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Droplet evolution in expanding flow of warm dense matter
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We propose a simple, self-consistent kinetic model for the evolution of a mixture of droplets and vapor
expanding adiabatically in vacuum after rapid, almost isochoric heating. We study the evolution of the two-phase
fluid at intermediate times between the molecular and the hydrodynamic scales, focusing on out-of-equilibrium
and surface effects. We use the van der Waals equation of state as a test bed to implement our model and study
the phenomenology of the upcoming second neutralized drift compression experiment (NDCX-II) at Lawrence
Berkeley National Laboratory (LBNL) that uses ion beams for target heating. We find an approximate expression
for the temperature difference between the droplets and the expanding gas and we check it with numerical
calculations. The formula provides a useful criterion to distinguish the thermalized and nonthermalized regimes
of expansion. In the thermalized case, the liquid fraction grows in a proportion that we estimate analytically,
whereas, in case of too rapid expansion, a strict limit for the evaporation of droplets is derived. The range of
experimental situations is discussed.
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I. INTRODUCTION

Warm dense matter (WDM) conditions, corresponding
roughly to densities 0.01 < ρ/ρsolid < 10 and temperatures
0.1 eV < T < 10 eV, can be defined as the region of thermo-
dynamic space corresponding to the double crossover from
degenerate to nondegenerate and from weakly to strongly
coupled matter [1], so that the “easy” limiting descriptions
in terms of cool plasma and hot condensed matter meet and
have to be somehow connected to each other. This problem is
drawing growing attention because of the serious theoretical
challenges involved and because of the occurrence of WDM
in the contexts of inertial fusion energy (IFE), astrophysics
(planet cores), and laser ablation for materials processing,
nanoparticles formation, and film deposition [2–4].

Generally, WDM experiments are inertially confined and
explosive. Rapid heating of the material is required, so that
the energy deposition (by lasers, ions, neutrons, electrical dis-
charges, etc.) is faster than its release through hydrodynamic
expansion. Pressures in the kbar to Mbar range can be reached
before giving rise to supersonic expansion with typical outflow
velocities of several km/s.

The two-phase region of the phase diagram belongs only
partly to the WDM regime, with its high temperature part
near the critical point. However, any WDM experiment
will almost inevitably lead to two-phase conditions during
the expansion and cooling process. This happens either
from below the critical point (ion heating experiments at
Gesellschaft für Schwerionenforschung in Darmstadt [5,6], or
second neutralized drift compression experiment (NDCX-II)
at Lawrence Berkeley National Laboratory (LBNL) [7], low
fluence laser ablation, Z machines) or from above it (IFE, high
fluence laser ablation, upcoming ion heating machines). In the
first case an overstretched liquid fragments and evaporates
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into a mixture of droplets and gas, whereas in the second
case a hot supersaturated gas nucleates small clusters while
expanding. In both cases the flow becomes a plume of
gas and condensed clusters (most often liquid, so the term
“droplet” is appropriate). The monophasic liquid or gas has
undergone phase separation with the creation of surfaces
giving a nontrivial geometry to the fluid, which may a priori
affect its dynamical properties.

Recently, there has been significant progress in the obser-
vation of those two-phase flows, from the early ablation and
plume expansion stages in the the ps and ns time scales [8–11]
to the late μs time scale evolution including “postmortem”
analysis of the clusters [12,13].

Basic questions arise when considering a two-phase flow.
First, what is the droplets’ size and distribution, and how do
they evolve during the expansion? Second, are the droplets and
the gas in thermal equilibrium? The answer can determine the
conditions of validity for hydrodynamic approaches based on
the Maxwell construction or any two-phase equation of state
(EoS) that assumes local equilibrium.

So far, two main approaches have been used. On one
hand, molecular dynamics (MD) codes [14–20] compute
the dynamics of each particle separately and have given
powerful insight into the processes of fragmentation, phase
explosion, and the different mechanisms for ablation, but they
are inherently limited to only treat the early times (<1 ns, [21]),
and with a small number of particles (∼107). On the other
hand, hydrodynamic codes [13,22–25] can model experiments
completely, but they deal with mesoscopic fluid cells and
often rely on crude approximations concerning the molecular
and kinetic processes involved. Complex hydrodynamic codes
including a treatment of the kinetics of phase change processes
and surface effects in each cell are under development [13,26],
but providing a complete and reliable description of a whole
WDM experiment is still a challenge.

