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Interplay of internal stresses, electric stresses, and surface diffusion in polymer films
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We investigate two destabilization mechanisms for elastic polymer films and put them into a general framework:
first, instabilities due to in-plane stress and, second, due to an externally applied electric field normal to the film’s
free surface. As shown recently, polymer films are often stressed due to out-of-equilibrium fabrication processes
such as, e.g., spin coating. Via an Asaro-Tiller-Grinfeld mechanism as known from solids, the system can
decrease its energy by undulating its surface by surface diffusion of polymers and thereby relaxing stresses.
On the other hand, application of an electric field is widely used experimentally to structure thin films; when
the electric Maxwell surface stress overcomes surface tension and elastic restoring forces, the system undulates
with a wavelength determined by the film thickness. We develop a theory taking into account both mechanisms
simultaneously and discuss their interplay and the effects of the boundary conditions both at the substrate and at

the free surface.
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I. INTRODUCTION

The stability of polymer thin films is an important research
subject in polymer physics and materials science. On the
one hand, the aim may be to obtain a stable film, as in
coatings and lubrification. On the other hand, soft films are
used for microstructuring, where they are destabilized to yield
well-designed patterns that are used, e.g., as a mold for further
microfabrication processes. In both cases, it is crucial to
understand the stabilizing and destabilizing mechanisms that
prevail in polymer films, which can be either internal (Van
der Waals forces due to reduced dimensions, internal stresses,
decomposition in mixtures) or external (external stresses,
external fields).

In recent studies on spin-coated polymer films, it became
apparent that thin films are prone to store residual stresses
[1,2]. Such stresses are created due to the fast evaporation
process of the spin-coating process; as evaporation is fast,
the polymer chains do not have the time to reach their
equilibrium configurations and in the final, glassy state, the
film has frozen-in nonequilibrium configurations that give rise
to stresses. If these stresses are not relaxed, e.g., by aging
or tempering the films, they influence the film stability as
recently shown in dewetting experiments and as discussed
theoretically. It has been shown [2-6] that stresses increase
the initial dewetting velocity and also strongly influence the
long-time dynamics of the dewetting films. In case the film
does not dewet, the stresses may still lead to destabilization [7],
as they should give rise to an Asaro-Tiller-Grinfeld instability
[8-10]. This mechanism has been proposed for stressed solids
in contact with their melt or for solids that evolve via surface
diffusion. Its origin is the fact that the solid can relax stress and
lower its energy by creating surface undulations. For polymer
thin films, the interplay between residual stresses and other,
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e.g., externally applied, destabilization forces constitutes an
interesting question of importance for all further manipulations
of freshly spin-coated films.

In this paper, we reformulate the energy approach usually
used to describe the Grinfeld instability in a way that highlights
the connection with other known instabilities in thin films.
We use the bulk elastostatic equations together with a time-
dependent kinematic boundary condition at the free interface.
A direct coupling term between the height of the polymer
film and the displacement field arises, which has not been
discussed before as it is less relevant in atomic solids. In
polymer films, however, this coupling should be present and
important. Moreover, this term establishes the connection to
other elastic instabilities, namely, to a bucklinglike instability
under compressive stress and, in the case of an externally
applied field, to the elastoelectric instability investigated by
Sharma et al. [11-14]. Finally, the growth rate of the height
of the polymer film is derived in the case of simultaneous
action of stress and external field. This result is briefly
compared to recent experiments concerning the electro-
hydrodynamic instability of very viscous (high molecular
weight) spin-coated thin polymer films heated above the glass
transition [15,16].

This paper is organized as follows. In Sec. II, we recall
the classical, energy-based formulation of the Grinfeld mech-
anism. In Sec. III, we start from a nonlinear elastic theory,
derive the bulk elastic equations, and investigate in Sec. IV the
stability under stretch and compression. In Sec. V, we show
that, by allowing surface diffusion via a kinematic boundary
condition for the height of the film, the Grinfeld result is
regained in a well-defined limit. The coupling between height
and displacement via the kinematic boundary condition can
influence the classical Grinfeld instability for intermediate
stresses. In Sec. VI, we add the external electric field to our
description. We regain the instability discussed by Sharma
etal.[11]inacertain limit. Moreover, the full growth rate of the
film height is calculated and its consequences for experiments
are briefly discussed.
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FIG. 1. Sketch of the geometry. The thickness of the film spans
from —hg to ¢(x) in the z direction. There is uniaxial stress in the
x direction, which can be either compressive (as shown) or tensile.

II. GRINFELD INSTABILITY: CLASSICAL WAY OF
CALCULATION; EFFECTS OF BOUNDARY
CONDITION AT THE SUBSTRATE

To start with, we briefly review the classical treatment of
the Grinfeld instability of an elastic medium under uniaxial
stress [17,18]. Usually, a semi-infinite solid is investigated,
but in view of the thin-film geometry, we allow for a finite
thickness /¢ of the film. The known results for the semi-infinite
case can then be obtained by performing the limit 4, toward
infinity. As the dynamics of this instability is energy driven (the
system can lower its energy by creating surface undulations),
all the information needed to describe the system is contained
in the (free) energy of the system, which has an elastic part E;
and a surface part Egy;.

We chose the coordinate system in such a way that the free
surface is at z = O (see the sketch of the geometry in Fig. 1).

For simplicity, we assume a plane-strain situation [19]
where the uniaxial prestress oy is taken along the x axis.
Consequently, we consider an undulation of the surface along
X given by

(x) =¢eAcos(kx). (D)

We assume either an infinite system or periodic boundary
conditions in the x direction, and k is the wave number of
the perturbation, A its amplitude, and ¢ a small book-keeping
parameter used in the following when dealing with expansions.

The elastic energy of a linearly elastic solid can be written
via the stress field o, as [20]

Eq [(1 + v)a(fﬂ — vawa,g,g]dx dz, )

T 2E
with E is the elastic or Young’s modulus. Summation con-
vention is implied for indices occurring twice (o, = 1...3).
Using a plane-strain approximation, one gets

1
Eqg=—=

7 [ 4 D)o — vojio;]dx dz, 3)

where now i,j =1...2 (1 <> x,2 < z) and E = £ and
V= ﬁ Assuming incompressibility, i.e., a Poisson ratio of

v = 1/2, one gets E = %E, v = 1. We also will use the shear

modulus G later on and note the known relations G = ﬁ =
%E = E /4. As the system is invariant in the y direction,

E has units of energy per unit length.
The second energy in the problem is the surface energy

Ewr=y /(v 1+¢'(x)* = Ddx, “)
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where y is the surface tension and Eg,s is measured with
respect to the state of a flat surface.

