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Nonlinear smectic elasticity of helical state in cholesteric liquid crystals and helimagnets
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General symmetry arguments, dating back to de Gennes, dictate that at scales longer than the pitch, the
low-energy elasticity of a chiral nematic liquid crystal (cholesteric) and of a Dzyaloshinskii-Morya (DM) spiral
state in a helimagnet with negligible crystal symmetry fields (e.g., MnSi, FeGe) is identical to that of a smectic
liquid crystal, thereby inheriting its rich phenomenology. Starting with a chiral Frank free energy (exchange and
DM interactions of a helimagnet) we present a transparent derivation of the fully nonlinear Goldstone mode
elasticity, which involves an analog of the Anderson-Higgs mechanism that locks the spiral orthonormal (director
or magnetic moment) frame to the cholesteric (helical) layers. This shows explicitly the reduction of three
orientational modes of a cholesteric down to a single-phonon Goldstone mode that emerges on scales longer than
the pitch. At a harmonic level our result reduces to that derived many years ago by Lubensky and collaborators.
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I. INTRODUCTION

Dating back to the original cholesterol liquid crystal
discovered by Reinitzer, chirality plays a central role in
modern study of liquid crystals [1]. It is equally important for
understanding helical states of noncentrosymmetric magnets
(e.g., MnSi) [2–4], driven by a chiral Dzyaloshinskii-Morya
(DM) interaction [5].

Among a wealth of induced phenomena [1] chirality
converts uniform nematic and ferromagnetic phases into states
in which the orientational (nematic or spin) field twists
periodically, thereby leading to a variety of spatially modulated
phases, such as the cholesteric, two- and three-dimensional
“Blue” phases [1,6,7] and recently discovered Skyrmion line
crystals in the MnSi helimagnet [8]. These spontaneously
break the translational and rotational symmetries, forming
liquid-crystalline structures that are periodic along one, two, or
three dimensions. Cholesteric and helical phases are the most
ubiquitous of these, characterized by a biaxial order with

n̂0(r) = x̂1 cos(q · r) + x̂2 sin(q · r), (1)

breaking the translational symmetry along a single, sponta-
neously selected axis, x̂3 ≡ ẑ, where x̂1,x̂2,x̂3 ≡ x̂1 × x̂2 form
an orthonormal triad that is constant in the ground state.

General symmetry arguments [1] and an explicit derivation
at a harmonic level [9] applied to this spontaneously layered
helical state predict that at scales longer than the helical pitch,
the low-energy (Goldstone mode) elasticity is identical to that
of a smectic liquid crystal [1]. The three orientational degrees
of freedom defining the cholesteric at short scales thereby
reduce to a single smectic-like phonon mode, which emerges
on scales longer than the pitch. The associated enhanced
fluctuations in Refs. [10,11] and disordering of these states
leads to rich phenomenology [1,12] and in the case of MnSi is
believed to be associated with the striking observation of the
non-Fermi liquid behavior [13].

Although by now quite familiar, the symmetry breaking of
the helical state falls outside the conventional G/H paradigm
[12]. Despite fully breaking the O(3) rotational symmetry

of the Euclidean group the state is characterized by only a
single U (1) Goldstone mode, χ , the spiral’s phase related
to the smectic phonon u = −χ/q0. As we will show below,
the absence of the two additional orientational Goldstone
modes is best understood as a mathematical equivalent of the
Anderson-Higgs mechanism [1,12,14] that gaps them out.

In this paper we explicitly show how this single low-
energy helical mode emerges and derive its nonlinear smectic
energy functional, expected from the underlying rotational
symmetry [1,12]. Because the latter leads to harmonic phonon
fluctuations that diverge in three dimensions and below, the
inclusion of nonlinearities is essential for a sensible and self-
consistent description, as anticipated long ago by Lubensky
et al. [9] and Grinstein and Pelcovits [10] (see also Ref. [11]).
With the neglect of crystalline anisotropy all of our cholesteric
results apply equally well to the description of the low-energy
bosonic modes of the helical state in the DM helimagnets such
as MnSi [2–4].

