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Bubble nucleation in stout beers
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Bubble nucleation in weakly supersaturated solutions of carbon dioxide—such as champagne, sparkling wines,
and carbonated beers—is well understood. Bubbles grow and detach from nucleation sites: gas pockets trapped
within hollow cellulose fibers. This mechanism appears not to be active in stout beers that are supersaturated
solutions of nitrogen and carbon dioxide. In their canned forms these beers require additional technology
(widgets) to release the bubbles which will form the head of the beer. We extend the mathematical model of
bubble nucleation in carbonated liquids to the case of two gases and show that this nucleation mechanism is
active in stout beers, though substantially slower than in carbonated beers and confirm this by observation. A
rough calculation suggests that despite the slowness of the process, applying a coating of hollow porous fibers to
the inside of a can or bottle could be a potential replacement for widgets.
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I. INTRODUCTION

The production of bubbles in weakly supersaturated solu-
tions of carbon dioxide is of great interest to the beverage
industry. Such solutions include many soft drinks and beers,
as well as sparkling wines and champagne. While it has long
been appreciated that spontaneous bubble formation in these
liquids is strongly inhibited and thus that bubble formation
can only occur at certain nucleation sites [1,2], it is only
comparatively recently that the nature of these sites has
been fully elucidated. In a series of papers, Liger-Belair and
co-workers demonstrated that the most important nucleation
sites are pockets of gas trapped in cellulose fibres [3] (an
example of type IV nucleation in the classification of Jones
et al. [2]) and developed a mathematical model of the growth
and detachment of these bubbles [4], (a complementary model
making slightly different assumptions was developed by Uzel
et al. [5]).

While most beers are carbonated, there are advantages to
using a mixture of nitrogen and carbon dioxide in beers, as
is done in a number of stouts. (Hereafter, the term “stout”
will be used to refer to a beer containing a mixture of
dissolved nitrogen and carbon dioxide.) These advantages
include lower acidity in the beer leading to an improved taste,
and smaller bubbles giving a creamy mouthfeel and a long
lasting head [6,7]. These beers are interesting scientifically
because they show interesting fluid dynamical phenomena
such as roll waves [8] and sinking bubbles [9]. Also of scientific
interest is the technology used to create the head in the canned
products.

Pouring a carbonated beer from the can into a glass is
enough to generate the head. This is not the case for stouts.
Foaming in canned stouts is promoted by a widget: a hollow
ball containing pressurized gas. When the can is opened, the
widget depressurizes by releasing a gas jet into the beer. The
jet breaks up into tiny bubbles which are carried throughout
the liquid by the turbulent flow generated by the gas jet and by
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pouring the beer into a glass. Dissolved gases diffuse from the
liquid into the bubbles which rise to the surface of the beer to
form the head.

In this paper we extend the mathematical model of bubble
formation in carbonated liquids developed by Liger-Belair
et al. [4] to the case of two dissolved gases and use it to
investigate two questions:

(i) Why do stout beers require widgets? Is the bubbling
mechanism described by Liger-Belair et al. completely inac-
tive in stout beers or merely very slow?

(ii) Could an alternative to the widget be developed by
coating part of the inside of the can by hollow fibers?

II. MATHEMATICAL MODEL

In this section we develop a mathematical model of the
rate of growth of a gas pocket in a cellulose fiber for the
case in which there are two dissolved gases: nitrogen and
carbon dioxide. Once a gas pocket reaches a critical size
(when it reaches an opening of the fiber) it rapidly forms
a bubble outside the fiber, leaving behind the original gas
pocket. Since bubble formation and detachment is much faster
than the growth of the gas pocket, the rate at which bubbles
are nucleated can be deduced from the rate of growth of the
gas pocket [4].

The geometry of a gas pocket in a cellulose fiber is
shown in Fig. 1. Dissolved gases in the fluid diffuse into the
bubble through the walls of the cellulose fiber and through
the spherical caps at the ends of the gas pocket. The rate
at which this occurs is determined by the surface area, the
diffusion constant, and a diffusion length scale. The diffusion
constants used to calculate the fluxes of carbon dioxide and
nitrogen through the spherical caps are the diffusion constants
in free fluid: D1 and D2. The relevant diffusion constants
for flow through the cellulose walls are D1⊥ and D2⊥. NMR
measurements show that for carbon dioxide D1⊥ ≈ 0.2D1

[11]. We assume the same relationship holds between D2⊥ and
D2. The diffusion length scale λ was measured experimentally
for carbon dioxide [4]; again we assume that this value is also
valid for nitrogen diffusion.
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FIG. 1. Geometry of a gas pocket trapped in a cellulose fiber.