To evaluate the elastic energy, one has to solve the
elastostatic problem. The prestress is uniaxial along the
x axis and is given by 0, = 09, 02 =0, and 0, = 02 = 0.
Note that oy < 0 holds for the case of a compressive stress
and oy > 0 holds for the case of a tensile stress. Undulations
of the surface will give rise to an additional relaxational stress
6;j. The total stress o;; = (73 + 6;; has to fulfill the Cauchy
equilibrium equation

Vioi; =0 (5)
and the compatibility equation
V(0 +0:2) =0, 6)

where V = (0,,d;). As the prestress a[(} trivially fulfills these
equations, we introduce the Airy stress function yx (x,z) for the
relaxational stress via the known relations [19,20]

8% x 3% x 8% x

5,0 = —5,0; = — . 7
972 O T G2 O 9x 3z )

Oxx =

The equilibrium equation is then automatically fulfilled and
the compatibility reduces to V?V2y = 0. This biharmonic
equation has to be solved with the following boundary
conditions (BC).

At the free surface 7 = ¢ (x), the normal-normal component
of stress has to balance the surface tension, while the shear
stress has to vanish. With f and t denoting the unit vectors
normal and tangential to the surface, respectively, the BC at
the free surface read as

. ¢"(x)

Ao =y T 0T fioji; =0, 8)
or, explicitly,
N -~ "
(00 +6xx)8 " — 2648 +6p =y 2
~6x:8” + ¢ (62 — 00 = Gxx) + 61 = 0. ©)

Note that all the stresses in Egs. (8) and (9) have to be evaluated
at the interface, i.e., at z = ¢ (x).

At the bottom surface z = —hgy, where hg is the film
thickness, we impose vanishing normal displacement

u, =0 at z=—h, (10)

meaning that the film is not allowed to detach from the
substrate. As the second BC, we study two possibilities,
depending on the preparation of the system: First, to study the
case of possible slippage at the lower interface, one prescribes

slipBC: o,,=0 at z=—hog, (11

implying vanishing shear stress at the bottom (or equivalently
a vanishing force on the lower surface of the film in the x
direction, i.e., no traction force). This condition will be called
slip BC in the following. A second relevant situation, applying
to the case where the polymer film is rigidly attached to the
lower surface, will be referred to as fixed BC:

fixed BC: u, =0 at z=—hy. (12)
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We will see that these two different BC, slip versus fixed,
have a qualitative influence on the instabilities discussed in
the following.

A. Slip BC at the bottom

The solution of the elastostatic problem with the slip BC at
the bottom [Eqgs. (10) and (11)] is the Airy stress function (A1)
given in Appendix A. The coefficients occurring therein have
to be determined by the BC at the free surface: one calculates
the stresses via Eqgs. (7), evaluates them at the free surface
Z = {(x), and expands in powers of €. From the BC at the free
surface [Eqs. (9)], one then determines the coefficients in the
Airy stress function at order O(¢), yielding Eqgs. (A2).

The problem is now solved at linear order in the undulation,
and we can study the corresponding energy of the system. The
elastic energy will change due to the undulation induced re-

laxational stress 6;;. This change, AE¢ = E¢ — el, explicitly
reads as
1
AE, = 3E / [(00 + 64)? +cr +4a
—2(6¢x + 00)5,. — 0§ |dx dz. (13)

With the Airy stress function determined, the stress field can
be evaluated. The integrations in Eq. (13) first have to be

performed over the film thickness f ¢“) 47. Then, one usually
averages over x, assuming per10d1c boundary conditions;
by writing (E), it is understood that one has averaged like

2n 2”/ ¥ dx. Note that, due to this averaging, the contribution
in 0(6) vanishes. To leading order O(e?), one calculates

(AE. )= _ A2k[og +Ky? + (07 — k*y?) cosh(2hok) |
cls 2 E[2hok + sinh(2hok)] '
(14)

The surface energy is directly calculated from Eq. (4) and
yields, in order O(e?),

1
(Esut) = y<§c’<x>2> = %Azkz. (15)

Note that the averaged quantities (A E) have units of energy
per unit area.

Let us now briefly discuss the obtained result. To regain
the classical limit of an semi-infinite elastic half-space, one
performs the limit kg — oco. The change in total energy
(AE) = (AEe + Eqyt) then reduces to

A? 2002 2

(A Elot,s) = 4

As becomes apparent, the prestress leads to a decrease of the
energy. The stress enters quadratically, thus, both compressive
and tensile stress trigger the instability, which makes it
different from buckling instabilities [20] (see, also, Sec. IV).
The surface tension acts against the instability and stabilizes
high wave numbers [see the second term in Eq. (16)].

As we are predominantly interested in polymer thin films,
let us perform the opposite limit ok < 1. This amounts to
saying that the modulation wavelength is large compared to
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the film thickness. In this limit, the change in total energy reads
as

A o 2, 5
(AEys) = -7 I:E__ho (1 + g(hok) > — vk ] V)]

Again, the prestress is destabilizing, independent of its sign.
However, there is no wave-number dependence of the desta-
bilizing term to leading order. The same result was recently
obtained in the framework of a lubrication approximation [7].

B. Fixed BC at the bottom

In this case, the Airy stress function given by Eqs. (A3) and
(A4) has to be used. For the change in the elastic energy, this
results in

(AEer)
A2 k[ (02 — K2y?) sinh(2hok) + 2hok (02 + k2y?)]
- E[2h2k* + cosh(2hok) + 1] '
(18)

To cross check, in the classical limit of a semi-infinite elastic
half-space, one again recovers Eq. (16). This is expected as,
for a half-space, the BC at the bottom should not be important.
In contrast, in the limit 2ok < 1, one gets

2 (4"0 (hok)? — ykz). (19)

<AElot,f> 4

Note that the prestress still lowers the energy, but now has
the same wave-number dependence as the contribution from
surface tension. Thus, only above a threshold

vE (20)
> RS—
=\ ng

can the prestress destabilize the system.

We have seen that the total energy of the system can be
lowered by surface undulations in all the cases discussed
above. To establish these favorable undulations, it needs
a mechanism that allows rearrangements to occur. In the
classical case of a solid in contact with its vapor, this is
achieved by melting-crystallization processes at the surface.
This results in a velocity of the boundary vyc = TAE [9],
where I is a mobility.

A second possible mechanism, on which we would like to
focus here in view of polymers, is surface diffusion. If atoms or
vacancies (in the case of a solid) or polymer chains (in the case
of polymer films) feel an inhomogeneous chemical potential
at the surface, they will diffuse. As a result, the boundary
will move with a velocity vp = —Mk>AE, with a mobility
coefficient M [8]. Note the second-order spatial derivative
stemming from the diffusion process and reflected in the k°
dependence of vp.

Much more is known about the Asaro-Tiller-Grinfeld
instability, for which we refer to the literature. For the nonlinear
evolution beyond the instability, see [21,22] for analytical work
and [23] for phase-field modeling. Concerning experiments,
very clean realizations of this instability have been observed
in helium crystals [24] and single-crystal polymer films [25].
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III. STRETCHED ELASTIC SOLID: NONLINEAR
BULK FORMULATION

To properly describe finite stresses in a thin polymer
film, one has to use a nonlinear elasticity formulation.
Let us assume that the film was originally in a stress-
free state, described by coordinates X = X;e;. Then, we
stretch (or compress) the film, for simplicity, uniaxially in
the x direction by a factor A > 1 (A < 1). This state will
be described by coordinates x = x;e; and considered as the
base state. This state will be under uniaxial stress o (see
below). Finally, the film is brought in close contact with the
substrate (either still permitting for slip, or perfectly fixed to
it, see the two BC discussed in the last section) and we let
it evolve. This current state will be described by coordinates
X = X;e;. Note that we discuss here only the simple situation
where the film is attached after the stretch. The situation where
the polymers attach to the substrate while the film is stretched
(which probably better corresponds to the situation during spin
coating) is more involved as the uniaxiality is broken due to
the presence of the substrate (cf. Ref. [26]).