Better understanding of two-phase flows should be helpful
for the preparation of experiments, including the diagnostics,
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and for the interpretation of the data. In IFE especially, the
problem of debris dynamics is a crucial issue due to their
impact on the optics and other components of the target
chambers [26,27].

In this paper we propose an alternative approach to study
two-phase flows in the cool or late time WDM situations. Our
model was initially conceived to predict the phenomenology
of the upcoming target heating experiments with the NDCX-II
machine at LBNL where an ion beam will almost isochorically
heat a thin metallic foil to temperatures of about 1 eV. However,
the model should apply to any two-phase flow.

The core of our model is a self-consistent set of kinetic rate
equations for the particle and energy fluxes between a droplet
and the surrounding gas in an expanding Lagrangian cell. This
set of equations can be applied to any two-phase EoS. The
computing cell is considered as part of a larger hydrodynamic
code, but in this paper we only consider one cell containing
one droplet. We also neglect several features that could be
added in the near future.

To implement the kinetic equations and explore the patterns
of two-phase expansion, we use the van der Waals fluid model
that makes it possible to build a complete set of thermodynamic
functions. We thus demonstrate the ability of the kinetic model
to simulate nonequilibrium two-phase flows in the wide range
between the molecular and hydrodynamic scales. In particular,
we use it to distinguish the different regimes of two-phase
expansion: on one side, quasi- or fully thermalized; on the other
side, nonthemalized. We show that this distinction depends on
the initial target dimensions and the initial temperature. We
then study those regimes analytically and numerically.

II. BACKGROUND

A. Expanding two-phase flows: Supercritical
and subcritical cases

The model that we propose lies at a mesoscopic scale
between the molecular and hydrodynamic scales, so we
need some preliminary assumptions. Our computing cell is
considered to be an elementary piece of a larger hydrodynamic
code describing an expanding flow. The linear strain rate
η characterizes the expansion of the cell L = L0(1 + ηt),
where L0 is the initial cell size. We define the hydrodynamic
time thydro = η−1. In the following, we assume rapid heating
(theating < thydro) so that energy deposition in the material is
almost isochoric. For simplicity, we assume instantaneous
energy deposition.

To get insight into the global flow, it is interesting to
review some analytical and numerical results. The self-similar
rarefaction wave (SSRW) is the solution [28] describing the
one-dimensional (1D) expansion of a perfect gas (semi-infinite
at z < 0) of adiabatic coefficient γ after instantaneous uniform
heating at the initial temperature T0. Denoting cs

0 the sound
speed in the fluid at T0, the SSRW solution describes an
outward expanding front traveling at the outflow velocity
v0 = 2cs

0/(γ − 1), which is 3cs
0 for a perfect monoatomic gas,

while the inward rarefaction wave propagates at cs
0 [24]. Note

that the SSRW can be computed seminumerically for any
EoS of a nonideal gas [29] and has been validated by MD
simulations [18].

FIG. 1. Hydrodynamic calculation with DPC code of NDCX-II
reference case, from [24]. A 3.5-μm-thick Al foil is heated within
1 ns with an ion beam and subsequently cools down during adiabatic
expansion.

As an example of a numerical simulation of expanding
flows, Fig. 1 shows a hydrodynamic calculation with the code
DPC using an EoS based on Maxwell construction [23]. Here
the liquid and gas are assumed in equilibrium, which is not
kinetically justified (see Sec. IV B), and the outflow velocity
is about 8 km/s after 10 ns.

In the following we assume a flow with linear speed profile
and outflow velocity v0 = 3cs

0, but it is worth remarking that
this is quite simplistic. In particular, several numerical works
[22,24,25,29] have reported the occurrence of “plateaus,” that
is, zones of nearly constant density, related to the fluid zones
entering into the two-phase regime.

Let us now present our simple classification of two-phase
expanding flows, which is based on equilibrium thermodynam-
ics and is similar to the one in [30]. Of course, such a procedure
cannot account for the complexity of nonequilibrium situations
encountered in experiments or simulations [9,11,17–19,30].
The two-phase regime exists only for temperatures T < Tc

and for an average density between the value at the liquid
and gas binodals, as seen in Fig. 2(a). Thus, a piece of
fluid expanding near thermodynamic equilibrium can enter
the two-phase regime, which amounts to partially undergoing
the liquid-gas first order phase transition, in only two ways: by
crossing the liquid binodal, which we call the subcritical case,
or by crossing the gas binodal, which we call the supercritical
case.