In this model the rate of change of the numbers of carbon
dioxide (N∗

1 ) and nitrogen (N∗
2 ) molecules in the gas pocket

are given by
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where asterisks indicate dimensional variables that will be
nondimensionalized later.

Using Henry’s law, Laplace’s law, and the ideal gas
equation,
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where H1 is the Henry’s law coefficient for carbon dioxide,
H2 is the Henry’s law coefficient for nitrogen, P1 is the partial
pressure of dissolved carbon dioxide, P2 is partial pressure
of dissolved nitrogen, PB is the pressure in the gas pocket
given by the Laplace law, P0 is atmospheric pressure, T is
temperature, and γ surface tension.

These equations can be nondimensionalized by using the
scales,

Nscale = 2D2

D2⊥

PBπr3

RT
≈ 3.22 × 10−13 mol, (7)

tscale = rPBλ

2D2⊥H2P2RT
≈ 2.73 s, (8)

to introduce dimensionless variables N1, N2, and t (by as-
sumption D2/D2⊥ = D1/D1⊥). The dimensionless equations

TABLE I. Values of parameters used in this work. r is the radius
of the fiber, λ a diffusion length, γ surface tension, T temperature,
P0 ambient pressure. Di , Hi , and Pi (i = 1,2) are the diffusivity,
Henry’s gas law constant, and partial pressure of dissolved carbon
dioxide (subscript 1) and nitrogen (subscript 2). The product DiPiHi

controls the rate of diffusion of gas i from solution into the gas pocket.

Parameter Value Reference

r 6.00 × 10−6 m [4]
λ 14.00 × 10−6 m [4]
γ 47.00 × 10−3 N m−1 [6]
D1 1.40 × 10−9 m2 s−1

D2 2.00 × 10−9 m2 s−1

H1 3.4 × 10−4 mol m−1 N−1

H2 6.1 × 10−6 mol m−1 N−1

T 293 K
P0 1.00 × 105 Pa
P1 0.80 × 105 Pa [10]
P2 3.00 × 105 Pa [10]
D1P1H1 3.81 × 10−8 mol m−1 s−1

D2P2H2 3.66 × 10−9 mol m−1 s−1

are

ε
dN1
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= (1 + N1 + N2)

(
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)
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)
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Using values typical of stouts, given in Table I, the dimension-
less parameters are

ε = D2H2P2

D1H1P1
≈ 0.096, (11)

α1 = PB

P1
≈ 1.45, (12)

α2 = PB

P2
≈ 0.39. (13)

III. ASYMPTOTIC SOLUTION

Equations (9) and (10) cannot be solved analytically. They
can, however, be solved in two asymptotic limits: ε � 1 and
N1 + N2 � 1. The former limit does not produce particularly
accurate results but the analysis of this limit helps us to
interpret the results from taking the second asymptotic limit.
The results from taking the second asymptotic limit are more
accurate but harder to understand intuitively.

A. First asymptotic limit: ε � 1

Taking the limit in which the small parameter ε ≈ 0.1 is
zero, Eq. (9) becomes an algebraic equation,

0 = 1 − α1N1

N1 + N2
, (14)

which can be substituted into Eq. (10),

dN2

dt
= α1 + α2 − α1α2

α1 − 1
N2 + α1 + α2 − α1α2

α1
. (15)
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This equation is solved by

N2 = A exp

(
t

τ

)
− α1 + α2 − α1α2

α1
, (16)

where A is a constant of integration and τ a dimensionless
time constant describing the time scale of growth of the gas
pocket in this approximation,

τ = α1 − 1

α1 + α2 − α1α2
≈ 0.35, (17)

τ tscale = 0.954 s. (18)

The small parameter ε used in this analysis is a measure
of the relative rates of diffusion of nitrogen and carbon
dioxide. As Fick’s first law states, the diffusive flux is
proportional to the diffusion constant and the concentration
gradient, that is, to DiPiHi/λ (the Henry’s law constant Hi

converts the partial pressure Pi into a concentration). For
small ε we need D2P2H2 � D1P1H1. As Table I shows, in
fact D2 > D1 and P2 > P1. Nevertheless ε is small because
of the very low solubility of nitrogen compared to carbon
dioxide (H2 � H1). This means that nitrogen concentrations
in solution are much lower than carbon dioxide concentrations
(even when the difference in partial pressures is included), and
thus that concentration gradients must also be small. Since
the concentration gradients of nitrogen are much smaller than
the concentration gradients of carbon dioxide, carbon dioxide
diffusion is much faster than nitrogen diffusion.