The total deformation gradient from X to X reads as

X 09X 0x
=—=—.—="F,-Fy. 21
X ax ax 2t @h
Here,
F; = Diag(x,A"Y/2 1712 (22)

describes the stretching (compression) of the film by a factor
A > 1 (A < 1). Note that this step must be described in the
nonlinear regime, as stresses are finite. The second tensor (with
I the identity)

F, =1+ Vu (23)

introduces the usual linear displacement gradient tensor Vu =
(d;u;);; in the current state with respect to the stretched state.
As we are only interested in the stability of the base state,
here a linearized theory is enough for our purposes. As usual,
we denote with B = F - FT and C = F" - F the left and right
Cauchy-Green tensors. As B is in Eulerian frame, we adopt
it for the stresses. C is in Lagrangian frame and is more
convenient for the energy definition. By using a neo-Hookean
elastic solid [27], the Cauchy stress tensor is defined as

o =GB — PI. 4)

It describes the stress after a deformation in the current
configuration. P is a Lagrangian multiplier (an effective
pressure having units of Pa) that ensures the incompressibility
condition. In the base state, from Eq. (24), one directly gets
agﬂ = 0 except for

o =GO -1, (25)

This establishes a connection between the stretch factor A and
the prestress oy.

Now, let us consider again a plane deformation with respect
to the prestretched base state. By evaluating the Cauchy stress
tensor in linear order in the displacement gradient, imposing
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plane strain, and using incompressibility, one arrives at the
bulk equations

G(A*07u, + 27'02us) — 3, P =0,

(26)
G(Adfu. + 2 '92u;) —9.P = 0.
Note the asymmetry introduced by X ## 1, i.e. the prestretch.
All quantities can be expressed either in the base state x
or in the current state X; as deformations u are small, they
amount to the same expressions. For A = 1, one regains
the classical elastostatic equation for an incompressible solid
GV?u+ VP =0, where u is the displacement field.
The elastic energy density pe for the neo-Hookean elastic
solid reads as

G
Pel = E[Tr(C) —3]. 27)

Here, we did not include the pressure as a Lagrangian multi-
plier {giving rise to a term + P[det(B) — 1]}, as incompress-
ibility is imposed when solving the bulk equations (see the next
section). Note that, for plane strain and small deformations,
one regains Eq. (3) to second order in displacement gradients,
i.e., pa = 5£[(1 + D)o — Dojioj;].

Now we have established the equations for a nonlinear
prestretch and a subsequent linear theory. Note, however, that
the neo-Hookean model should not be used for A values too
far from A = 1. Otherwise, effects of, e.g., the crosslink length
must be taken into account and one should use more realistic
models such as the Mooney-Rivlin solid [27]. We will now
investigate the stability of the prestressed base state with
respect to surface undulations: (i) for the purely elastic case,
(i) in the presence of surface diffusion, making a connection
with the classical Grinfeld instability, (iii) in the presence
of an electric field normal to the free surface, regaining and
generalizing results obtained previously [11,28], and, finally,
(iv) with both surface diffusion and applied electric field.

IV. STRETCHED ELASTIC SOLID: SOLUTIONS FOR
SURFACE MODULATIONS

In this and the following section, we solve the elastic bulk
equations and show how surface diffusion can be incorporated
within this approach in a generic way to regain and generalize
the Grinfeld result. We use the same boundary conditions as
introduced in Sec. I, i.e., Eq. (9) for the free surface and either
the slip BC or the fixed BC at the bottom.

The stability of the base state can be studied by the ansatz

MX(X,Z,I) — ux(z)eikx-hrl ,
U (x,2,t) = uy(z)e™
P(x,z,t) = p(z)e™ 0 (28)

where the amplitudes are small perturbations of order O(¢) in
height perturbations [see Eq. (32) below]. Note that we allowed
for a temporal dependence, which will be used only in the
following sections. By using incompressibility iku, + 0,u, =
0, one obtains a single decoupled equation for u, given by

K u, — k200 + Dul +ul® = 0. (29)
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With this equation solved, one easily obtains u, from incom-
pressibility and the pressure from p(z) = G(“52 — Au(2)).
The general solution of Eq. (29) reads (for A # 1)! as

u(z) =€ Y {Ai coshlki(z + ho)]

i=1,2
+B; sinh[k;(z + ho)1}, (30)
with
ki=k and kp =1 = kA%, 31

Imposing the BC at the substrate yields

u(—ho) =0 & Ay = —Ay,
0x:(—hg) =04 A, =0 (slip BO),

k
uy(=ho) =0 By = —731 (fixed BC).

As before, we parametrize the upper free interface of the thin
polymer film by a harmonic function with small amplitude of
order O(e):

7 = h(x,t) = ehe™ ", (32)

The normal vector of this surface reads as i = [—ikh(x,t),0,1]
at first order. Thus, at the free interface [cf. Eqgs. (8)], the
BC read as o;;7; = —ykzh(x,t)ﬁi. They fix the remaining
unknown coefficients and one obtains A; ; = Ay = 0 and

2k[G(I? — k?) cosh(hol) + k*1y A sinh(hgl)]

Bl s = _h )
’ G(k? + 1) g™ (kD) (33)
B hk3yk sinh(hok) + G(* — k?) cosh(hok)
2 1G g+ (k1)
in the case of the slip BC at the bottom; for the fixed BC,
G(? = kH)v(k,1,k) + K3y rw(k,])
Ay = 4 212 1 4 22 ’
Gk* + 6k21%2 + 14 — (k> + 1) f(k,D)] (34)
B G(I*> — FHw(k,]) + yrk3v(k,1,D)
Lf=—

Gk* 4 6Kk21% + 1+ — (k2 + 12) f(k,])]’
and Ay y = —Ay 4, By = —IT‘B],f. We introduced the fol-
lowing abbreviations:
gE(k,l) = £ sinh[(l + k)hol(l — k)
+ sinh[(I — k)hol( + k),
f k1) = cosh[(l + k)hold — k)*
+ cosh[(l — k)hol + k)%, (35)
v(k,l,m) = (I* 4+ k*) cosh[khg] — 2m? cosh[lho] ,
w(k,l) = (I* + k*) sinh[kho] — 2kl sinh[lhy] .
With the general solution obtained, we can now investigate
whether the base state is stable or unstable. According to
Eq. (32), solutions with nonzero wave number, if they exist,

correspond to surface undulations. The condition for nontrivial
solutions to exist can be written as

h(x,t) =u,(x,z =0,t) (36)