(a)
(b)
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FIG. 2. (Color online) (a) Phase diagram of the van der Waals
EoS for Al (see Sec. III) showing the liquid and gas binodals (solid
lines), and a schematic representation of the subcritical (arrow 1) and
supercritical (arrow 2) cases of two-phase expansion. (b) 2D MD
simulation of laser ablation with inhomogeneous initial temperature,
from [17], showing material in various situations of two-phase
expansion, which we also locate qualitatively on the schematic
classification of Fig. 2(a) (roman numbers).
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In the subcritical case, which corresponds to the calculation
of Fig. 1 when it is mapped onto the corresponding phase
diagram, an expanding monophasic liquid reaches the liquid
binodal and becomes overstretched. The equilibrium configu-
ration for a piece of fluid in the two-phase region is a mixture
of liquid droplets (of yet undetermined size) and gas whose
densities are at the binodals for the same temperature. We call
fragmentation the transformation from the monophasic liquid
to the nonconnected cloud of droplets. In the supercritical
case, achieved if the material is initially heated to higher
temperatures, a monophasic gas becomes supersaturated after
crossing the gas binodal, and we call nucleation the process
by which a certain distribution of liquid droplets is created.

Figure 2 represents the two cases and the various exper-
imental situations that they involve. In Fig. 2(a), we show
the van der Waals phase diagram for Al that we use in the
following and a schematical representation of the sub- and
supercritical cases of two-phase expansion (arrows 1 and 2).
In Fig. 2(b), reproduced from [17], one sees the particle
distribution in a 2D MD simulation of laser ablation. Due
to the inhomogeneous energy deposition, different types of
thermodynamic evolutions are seen at the same time, and
we use this picture to illustrate the various situations of our
classification, although not following exactly the terminology
of the original work [31]. In zone I, the dense material
is still continuous. In zone II, the expanding liquid has
undergone cavitation of gas bubbles. In the upper zone II and in
zone III, the liquid is fragmented and the material has entered
the two-phase regime in the subcritical case. In zone IV, the
fully atomized, expanding material is likely to reach the gas
binodal in a later stage, thus corresponding to the supercritical
case. In the upper zone III, small clusters are present,
which could originate from fragmentation at high temperature
(subcritical case) or recent nucleation (supercritical case). This
is why in Fig. 2(a), where the different zones are placed
qualitatively, two positions are proposed for zone III.

B. Initial droplet size

Both cases lead to droplets formation. In order to initialize
the kinetic model that we present further, it is necessary to
know the initial droplet size at the onset of the two-phase
regime.

In the subcritical case, the overstretched liquid starts
cavitating [see Fig. 2(b), zone II], which we call the bubbles
regime and then the bubbles percolate until the liquid phase is
not continuous anymore [see Fig. 2(b), zone III], which we call
the droplets regime. We assume that the droplets regime starts
when the gas and liquid volumes are equal: Vg = Vl , which is
justified by an argument of surface energy minimization.

The mean droplet’s size in a fragmentation scenario can
be obtained by considering a balance between the disruptive
inertial forces and the restoring surface tension [14]. The model
proposed initially by Grady [32] has been abundantly validated
by MD calculations [14,17,20] in 2D and 3D and is in very
good agreement with measurements on He jets [33]. We note
that the scaling of the mean radius R of the droplet can be
obtained by just setting to unity the Weber number We ≡
ρRv2/σ [34], where σ is the surface tension ρ the liquid mass
density, and v = ηR the typical velocity difference across a

piece of fluid of size R. We is the ratio of the surface energy
to the inertial energy. In any dimension this criterion yields

We ∼ 1 ⇒ R ∼
(

σ

ρη2

) 1
3

. (1)

Several values of order 1 have been proposed for the prefactor
in this scaling law, either from analytical estimates (prefactor
151/3 = 2.47 in [25]), or from fits to MD simulation results.
In [15], it was shown that both 3D MD results with a
homogeneous strain rate η and data from helium free jets
experiments from [33] could be fitted to Eq. (1) with the same
prefactor, thus validating this law over almost 8 orders of
magnitude in cluster mass (the experimental fragments cover
larger sizes than the numerical ones).

Concerning the size distribution of droplets resulting from
fragmentation, MD simulations have shown clearly that it is
essentially exponential [14–16,20], which is consistent with
simple models of entropy maximization [14].