Physically, the ε → 0 approximation corresponds to as-
suming that diffusion of carbon dioxide is infinitely fast, and
thus the partial pressure of carbon dioxide in the gas pocket
is always equal to the partial pressure of carbon dioxide in
solution. Obviously this approximation is only valid if the
partial pressure of carbon dioxide is less than the gas pocket
pressure, otherwise Eq. (14) has no physical solutions. Note
that this approximation will underestimate τ since it assumes
carbon dioxide diffusion is infinitely fast.

B. Second asymptotic limit: N1 + N2 � 1

In the limit N1 + N2 � 1 Eqs. (9) and (10) become

dN1

dt
= −α1 − 1

ε
N1 + N2

ε
, (19)

dN2

dt
= N1 + (1 − α2) N2. (20)

TABLE II. Numerical values of the parameters in Eqs. (21)
and (22).

Parameter Value

a11 0.989
a12 0.836
a21 −0.145
a22 0.548
τ1 0.161
τ2 0.468
τ1tscale 0.439 s

τ2tscale 1.278 s

These equations have two independent solutions:

N1 = Aa11 exp

(
− t

τ1

)
, N2 = Aa21 exp

(
− t

τ1

)
, (21)

and

N1 = Ba12 exp

(
t

τ2

)
, N2 = Ba22 exp

(
t

τ2

)
, (22)

where A and B can be chosen independently to satisfy initial
conditions. The numerical values of the other parameters are
given in Table II.

The analysis of the ε � 1 case allows us to interpret these
two solutions. The first solution, Eq. (21), decays exponentially
with a small time scale. This corresponds to the rapid
establishment of the (dynamic) equilibrium concentrations
(or partial pressures) of CO2 and N2 within the gas pocket
(assumed instantaneous in the previous analysis). The second
solution, Eq. (22), shows exponential growth with a longer time
scale. This describes the steady-state growth of the gas pocket
at a fixed concentration ratio of CO2 to N2. The time scale
of this process describes the time scale of bubble production.
This analysis produces a longer estimate of that time scale than
the previous analysis. This is because, previously, diffusion
of CO2 was assumed to be instantaneous. As the numerical
results described in the next section show, the ε � 1 limit
underestimates the correct time scale, while the N1 + N2 � 1
analysis gives a good estimate.

IV. NUMERICAL SOLUTION

A full solution of the dimensionless equations can be
obtained by numerical integration. A fourth-order Runge-
Kutta scheme with a time step of 10−3 was used to solve

FIG. 2. Results of the numerical solution of Eqs. (9) and (10).
The black line shows the numerical solution, the gray line shows the
N1 + N2 � 1 limit, and the dashed black line shows the ε � 1 limit.
(a) Rate of growth of the gas pocket. (b) Evolution of the concentration
of CO2 in the gas pocket.
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FIG. 3. Bubble nucleation in stout from a cellulose fiber taken from a coffee filter. The scale bar is 50 μm in each figure. The arrows show
(1) a gas pocket in the fiber which nucleates a bubble; (2) the bubble fed by gas from pocket 1; (3) a bubble nucleated on the outside of the
fiber. (a) The air pocket (1) has reached maximum size. (b) The air pocket (1) has created bubble (2). (c) Bubble (2) has visibly detached from
the fiber, air pocket (1) is starting to refill with gas. (a), (b), and (c) are frames from a movie. (b) is 80 ms after (a), (c) is 520 ms after (a).

Eqs. (9) and (10) with initial conditions N1 = 0, N2 = 0.5.
The differential equations were solved over the interval 0 <

t < 10. The result for N = N1 + N2 for 5 < t < 10 were fitted
to an exponential curve giving a dimensionless bubble growth
time scale of τ = 0.47 corresponding to a dimensional time
scale of τ tscale = 1.28 s, in agreement with that predicted from
the analysis of the N1 + N2 � 1 case. This can be compared
with the value for carbonated liquids at the same total pressure:
0.079 s. Figure 2 shows the results of the numerical simulations
over the interval 0 < t < 1.

In conclusion, these analytic and numerical results suggest
that the mechanism of bubble formation described by Liger-
Belair et al. is potentially active in stout beers but acts much
more slowly than in carbonated drinks.

V. EXPERIMENTAL CONFIRMATION

To confirm experimentally that cellulose fibers could
nucleate bubbles in stout beer, we observed a canned draught
stout in contact with cellulose fibers (taken from a coffee filter).
Before opening the can, we made a small hole in the can
to slowly degas the widget. This prevented it from foaming,
which would have removed the dissolved gases from solution.
Using a microscope we observed that bubbles were indeed
nucleated from the cellulose fibers but at a slow rate, compared

FIG. 4. Process used to construct Fig. 5. The figure was con-
structed from 200 frames of a movie. (a) One of the frames from
the movie. (b) Each frame was rotated to make the fiber vertical,
and a strip of pixels (indicated by arrows) extracted. (c) The strips
of pixels from each frame of the movie were laid side by side to
make Fig. 5.

to the rate of bubble nucleation in carbonated liquids. Figure 3
shows bubbles nucleated by a gas pocket: The three parts of
Fig. 3 are frames taken from a movie.