'Note that the case A = 1 is singular as it yields only one wave
number and additional solutions such as z sinh(z).
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or €eh = u,(0). Namely, for consistency, the displacement at
the surface must equal the height perturbation. An alternative
formulation would have been to write down the system of BC
as a 4 x 4 matrix equation and look for nontrivial solutions
via the zeros of the determinant. With u, known, Eq. (36) can
be written as

hZ(k) = 0 (37)

with a function of wave number Z (k). If one finds wave num-
bers k* with Z(k*) = 0, periodic solutions exist; otherwise,
hZ(k) = 0implies h = 0 and the film stays flat. Explicitly, for
the two considered BC, one gets

Z,(k) = 4k31G cosh(lhg) sinh(khg)
—sinh(lho)(I* 4+ k*)>G cosh(khy)
—sinh(lho)k>y A(1* — k?) sinh(khy), (38)

Z (k) = 4GKI(I* + k) + %[r(—l,k) —r(,k)]

1 3 2 2y, —
5Ky M = kg (kD). (39)

with r(k,l) = (k 4+ 1)>(k® + 3kI? — k*1 + I?) cosh[ho(k — D)].
For both BC, nontrivial solutions do not exist under
tension A > 1, as one would expect. Buckling occurs under
compression, and for y =0 and hy — oo, we regain the
classical result from Biot [29], i.e., A, >~ 0.44. However, for
thin films in the presence of surface tension, we get buckling
only for nonphysical values, namely, for A < A, ~ 0.03 for
a typical surface tension of y = 0.5hgE. For such high
compressions, the neo-Hookean law is no longer a good
description. Moreover, the assumption that the film stayed
flat in the first step (from X to x, i.e., before attaching to the
substrate) is not valid anymore; the film would have buckled
long before. Indeed, the threshold for buckling for two free
surfaces should be lower than for the BC that the film does
not detach from the substrate surface [Eq. (10)]. Thus, we can
conclude that the film stays flat for all reasonable values of A,
G, and y. Note, however, that films can be unstable if they are
swollen in the presence of the substrate (cf. Refs. [26,30]).

V. ADDING SURFACE DIFFUSION: THE GRINFELD
INSTABILITY AGAIN AND CORRECTIONS

In the last section, we investigated the stability of the
base state with respect to in-plane stresses and found that
the purely elastic system is stable. Here, we add the effects of
diffusion of polymer chains close to the film surface due to
stress relaxation-induced changes in the chemical potential.
As a consequence, the system can produce undulations
by diffusive transport of material, in addition to possible
elastic displacements. We show that one regains the Grinfeld
instability in a well-defined limit. The overall result is more
general as it comprises corrections to the Grinfeld mechanism
(see below).

If we allow for surface diffusion, Eq. (36) has to be modified
in order to allow for this dynamics. For the height modulation
h = h(x,t), one can write

0rh = 0iuzz=0 — (O1tx|z=0)(0xh)
+M 7 (S 141:=0) - (40)
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The first two terms on the right-hand side stem from the
standard kinematic BC at a free surface, usually written
as d;h = v, — v, 0,h with h the height of the surface and
(vy,v;) = 9;(uy,u,) the fluid velocity [31]. The second term is
purely nonlinear and can be neglected in the following linear
analysis.

The last term on the right-hand side represents the surface
diffusion (note that, in three dimensions, 8)% has to be replaced
by the surface Laplacian [32]). It will smoothen gradients in
the chemical potential, which is given by

S =38Eq — vk, (41)

where k is the mean curvature of the surface, given at O(e)
by k = 82h, and § E is the change in elastic energy density
due to the surface undulation, compared to the flat surface. The
coefficient M is a mobility [33,34] and explicitly reads as M =

Dk”;}/ 2, where kgT is the thermal energy, V is a microscopic
volume (of the polymer chain in our case), D is the surface
diffusion coefficient, and n; is the surface density of diffusing
objects. Note that, in the view of recent experiments on spin-
cast polymer melts, we here allow for a finite chain mobility (at
least close to the free surface), although we assumed a purely
elastic behavior of the film. A generalization of our approach
to the more adequate viscoelastic case will be the subject of a
forthcoming study.

Equation (40) for the dynamics of the surface undulation is
further motivated in Appendix B. The terms arising naturally
from the kinematic BC are commonly not included in the
treatment of the Grinfeld instability as, in the usual context, one
concentrates on the diffusive transport of atoms or vacancies.
As their diffusion is fast, the Grinfeld contribution from
the chemical potential will be dominant and the kinematic
contribution negligible. In our case, however, extended objects
such as polymers have a very low diffusion coefficient (in
bulk, one can estimate D = a?N /T, with N the degree of
polymerization, a the monomer size, and t, the reptation
time). Hence, one should keep the kinematic contribution and
corrections to the classical Grinfeld behavior arise: the time
derivative in 0,u,,=o leads to a renormalization of the growth
rate s(k) of the height perturbations h(x,t) = ehe*+st 1n
view of this, in the following, we will sometimes compare the
‘classical’ Grinfeld and the ‘kinematic’ cases.

In the previous section, we have already calculated the
general solution for the displacements. Thus, the stress tensor
is also known and, by using Eq. (27), one gets the changes
in the elastic energy §Ee; = pe — pgl with respect to the base
state

B eG(1? — k?) cos(kx)

5Ee1,s = 2
x {B) sk cosh[k(ho + z)] + Ba.sl cosh[l(hg + 2)1},
(42)
eG(I? — k?) cos(kx)
5Eel,f = —

k2A
x (A1, p{k sinh[k(ho + z)] — I sinh[I(ho + 2)]}
+By, rk{cosh[k(hg + z)] — cosh[l(ho + 2)]}). (43)

For the surface energy, as before, Eq. (4) yields Egyuf =
€ cos(kx)e’'yk>h. Now we can proceed in two ways.
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A. Classical calculation, nonlinear case

First, we can use the classical Grinfeld argument, i.e.,
we integrate from —hg to h(x) over the film thickness and
average over the assumed periodic x direction to obtain
AEq = { f 8E. dz),. Upon averaging, the linear order in €
vanishes. At O(e?), one gets, to leading order in k,

h2e2(3 — D*GBA + DG
16hoA (A3 4 1)2
h2k*€?ho(03 — 1)°G
4)

8Eeqs = — +O0(k?), (44

8Eq ;= — +0kY. @5
Let us compare to the result obtained in Sec. II. In the limit
A =1=+£4, with § < 1 and using § = 0yp/(3G) as implied by
Eq. (25) in this limit, one gets (including the surface energy)

h? ‘702 2 2
SE s = vy E[l + (hok)] — vk™ ), (46)
0

2 2
Sy (ot =), @)
Note that, in leading order, this is exactly Egs. (17) and (19).
The correction (hok)> < 1 in Eq. (46) has a slightly different
prefactor as in Eq. (17), which is due to the fact that the fully
linear calculation from Sec. II is only correct for infinitesimal
stresses.