II. FROM A CHOLESTERIC TO A SMECTIC

The helical texture n̂0(r) minimizes the chiral Frank-Oseen
free-energy density of a chiral nematic [1,12,15]

H = 1
2Ks(∇ · n̂)2 + 1

2Kb(n̂ × ∇ × n̂)2,

+ 1
2Kt (n̂ · ∇ × n̂ + q0)2, (2a)

= 1
2K

[
(∂i n̂j )2 + 2q0n̂ · ∇ × n̂ + q2

0

]
, (2b)

where in the second form we focused on the isotropic limit,
Ks = Kb = Kt ≡ K , and dropped the total derivative saddle-
splay (Gaussian curvature) contribution, which reduces the
Hamiltonian to that of DM ferromagnet in the absence of
crystal symmetry-breaking fields [3,5]. Within this approxi-
mation the space-spin (r − n̂) coupling enters only through
the chiral (second) term, with the elastic (first) piece explicitly
exhibiting independent rotational invariances of space r and
of the director n̂ (spin in the MnSi magnet context).
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We now look at long-wavelength, low-energy Goldstone
mode excitations about the helical ground state n̂0(r). A
general state is described by

n̂(r) = ê1(r) cos[q · r + χ (r)] + ê2(r) sin[q · r + χ (r)], (3)

where ê1(r),ê2(r),ê3(r) ≡ ê1(r) × ê2(r) now constitute a spa-
tially dependent orthonormal frame, describing the orientation
of the local director (spin) helical plane, that is, independent
of the helical axis set by q · r + χ (r) = const. The phase
χ (r) = −q0u(r) of the chiral helix also defines the phonon
field u(r) of the helical layers, which on scales longer than
the pitch a = 2π/q0 define the smectic-like displacement of
these helical phase fronts. Thus, altogether on the intermediate
scales there are three independent orientational degrees of
freedom, χ (r) and ê3(r). The azimuthal angle φ(r), defining
the orientation of the ê1,2 around ê3, is redundant to χ (r),
as it can be eliminated in favor of it via a local gauge-like
transformation on ê1,2. Although naively, the low-energy coset

space is isomorphic to (S1 ⊗ S2)/Z2 = RP3, as we will see
below, only a single Goldstone mode χ (r) will survive this
helical symmetry breaking.

Substituting n̂(r) from Eq. (3) into the free energy of the
chiral nematic (helimagnet), Eq. (2b), and using

∂i n̂j = (qi + ∂iχ )[−ê1j sin(q · r + χ ) + ê2j cos(q · r + χ )]

+∂i ê1j cos(q · r + χ ) + ∂i ê2j sin(q · r + χ ), (4)

together with

∂i ê1j = ai ê2j + c1i ê3j , (5a)

∂i ê2j = −ai ê2j + c2i ê3j , (5b)

and gauge field “spin connections”

ai = ê2 · ∂i ê1, (6a)

c1i = −ê1 · ∂i ê3, (6b)

c2i = −ê2 · ∂i ê3, (6c)

we find

H = K

2
{(ai ê2j + ci ê3j ) cos(q · r + χ ) + (−ai ê1j + c2i ê3j ) sin(q · r + χ ) + (qi + ∂iχ )[−ê1j sin(q · r + χ )

+ê2j cos(q · r + χ )] + q0(ê2i ê3j − ê3i ê2j ) cos(q · r + χ ) + q0(ê3i ê1j − ê1i ê3j ) sin(q · r + χ )}2, (7a)

= K

2
(∇χ + a + q − q0ê3)2 + K

4
(c1 + q0ê2)2 + K

4
(c2 − q0ê1)2. (7b)

In obtaining Eq. (7b), we dropped the constant and
oscillatory parts, which average away upon spatial integration.

We first note that the requirement of well-defined helical
phase fronts, i.e., the absence of dislocations and disclinations
in the layer structure, can be enforced by the compatibility
condition ∇ × a = 0, consistent with the Mermin-Ho relation
[16]. This allows us to take a = ∇φ and thereby shift (“gauge”)
away φ(r) in favor of χ (r), according to χ (r) + φ(r) → χ (r).

Without loss of generality, we next take q = q0ẑ with ẑ

defining the orientation of the helical axis in the laboratory
coordinate system x̂,ŷ,ẑ. The long-wavelength free-energy
density, reexpressed in terms of the smectic-like phonon field
u(r) and the local nematic helical frame orientation ê3, then
reduces to

H = Kq2
0

2
(∇u + ê3 − ẑ)2 + K

4

(
c2

1 + c2
2

)

+Kq0

2
(c1 · ê2 − c2 · ê1). (8)

Clearly the first term above accounts for the energetic cost
of the deviation of the local nematic frame ê3 from the
local orientation of the helical layers. A minimization of
this term [or equivalently at long wavelengths, in a statistical
mechanical treatment integrating out the independent ê3(r)
degree of freedom], at low energies locks the orientations of
the cholesteric layers and the nematic frame. In a perturbative
treatment this leads to the expected relation

∇⊥u ≈ −ê3⊥, (9)

which is an example of a Higg’s-like mechanism (akin to
thermotropic smectic liquid crystals [1,12,17]), that at long
scales effectively gaps out the orientational Goldstone modes.