The frames of the movie can be used to construct a picture
of the growth of the gas pocket. Figure 4 illustrates the
steps of the process. Two hundred frames (from the same
movie of the bubbling process used for Fig. 3), corresponding
to 8 s were extracted from the movie [Fig. 4(a)] and rotated so
that the fiber shown in Fig. 3 was vertical [Fig. 4(b)]. From
each frame a strip of 1 × 175 pixels, passing through the center
of the fibre, was extracted and those strips placed side by side
[Fig. 4(c)] to construct a new figure: Fig. 5. This figure shows
the evolution of the gas pocket: its slow growth (as predicted
by the model) and then its rapid loss of gas to form an external
bubble (as assumed by the model). In the figure, the nucleation
period is about 3.5 s, roughly three times that predicted by
the model. The reason for this is the figure was taken some
time after the stout had come into contact with the fibers (in

FIG. 5. Growth of the gas pocket. The construction of the figure
is described in the main text and illustrated in Fig. 4. This figure
shows the growth of the gas pocket within the cellulose fiber shown
in Fig. 3. As in Fig. 3 dark colors correspond to gas and light colors
to liquid. The columns of pixels from the frames corresponding to
parts (a), (b), and (c) of Fig. 3 are indicated. The location of the gas
pocket indicated by a (1) in Fig. 3 is shown. Vertical lines indicate
the times at which bubbles are created by the fiber.
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TABLE III. Values of the parameter ε when nitrogen is replaced
by other gases.

Gas D (10−9 m2 s−1) H (10−5 mol m−1 N−1) ε

Hydrogen 5.11 0.78 0.31
Oxygen 2.42 1.26 0.24
Methane 1.84 1.32 0.19

order to obtain clearer figures), so that the gas concentrations
were lower than their initial values, due to losses through the
free surface and bubbling. Earlier, bubble formation at rates
comparable to those calculated from the model above was
observed.

VI. WIDGET ALTERNATIVES

The model developed above allows us to investigate the
feasibility of an alternative foaming strategy for stout beers in
cans and bottles in which a coating of hydrophobic fibers on
the inside of the can is used to promote foaming. A typical
pouring time for a stout beer is 30 s. In this time about 108

postcritical nuclei must be released. A single fiber produces
one bubble every 1.28 s. Therefore about 4.3 × 106 fibers are
needed. If each fiber occupies a surface of area λ2 then the
total area that must be occupied by fibers is 8.3 × 10−4 m2

equivalent to a square with edge length 2.9 cm. This indicates
that such an approach may be possible.

VII. CONCLUSIONS

A model of bubble formation in carbonated liquids has
been extended to the case of liquids containing both dissolved
nitrogen and carbon dioxide. Taking values typical of stout
beers shows that bubble formation by this mechanism does
occur but at a substantially slower rate. This is consistent with

the observation that widgets are needed to promote foaming
in canned stouts. This is due to two effects, described by the
parameters α1 and ε in the model. First, the pressure of the more
soluble gas is lower than the pressure in the gas pocket: α1 > 1.
This means that the more soluble gas cannot create bubbles on
its own. If α1 < 1 then bubbles would be created containing
mostly carbon dioxide and trace amounts of nitrogen, and the
stout beer would be indistinguishable from a carbonated beer.
Second, as described by the parameter ε, diffusion of the less
soluble gas is much slower than diffusion of the more soluble
gas. As noted previously, by Fick’s first law, rates of diffusion
are proportional to the diffusion constant and the concentration
gradient of dissolved gases [i.e., to the product DiPiHi/λ

(i = 1,2)]. While the diffusion constant D2 and the partial
pressure of nitrogen P2 are higher than those of carbon dioxide
and by assumption λ is the same for both gases, the Henry’s
law coefficient H2 which converts the partial pressure into a
concentration is about 50 times smaller than that of carbon
dioxide, this ensures that ε � 1. The analysis is also relevant
if nitrogen is replaced by other low solubility gases, although
these might be of less interest to the beverage industry. For
instance, as shown in Table III, if nitrogen was replaced by
hydrogen, oxygen, or methane, ε would become 0.31, 0.24, or
0.19, respectively. Finally, the possibility of replacing widgets
with an array of hollow fiber nucleation sites was investigated
and shown to be potentially feasible.
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