B. Consistent calculation at order O(¢)

The use of an averaging in the Grinfeld calculation seems
not necessary to us. We will, thus, determine the growth rate
of surface undulations by using

dh = duz—0 + MIZ(Sphiz=0) - (48)

The left-hand side and the first term on the right-hand side are
of first order in €. Thus, it is sufficient to determine the change
of the chemical potential at this order, i.e., evaluating §u at
the surface. The full growth rates obtained by this equation are
given by Eqgs. (A5)—(A8) in Appendix A for the slip and the
fixed BC, respectively. In the limit of a large modulation wave-
length as compared to the film thickness #pk < 1, one obtains

, GA3 =1y
2hor(1 4+ 23)
Gho(A3 — 1)? A —1
Ghod =17 (1 =1
6 2(1 4+ A3)

(49)

ss(k) ~ Mk

+Mk4[

for the slip BC at the bottom and neglecting the 0,u;|.—o term
at the free surface. Including the kinematic term yields

, GO3 —1)?
hor(3 + A3)
Gho(4+ 313 + 193 —1)?
3A(3 4 A3)2

Ss,kin(k) ~ Mk

+Mk* [

32
M] (50)

TGy
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For the fixed BC, we get in both cases
Gh
sp(k) ~ Mk* [TO(A3 — 1) - y] . (51)

Let us first discuss the limit of small stresses again, A = 1 £ §
with § = 09/(3G) < 1. Both Egs. (49) and (50) yield at lead-
ing order in the stress s (k) ~ Mk? g—i Except for a factor of 4,
at leading order this is exactly Eq. (17). The same is true for the
fixed BC and Eq. (19). Hence, in the low-stress and low-wave-
number limits, our results obtained for the dynamic BC at the
free surface are identical to those obtained by the energy-based
calculation in Sec. II in the following sense: s(k) are growth
rates as calculated from a dynamical equation for the surface
undulation. When comparing to the Grinfeld calculation, there
too one has to impose a diffusion dynamics driven by the
decrease in energy. One can write d,A = —M kzﬁ(AEmt),
with E,, o< A%. The variational derivative with respect to A
yields a factor of 2. Taking into account that, in the energy
approach, one has averaged over (cos’(kx)) yields another
factor of 2, which explains the differing prefactors. However,
one should note that using the spatial averaging process implies
a calculation order O(g?), while our method is O(g).

Let us now discuss the effect of finite stretches and the
kinematic contribution. At leading order in the stress, both
Egs. (49) and (50) reduce to the Grinfeld result. However, in

next order in the stress, Eq. (49) yields —2 Mk? % while the

3 EZhy’
kinematic version yields +%M K2 Eiio . First, this shows that the
symmetry with respect to the sign of the stress, i.e., whether it
is due to stretch (op > 0) or compression (o < 0), is broken
by the elastic nonlinearity. Second, the sign of the correction
is sensitive to whether the kinematic BC at the free surface
is important (e.g., for diffusion of extended objects such as
polymers in a network) or not.

To compare to a real system, we use the following
parameter values as suggested by Ref. [15]: hgp = 140 nm
for the thickness of the film and E =5 x 10° Pa for the
modulus. For the surface tension, we use the value for
polystyrene yps =~ 30 x 1073 Nm~'. Figure 2 displays the full
growth rates [Eqs. (A5)—(AS8) in Appendix A] as a function
of reduced wave number kh,. Note that we renormalized
Stk) = [hg/(ME)]s(k). Figure 2(a) displays the case of the
slip BC at the bottom, with (solid curves) and without (dotted
curves) accounting for the kinematic BC at the free surface.
Finite stresses lead to a Grinfeld instability. Growth rates
differ whether compression (A < 0) or extension (A > 0) is
considered. In case of the fixed BC at the bottom [see Fig. 2(b)],
there exists a threshold stress beyond which the system
becomes unstable. For the chosen surface tension y = 0.5k E
in reduced units, the system destabilizes for A > A; . >~ 1.387
and A < Ap . = 0.426. Note that a (symmetric) threshold stress
also occurred in the linear model [cf. Eq. (20)]. Figure 3
displays the dependence of the fastest growing wave number
on the prestress |og|/E as obtained from A by Eq. (25). One
clearly sees the asymmetry with respect to compression and
stretch for finite stresses.

To summarize, in the last two sections, we proposed a
general framework that includes the Grinfeld instability as well
as possible buckling. The possibility of buckling is due to the
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FIG. 2. Growth rates as a function of reduced wave number for
different stretch factors X, corresponding to different prestress. Panel
(a) displays the case of the slip BC at the bottom. Without stress
A =1, the system is stable. Any compression (A < 1) or stretch (A >
1) leads to an instability, but with differing rates. A = 1.1 and 0.9
correspond both to a prestress |op|/E =~ 0.075. Solid lines have been
obtained with the kinematic BC at the free surface, pointed lines just
with the surface diffusion. Panel (b) shows the case of the fixed BC
at the bottom. An instability only occurs beyond critical A values.
Parameters: y = 0.5hoE.

coupling of surface undulations and the displacement field via
a kinematic BC at the free surface. One gets corrections to the
Grinfeld instability, as contained in the full growth rates given
in Appendix A. However, in the small wave-number limit and
for thin films, the leading-order terms are identical with the

hokmax
0.5
0.4
0.3
0.2

0.1

lool

0.1 0.2 0.3 0.4 E

FIG. 3. The fastest growing wave number k., as given by the
maximum of the growth rate 5; xi, shown in Fig. 2(a) as a function of
rescaled prestress |oy|/E. Solid lines are obtained for y = 0.7hoE,
dashed lines for y = 0.5h(E.
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classical result. For finite stresses, the = symmetry with respect
to stresses predicted by the linear Grinfeld-theory is no longer
valid. In the next section, we use the developed framework to
study the simultaneous action of in-plane residual stress and
an electric field, both acting as destabilizing factors for elastic
films.

V1. ADDITION OF EXTERNAL ELECTRIC FIELD

Recently, the instability of polymeric liquids [15,16] and
elastomers [14] in an external electric field acting normal
to the film surface has been investigated experimentally. In
Ref. [15], it has been found that the instability is faster for
freshly spin-casted films than for aged films. This suggests
that stresses in the fresh films due to the nonequilibrium
production process may be involved in the destabilization.
In view of this, we generalize the developed approach to
the case where an external electric field is acting normal to
the surface, in addition to the stress in the x direction. The
electrostatic part will be closely related to previous studies of
elastic instabilities [ 11-14] due to forces normal to the surface
(Van der Waals or electric field). Related studies have been
undertaken in Refs. [35,36]. However, in these studies, the
thin film was regarded as conductive, the external stress was
imposed externally (implying that the base state with applied
field was fixed at 60 = oy rather than 0 = o + F as in our
case with F the additional contribution from the electric field,
see below), and the kinematic BC (i.e., the coupling of film
height and displacement field) at the free surface was not taken
into account.

Let us assume that the polymer film is brought into a parallel
plate capacitor (see the sketch in Fig. 4). A voltage difference
V is applied over the distance of the two plates d (the lower
plate is at z = —hg, the upper one at z = d — hg). The gap
may be filled with any dielectric. In view of the experiments
in Ref. [15], we take €; >~ 2.5 (polystyrene) as the dielectric
constant of the polymer film and €, = 1, i.e., the gap is filled
with air.