The exact minimization over the unit vector ê3(r) can also
be carried out using a Lagrange multiplier λ to impose the
constraint ê3 · ê3 = 1. Minimization over ê3(r) gives

∇u + ê3 − ẑ = −λê3, (10)

with the solution

λ + 1 =
√

(∇u − ẑ)2 =
√

1 − 2uzz, (11a)

ê3 = (ẑ − ∇u)/
√

1 − 2uzz, (11b)

where

uzz = ∂zu − 1
2 (∇u)2 (12)

is the standard fully nonlinear smectic strain tensor, which
encodes the full rotational invariance of the helical state [10,
12]. Using Eqs. (1) to eliminate λ and ê3(r) in favor uzz (valid
at long scales), we find

H = Kq2
0

2
(
√

1 − 2uzz − 1)2 + K

4
[(ê1 · ∂i ê3)(ê1 · ∂i ê3)

+(ê2 · ∂i ê3)(ê2 · ∂i ê3)] + Kq0

2
ê1i ê2j (∂i∂ju − ∂j ∂iu),

(13a)

≈ B

2
u2

zz + K

2
(∂i∂

⊥
j u)2, (13b)

≈ B

2

[
∂zu − 1

2
(∇u)2

]2

+ K

2
(∇2

⊥u)2, (13c)
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where to obtain our main result, Eq. (13c), we used the
condition of well-defined helical layers with no dislocations
in u(r), i.e., a single-valued phase field χ (r), neglected the
boundary terms, expanded to lowest order in the nonlinear
strain tensor uzz, and defined the compressional and bending
elastic moduli

B = Kq2
0 , K = K/2. (14)

III. SUMMARY AND CONCLUSIONS

Thus, as advertised, we have demonstrated that on scales
longer than the helical pitch 2π/q0, the low-energy deforma-
tions (Goldstone modes) of the helical state are characterized
by a fully rotationally invariant, nonlinear smectic elastic
theory [1,10,12]. The latter can be derived by spontaneously
ordering the density ρ(r) of the isotropic fluid into a one-
dimensional periodically modulated state (smectic), character-
ized by ρ(r) = ρ0 + ρq cos[(q · r − q0u)] [10]. Alternatively,
the above nonlinear compressional form [first term in (13a)]
emerges directly from the de Gennes’s gauge theory of the
smectic [1], after condensing ρq = |ρq |ei�(r) to give

Hsm = 1
2B(∇� − n̂)2 + 1

2K(∇ · n̂)2, (15)

and then minimizing over the unit director n̂(r) as in (10)–(12).
We note that as required, H in Eq. (13a) is a function of the

fully nonlinear strain uzz as it must to preserve full rotational
invariance. Furthermore, it is a nonlinear function of this strain,

which reduces to the familiar “harmonic nonlinear” form [10]
in Eq. (13c) only for small uzz. It is worth observing that
through the introduction of the phase field � = −z + u, this
nonlinear in uzz term in (13a) can be written as (|∇�| − 1)2.
This form has been used in recent analyses of various nonlinear
properties of smectics [18].

Our result in Eq. (13c) then in turn implies that the helical
state inherits all the novel nonlinear elastic effects previously
discovered in the context of conventional, thermotropic, and
lyotropic smectic liquid crystals and other spontaneously
layered states that emerge from an isotropic state. These
include thermal fluctuations [10,11,19] and heterogeneous
[20,21] anomalous elasticity effects, the undulation instability
[22], and many others.

One important distinction from a conventional smectic,
however, is the underlying chirality of the helical layered state.
Although as in the chiral smectic the effective Anderson-Higgs
mechanism expels the expression of chirality (e.g., twist)
inside the helical state (as the magnetic flux density [twist of the
vector potential] is expelled from the Meissner state) [1,12,17],
inclusion of the chiral terms [encoded in the departure from
the ∇ × a = 0 condition used to get to (8)] is essential to
understanding the topological defects and melting of the
helical state [23].
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