. (47) is that η1

and η2 are not independent, but connected by the geometry
of the nematic grain developed above. It is clear that the
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application of the Parodi relation, α2 + α3 = α6 − α5, to the
set of equations given in Eq. (49) gives

η2 = −eη1, (52)

where e has been defined in Eqs. (23) and (25). When we
substitute this result in Eq. (51), we obtain

σ = 1

1 + e
, (53)

which completely explains the experimental data described
above, as the effective eccentricity of a nematic grain does not
depend on its dimensions (r1 and r2), but only on its ratios [see
Eq. (23)]. We expect that σ would assume approximately the
same values for all nematic compounds. Furthermore, save for
the neighborhood of the N-I phase transition, we would always
have r1 	 r2. We see that e = 1 − (r2/r1)2 ≈ 1, implying that
such a value would be found around σ ≈ 1/2. Otherwise, as
the N-I phase transition is approached, the effective form of
the nematic grains loses its ellipsoid shape, becoming more
and more spherical, and gives rise to an increase in the ratio
r2/r1, making e → 0 and σ → 1. Using the value of e given
in Eq. (27), we arrive at

σ = 4 − S

4 + 2S
, (54)

which shows that when S ≈ 1, we would have σ ≈ 1/2.
Otherwise, as S → 0, we would have σ → 1.

These results have not been predicted by other nematic
rheological models. They determine the value of the parameter
defined in Eq. (51) along the entire range of the nematic phase
without the need for any adjustable free variable. They are a
direct consequence of the use of the extended HB approach,
where a rotational term has been added, and show that the
Miesowicz’s coefficients are connected by the eccentricity
of the nematic grain through the application of the Onsager
theorem.

B. The Leslie coefficients

Notwithstanding the agreement between theory and exper-
iment, the preceding results can be only an approximation
of the viscosity problem. α3 cannot be null as we assumed
with the acceptance of Eq. (47) as the starting point of
our development. Here, we will further develop the HB
approach and obtain a consistent expression for the Leslie
coefficients. To accomplish this task, we will further generalize
the form of Eq. (47) by adding the transpose of Ninj to it,
giving,

σij = 2
dsl

dxi

dxj

dsk
(η1Aij + η2Ninj + η3Njni), (55)

where η3 is a new viscosity term coupling Njni . Moreover,
by repeating the procedure that we have followed to arrive at
Eq. (48) we find that

α1 = − (r1 − r2)2

r1r2
η1, α2 = r1

2r2
η2, α3 = r2

2r1
η3,

(56)

α4 = η1, α5 = r1 − r2

r2
η1, α6 = r2 − r1

r1
η1.

With this result we understand why the previous versions of
the HB approach were unable to describe the nematic viscosity
problem: α2 and α3 are entirely determined by η2 and η3, and
vice versa.

In terms of these new parameters, the Parodi relation
becomes

eη1 + η2 + (1 − e)η3 = 0, (57)

which contains the previous result, Eq. (52), as a special case
and shows that the terms η1, η2, and η3 are connected by
the quenched geometry of the nematic phase. Finally, using
Eq. (48) we see that the Leslie coefficients are completely
determined by two viscosity parameters, η1 and η3, for
example, and by the eccentricity e:

α1 = − (1 − √
1 − e)2

√
1 − e

η1, α2 = −eη1 + (1 − e)η3√
1 − e

η2,

α3 = √
1 − eη3, α4 = η1, α5 =

(
1√

1 − e
− 1

)
η1,

α6 = −(1 − √
1 − e)η1. (58)

In terms of these expressions for the Leslie coefficients, the
parameter σ becomes

σ = 1(
1 + η3

η1

)[
(1 + e) + (1 − e) η3

η1

]

= 1 − e2

(1 − e)
(

α3
α4

)2 + 2
√

1 − e α3
α4

+ (1 − e2)
, (59)

where, for completeness, we have written σ in terms of η3/η1

and α3/α4. When η3/η1, or α3/α4 are small, we obtain

σ = 1

1 + e
− 2

(1 + e)2

η3

η1
+ 3 + e2

(1 + e)3

η3

η1

2 + · · ·

= 1

1 + e
− 2√

1 − e(1 + e)2

α3

α4

+ 3 + e2

(1 − e)(1 + e)3

α3

α4

2 + · · · , (60)

which confirms the results that followed from Eq. (40) when
η3/η1or α3/α4 can be neglected, which are the conditions
prevailing experimentally as long as we know that, for all
nematic calamitic compounds, any of these ratios are always
small. Under these conditions, the uniformity and diversity of
data shown in Fig. 1 constitutes a striking confirmation that
the model presented in this paper can correctly describe the
nematic viscosity.

IV. CONCLUSION

In this paper, we have shown that the nematic viscosity can
be understood from a geometric point of view. A modified
version of the HB approach [31] has been used to express
the Leslie coefficients [Eq. (58)] in terms of two viscosity
parameters η1 and η3 and the quenched eccentricity e of
the nematic grain. In order to clearly define the thermalized
geometry and especially this parameter e, we have presented
a study of the thermal behavior of a nematic molecule
where we have shown that a straightforward understanding
of this geometrization of the nematic phase is achieved
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using de Gennes’ concepts of microscopic and macroscopic
order parameters [1]. Our results have been compared with
experimental results, where it has been shown that they agree
with the experimental data.
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