The electric field will introduce a stress at the polymer-air
interface. Let us introduce the Maxwell stress tensor

1 = qelEVES < L(EDYs,]. 6

FIG. 4. Sketch of the capacitor geometry. There is uniaxial stress
in the x direction (which could also be tensile). An external electric
field in the z direction (for the unperturbed film) is imposed by
externally applying a voltage V between the electrodes of distance d.
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where the index k = 1 denotes the polymer film and k = 2 the
gap. The BC at the free surface [cf. Eq. (8)] now reads as

-0V —6@ 47O _TO) fi=yd.h, (53)

where we wrote only the linear order expression for the surface
tension. We can put ¢ = 0 (or to a constant pressure value
that is not important), 0’ = o, and define an electrostatic
pressure (strictly speaking a normal stress) by

pe)y=n-(TY —T7P). 4. (54)

Note that this electrostatic stress depends on the film thickness
(see below). The BC finally reads as fi-o -fi= yafh —
Pe(h).

We now have to evaluate the additional contribution from
the electric field. We can again solve the problem by a
perturbative method by writing E = E{’ + E\”, where E{" is
the first-order correction due to undulations. To lowest order,
one has to satisfy that the normal dielectric displacement is
continuous elE(()f; = ezE((f;. Second, we have V = hoE(()E +
(d— hO)E(()?;, E(()’l = 0, and thus one gets Eéli =& V/[ho+
(d — ho)eq], E(()Zz = :—;E(()lg In the next order, we have to solve
Maxwell’s equations

@) () (@) (@)
GE —0,E" =0, .E,+3.E’ =0, (55

2

with the BC
E\)(z=—ho)=0, E{)(z=d —ho) =0,

fi-(E? —¢EM) =01t (E® —ED)=0. (0
These BC state that the field has to be perpendicular to the
conductive electrodes and that, at the film surface, one has
continuity in the normal displacement and the tangential field.
Assuming E i'i o cos(kx), the system is readily solved yield-
ing the field cbmponents given by Eqs. (A10) in Appendix A,
in agreement with Ref. [37].

By evaluating the normal-normal component of the
Maxwell stress for the electrostatic pressure as defined in
Eq. (54) above, we get to leading order

—pe(§)=F+YKk)¢, (57)
where

_ 1 eerere] —e)V?
PO = s tah @ =g
—2kpe(0)(e1 — €2)

~ (e tanh[(d — ho)k] + €, tanh(hok)}

Y (k) (59
Note that both F and Y are strictly positive, F,Y > 0. As
one has fi - (T!) — T?®) .t = 0, the tangential BC at the free
surface is unchanged by the electric field. In the base state,
the contribution of the electric field will be an isotropic
pressure [11,13], given by F = —pg(¢ = 0). Concerning the
displacements relative to the base state, the procedure is
completely analogous to the one in the previous sections. Only
the BC at the free surface and the chemical potential have to
be changed accordingly to include the electric stresses. In the
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chemical potential [Eq. (41)], we have to add the contribution
due to the electric stress by writing

S =06Eg — yk + pe(g)
=8Eq+yk*¢ —F —Y(k)C . (60)

As F is a constant, its contribution to surface diffusion
vanishes.

The general solution for the displacement field [Eq. (30)],
with the BC at the substrate already imposed, is still valid. One
only has to determine the coefficients fulfilling the new BC at
the free interface. These coefficients Bf", By and AT /, Bf’,
can be obtained from the respective solutions w1th0ut ﬁeld by
the simple substitution

Y(k
7/—><y—£>. ©1)

This rescaling of y permits us to obtain also the functions
ZEk), z E (k) that determine the stability of the flat base
state m the presence of a field, as well as the growth
rates s£ and s%. The obtained expressions are very general.
Although unsightly, they contain the physics of buckling, the
elastoelectric instability, the Grinfeld instability, and surface
diffusion in an applied electric field.

Let us first discuss the case without surface diffusion. One
expects to get an instability for Y > Y, as described by Sharma
etal.[11]. Note, however, that in the case of an applied electric
field, Y (k) is k dependent, while in Ref. [11], a Van der Waals
interaction with a contactor was studied, where Y is a constant.
To compare, we write Y (k) as a function of Y, where Y, =
lim 0 Y k),

Y(k) = kYolder + ho(ex — €1)] . 62)
€ tanh[k(d — hg)] + €, tanh(hok)

One gets the following conditions for instabilities:

—Z(k){e; tanh[k(d — hg)] + €, tanh[kh]}

0=

M2(12 — k2) sinh[kho] sinh[lhol[e1d + (€1 — €2)hg]’
(63)
2Z s(k){e tanh[k(d — ho)] + €, tanh[kho]}
0= (64)

Ak (12 — k) g = (k,D[erd + (€1 — €2)ho]

for the slip and the fixed BC, respectively.

Figure 5 represents stability diagrams for the elastoelectric
instability for both BC as given by Egs. (63) and (64). For high
enough Y, there exist solutions with finite k. However, as Y (k)
depends on k and one has a complicated dependence on both A
and y, we could not obtain simple formulas for the threshold.
For Y (k) = const (as for Van der Waals interactions), we
find the same result as given by Ref. [38] (slip BC) and
as given in Refs. [14,28] (fixed BC). We can observe the
following general trends due to finite stretches: considering
the small wave-number branch, to get an undulation with
the same small wave number Yy(A = 0.9) > Yy(A = 1.0) >
Yo(x = 1.1). Thus, compression is stabilizing and tension
destabilizing on small wave numbers. On the other hand,
for the large wave-number branch, one has Yy(A = 0.9) <
Yo(A = 1.0) < Yo(A = 1.1), thus, tension is stabilizing and
compression destabilizing.

PHYSICAL REVIEW E 83, 051603 (2011)

Fixed BCs

0 1 2 3 7 kho

FIG. 5. Stability diagram for the electric field-induced instability.
The curves display the electric contribution to stress in reduced units
Yoho/E as a function of reduced wave number ok for the slip and
the fixed BC at the bottom, as indicated. Solid lines correspond to the
stress-free case A = 1.0. Dashed lines are for finite stretch A = 1.1,
and dotted lines for finite compression A = 0.9. Parameters: y =
0.5hoE.

Let us now look at the case with surface diffusion. In the
limit ok < 1, one gets for the slip BC

3 +1)
Ek) ~ sy(k) + MK*Y, S
sy (k) > s(k) + T
Yohor3/3

Mk , 65

R T E N ISR E TN Ty (©3)

G GO3 — 1 4+ hoYor(1 + 314%)
kain(k) Mi>— 00 , (66)

0)\ G(3+)\42)_h0Y0)\,

excluding and including the effects of the kinematic BC,
respectively. In the latter case, we show only the leading-order
contribution in k2. For the fixed BC, one gets

5§ (k) > s (k) + MK*Y,

h2(3 — 1)
+Mk* <Y0°T

s?,kin(k) >~ srkin(k) + MK*Y,

+ Yz) , (67)

h3x
+Mk* <Y0h ()\3 - D+ YOZE + Yz) ,  (68)

where we introduced Y, = %%Y (k) k=0-

In the limit of small stresses A =1+§ with § =
00/(3G) < 1, to lowest order k? and up to third order in stress
one gets

Y,
sE (k) ~ Mk2|:Y0 + O'OEO

3E — 27, 9E + 107,
o s LN Pt e L) JROT)
3E2h, 27Ehy
kain(k)
E 6E —5Y,
~ MK*| Yy—— Yo——
[OE 7, TN E T
L9E3 — 12E2Y, — 12EY," + 16¥,
+0,

9Eho(E — Yo)?
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JOE* —T6E3Y, + 116E2¥,’ — 64E7," + 16%“]

—+ = = =
% 2TE2ho(E — Yo)
(70)
where we introduced Yy = hoYp, and
sEk) = 555, (k) ~ MK, . (71)

For the slip BC, Egs. (65) and (66) display a coupling
between prestress and the applied electric stress at the order
O(k?). Hence, the application of the field breaks the 4oy
symmetry already in lowest order in stress. In the small stress
limit, this coupling is linear like Yyo0y. As one usually has
hoYy <« E (otherwise, the elastoelectric instability takes over),
for small wavelengths one might be driven to the conclusion
that the coupling between the electric field and the stress like
Yooo implies that compression acts stabilizing while stretch
acts destabilizing. However, the destabilizing contribution
from the electric field Mk?Y, is usually dominating and, thus,
5F > 5 [compare, e.g., Figs. 2(a) and 6(a)]. Thus, the influence
of the coupling is observed rather beyond the maximum of the
growth rate [cf. Fig. 6(a)] as a gap between the curves with
compression and stretch. However, in case of oy < hoY < E,
the two destabilizing forces do not add and the growth rate
under compression is indeed slightly smaller than the growth
rate of an unstressed film. As in the case without field, one
observes finite stress effects yielding positive contributions
such as —i—ag with the kinetic BC and negative ones such
as —og’ with the nonkinetic version. Positive and negative
prestress thus have opposite effects and these effects depend
on the kinematic BC.

Figure 6(a) displays the general growth rates for the slip
BC.For A < 1 (0p < 0), the kinematic version yields a smaller
growth rate than the nonkinematic version. However, for A > 1
(09 > 0), the opposite is true. Figure 6(b) shows that, for the
fixed BC, finite stress only leads to higher-order corrections
since the leading-order destabilization is +k%Y,, while the
stress contributions are proportional to k*. Visible differences
between 3y yin(k) and 5 ¢ (k) appear only for rather high stretch
factors, namely, A = 1.5 or & < 0.7 for the chosen surface
tension. For Fig. 6, we used again parameters as suggested by
Ref. [15], namely, an electrode distance of d = 5hy, dielectric
constants €, = 2.5 and €; = 1 for the PS film, and the air gap,
respectively, and a voltage of V = 16 V. In reduced units, this
leads to y ~ 0.5h¢E and Yoho ~ 0.0013E.

Let us briefly discuss the relation of this work to the
experiments of Ref. [15]. There it has been found that freshly
produced films, which are supposedly stressed due to the
nonequilibrium preparation process of spin coating, have faster
growth rates than aged films, which had time to relax residual
stresses. This is in accordance with our findings that the two
destabilization mechanisms, the Grinfeld mechanism and the
electric force acting on the free surface of the film, in general
join forces. However, in Ref. [15], it has been found that the
wave number of the instability is smaller for fresh films than
for aged films. This is in contrast to our calculations as, in
the general case, the unstable wave numbers increase with
stress (see also Fig. 6). There are several possible reasons
for this discrepancy such as viscoelastic effects in the film,
inhomogeneities, crust formation due to spin coating [39],
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FIG. 6. Growth rates as a function of reduced wave number for
different stretch factors A, corresponding to different prestress, and
with finite voltage applied normal to the film. Panel (a) displays the
case of the slip BC at the bottom. Without stress A = 1, the system is
slightly unstable due to field-induced diffusion. Compression (A < 1)
or stretch (A > 1) lead to a more pronounced instability, but with
differing rates. Solid lines have been obtained with the kinematic
BC at the free surface, pointed only with surface diffusion. Panel (b)
shows the case of the fixed BC at the bottom, where finite stresses
only lead to small corrections. Parameters: y = 0.5h0E, €, = 2.5,
€) = l, d/l’lo = 5, and h()YO = OOOIE

etc. As a next step, we plan to generalize the approach
proposed here to the viscoelastic case, to come closer to these
experiments.

Another interesting point is that the compressive-tensile
symmetry holding for the stress in case of the Grinfeld
instability is broken in several ways: (i) by finite stresses,
(ii) due to the kinematic BC, i.e., the coupling of film height
and displacement field, and (iii) due to the presence of the
external electric field. While the effect is of order 003 in the
absence of an electric field, it is of order Yoy in the presence

(a) (©)

entering

x4z, t+dt)

x x+dx

leaving

solid at time t+dt

solid at time t

solid at time t=0

FIG. 7. Sketch for the motivation of the kinematic BC.
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TABLE I. Summary of the leading-order destabilization terms in
the growth rate of surface undulations s(k) for different BC at the
bottom and with or without electric field. Both stress and electric
field are assumed small, 0y, hoY < E.

System BC Destabilization s ~ Eq.
2
Semi-oo Mi* 7 k (16)
Thin film  Slip M2 E;;O (17)
Thin film  Fixed MK L 4”0 > (Jok)? (19)
Thinfilm  Slip  elfield MK (Y + m) (69)
Thinfilm  kin,slip el field ~ MK(Y + 2WO#*”U) (70)
Thin film Fixed el field ME*Y (71)

of field. Thus, especially in an external electric field, surface
undulations have noticeably different growth rates and this
may be used experimentally to determine whether stresses in
thin films are compressive or tensile.

VII. CONCLUSIONS AND PERSPECTIVE

We have studied the instability of a polymer film under
the simultaneous action of internal stress and an externally
applied electric field. For this purpose, we formulated a general
framework that has a very rich phenomenology: In the absence
of surface diffusion, the system is stable against buckling but
displays an electrically induced instability toward periodic
undulations. In case the polymer chains are able to diffuse close
to the surface due to gradients in the chemical potential, the
Grinfeld mechanism becomes active, as well as a destabilizing
contribution induced by the external electric field. The growth
rates of surface undulations are sensitive to the boundary
conditions at the bottom and have a rich phenomenology (see
Table I).

Our approach also highlights the importance of the coupling
between the height of the film’s surface and the displacement
field inside the film, which naturally arises from the kinematic
boundary condition at the film surface. This coupling has
been neglected in previous studies. Its consequences can
be seen as finite stress corrections to the Grinfeld instabil-
ity, and analogously for the electric instability. Moreover,
this coupling establishes the connection between the above
mentioned elastoelectric instabilities and the Grinfeld-type
diffusive instabilities, as becomes apparent from the general
growth rates of height fluctuations. These growth rates have
been calculated as a function of internal stress, electric field,
mobility of the chains, and surface tension. It is shown that in
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general both destabilizing factors, internal stress, and electric
field-induced stress, add.

The relevance for recent experiments on spin-cast thin poly-
mer films has been only briefly discussed. A generalization
to the viscoelastic case, and possibly also including more
structural details of spin-cast film, is needed to account for
these experiments. In turn, as the experiments can measure
separately the most unstable wavelength and the growth
rate, they could give direct access to the internal stress
and to the mobility of polymers in thin films, both of
which are of technological importance. In particular, as the
electric field makes the breakage of the compressive-tensile
symmetry of the Grinfeld instability induced by the coupling
to the displacement field noticeable, careful measurements of
the growth rates could be used to determine the nature of the
stresses, i.e., whether they are compressive or tensile.
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APPENDIX A: RESULTS FOR STRESS FUNCTIONS,
DISPLACEMENT COEFFICIENTS, AND ELECTRIC FIELD

For the Airy stress functions in the Grinfeld calculation (cf.
Sec. II), one gets

Xs(x,z) = & cos(kx){ a, cosh[k(z + ho)]
+b3(z + ho) sinh[k(z + ho)]} (A1)
in case of the slip BC, with
0 —2A hoky cosh(hok) + (y + ooho) sinh(hok)
T 2hok + sinh(2hok)
ky sinh(hok) + o cosh(hok)
2hok + sinh(2hok)

In the case of the fixed BC, one calculates

(A2)
by, = -2A

Xxr(x,2) = ecos(kx){ ascoshl[k(z + ho)l + bs(z + ho)
x cosh[k(z + ho)l + ak(z + ho)e ¥t} (A3)

with
24 (hooo + y) cosh(hok) + hoky sinh(hok)
a - ’
F= 2h2k? + cosh(2hok) + 1 A
b oA (00 + ky) cosh(hok) + hok(og — ky)e "k
= :

2h2k2 + cosh(2hok) + 1

The full growth rates calculated in Sec. V read as

2 _ 1.2\3 A —
Sub) = 1y 26 — k)’ coshlhok] coshlhol] — Ky Alb(k,D) + bk, 1)]’ 45)
202 + 12)g+(k,1)
o 2G (1% — k)3 cosh[hok] cosh[hol] — y k3 A[b(k,1) + bk, — )]
Ssain(k) = Mle[2yk3A(l2 — k2)sinh[hok] sinh[hol] + [G(3k? + 12)g*+(k,I) + kG (k? — 12)g—(k,])]’ (46)
3 S CYAGE + 1) = yalr(D + rik, = D1+ GU =k’ + kg (K, b
splk) = (A7)

20k + 6k212 + 14 —

(k2 +12) f (kD]
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Sy A2 + 12) — By alrk,D) + rk, — )] + G — kYL + k)3 g* (k1)

Sf,kin(k) = —MlG

where we have introduced
b(k,l) = (k* 4 2k*I* 4 4kI® + I*)sinh[(I — k)ho].  (A9)
In Sec. VI, the electric field has to be calculated to linear

order. From the Maxwell equations with suitable BC, as given
in the main text, one gets

- cosh[k h
Eil; = ehcos(kx)e E M7
cosh(hok)
- sinh[k h
EY) = —ehsin(kv)e TG Il
cosh(hok) A10)
- cosh[k(z + ho — d)]
E(Z) — ch k i cos |
Lo = oo E ik — o))
_ sinh[k ho — d
Egz))c = —chsin(kx)e E sinh[k(z + ho )]’
7 cosh[k(d — ho)]
with the abbreviation
% 14
E =
[e2ho + (d — ho)er]
k _
(e1 —e) AlD

" & tanh[k(d — ho)] + €, tanh(gk)’

APPENDIX B: ALTERNATIVE MOTIVATION FOR THE
KINEMATIC BC

Here, we want to give a more explicit motivation for the
kinematic BC with surface diffusion. Let us consider a small
part of an elastic material bounded by x and x + dx on the x
axis, and by A(x,0) = 0 and —h on the z axis [see Fig. 7(a)].
The extension in the y direction, L, is assumed not to change
in time to stay within the plane-strain situation. At time ¢, the
respective bounds are between x + u,(x,z,t) and x + dx +
uy(x +dx,z,t), as well as h[x + u,(x,0,1),0] and —h [see
Fig. 7(b)]. Let us use this state, excluding the upper free
surface, as a control state and calculate its evolution in time.

The volume inside the considered piece of material is

V(t) = hlx + ux(x,0,1),t]1L,
[x +dx + u(x +dx,z,t) — x —uy(x,z,1)],
V(t +dt) = h[x + u,(x,0,t +dt),t +dt]L,
[x +dx + uc(x +dx,z,t) — x — u,(x,2,1)]

at times ¢ and ¢ 4 dt, respectively. The volume change §V =
V(t + dt) — V(¢) thus reads as

8V = 0;lh + uc(x,0,6)0,hldt Lydx(1 + 0 uy)
~ o;hdt Lydx, (B1)

MI? — DAy k3g=(k, 1) + G[r(—=1,k) — r(l,k)] + 8GIk2(I*> + k)}

(A8)

at first order O(€). As h(x,t) can be any function, this is true
also if there are additional surface processes.

On the other hand, we can express the change in volume
by changes due to displacements and surface diffusion on
both boundaries. During an infinitesimal time d¢, the volume
change due displacements on the left boundary L(z,7) = x +
U (x,z,t)1s

hx.1)
~ / ux vzt +di) — wa(e,2,0ldz L, (B2)
—hp

at first order O(e) {which allowed us to replace the upper
integral bound h[L(z,t),f] by h(x,r)}. The volume entering
by diffusion along the free surface on L(z = 0,¢) is

Jsurf,x[x + ux(x,t),t]dt Ly = Jsurf,x(-xvt)dt Ly~ (B3)

During the same time dt, at the right boundary R(z,t) = x +
dx +u,(x +dx,z,t), we get

h(x+dx,t)
~ / [uy(x +dx,z,t +dt) —u,(x +dx,z,t)ldz Ly,
—ho

(B4)

where again we simplified the integral bound A[(R(z,t),t]
to h(x +dx,t). Surface diffusion at the right boundary
contributes
Jourt x[X +dx +u (x +dx,t),tldt L,
>~ Jourt x (X +dx,t)dt L, . (BS)

From §V =(change at R) — (change at L), we obtain

8V ~ -0, Jgutxdtdx L,

h(x.t)
—dx Lydt o, (/ 8xux(x,z,t)dz> . (B6)

ho

By using the incompressibility condition, integrated over the
film thickness, one gets

h(x,t)
/ Oruy(x,z,)dz ~ —uz(x,O,t),
—ho

where we used that u, = 0 holds at the bottom. With the
surface flux given by Jguf(x,t) = —M9,(6p), equality of
Egs. (B1) and (B6) implies

ih = duzp=o + M3;(Sp=0), (B7)
which is Eq. (40) at first order O(e).
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