By contrast, it is not so clear how to describe the initial
situation in the supercritical case. This task requires one to
choose a model for nucleation or to input results from MD
calculations. Nucleation of clusters from a supersaturated
vapor is the situation of nucleation whose kinetics is the
easiest to model theoretically [35], but still choices have to be
made [13] that are beyond the scope of this paper. Any model
for nucleation will depend crucially on surface tension, so we
make the remark here that estimating the surface tension for
small droplets is delicate because of its enhancement at small
sizes [36,37].

III. MODEL

A. Van der Waals fluid model

The kinetic model that we present in Sec. III C is
applicable to any EoS. In this paper, for a qualitative investi-
gation of the two-phase expansion regimes, including kinetic
and surface effects, and with emphasis on the late time and
low temperature limits, we use a van der Waals (vdW) fluid
model, which for convenience we describe first. It is important
to note, however, that the vdW model is not intended to provide
a highly accurate description of a fluid, especially in WDM or
supercritical conditions where ionization and radiation effects
can be strong.

With only two parameters, the vdW EoS is the simplest
EoS describing the coexistence of a liquid and a gas phase
and has already been used for theoretical studies of dynamic
two-phase processes [38,39]. All the thermodynamic functions
can be derived from the expression for the mean-field potential
energy per particle in such fluid: U = +∞ if n > 1/b and
U = −an if n < 1/b, where n is the particle density, b stands
for the incompressible volume of the particles, and a represents
the mean-field attractive energy between them.

The bulk vdW energy of N particles at temperature T

is E = N (cvT − an). It can be shown that the specific heat
cv is independent of n and can only depend on T [40], so
that one has to choose necessarily cv = 3

2kB , where kB is
the Boltzmann constant, if one wants the EoS to match the
perfect monoatomic gas in the dilute limit. Writing the partition
function, one obtains the other thermodynamic functions. In
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particular, the pressure is P = kBT /(v − b) − a/v2, where
v = 1/n is the volume per particle. This expression implies
that the isobars (isotherms) are a cubic relationship between T

and v (P and v). Hence, below a certain critical temperature
Tc, an unstable zone of negative compressibility appears
in the phase diagram, limited by the two spinodals. We
obtain the equilibrium density of the two stable phases that
can coexist at certain (P,T ) by numerically performing the
Maxwell construction, which consists of solving Pl = Pg

(i) and μl = μg (ii) simultaneously, where μ denotes the
chemical potential and the subscripts l and g stand for liquid

and gas, respectively, throughout this paper. (ii) is equivalent
to

∫ g

l
vdP = 0 and thus

∫ g

l
P (v)dv = Pl,g(vg − vl) [40].

Introducing the reduced temperature θ = kBT /l0, where
l0 = a/b is the latent heat at T = 0, and two dimensionless
parameters that are small in the low temperature limit: vg =
b/δ and vl = b(1 + γ ), equations (i) and (ii) become

θ

γ
− 1

(1 + γ )2
= θ

1
δ

− 1
− δ2 and (2)

θ ln

(
1
δ

− 1

γ

)
+ δ − 1

1 + γ
=

(
θ

1
δ

− 1
− δ2

)(
1

δ
− (1 + γ )

)
.

(3)

It is worth remarking that Tc = 8a/27b, so θc = 8/27 �
0.3, and therefore one expects that calculations in the “low
temperature limit” (θ � 1) should be a good approximation
as soon as one is not considering the vicinity of the critical
point.

Figure 3 gathers the thermodynamic functions of our
vdW model for aluminum. Figure 3(a) shows the numerical
result of the dimensionless Maxwell construction where the
vdW parameters a = 9.1 × 10−35 erg cm3 and b = 1.85 ×
10−23 cm3, giving l0 = 3.07 eV, have been adjusted to fit

σ

(c) (d)

(b)
nl

ng

el

eg

(a)

FIG. 3. (Color online) Van der Waals thermodynamic func-
tions for Al, in vdW units. The filled circles represent exper-
imental data and the empty circle the critical point obtained
from the fits. (a) Liquid and gas densities (solid lines) with
first order (dashed lines) and second order (dotted lines) low T

approximations. (b) Latent heat (solid lines) decomposed in the
first (dashed lines) and second (dotted lines) term of Eq. (4).
(c) Bulk energies per particle, with first order low T approximations
Eq. (7) (dashed). (d) Surface tension [Eq. (8)].

this material. For that, we impose that the vdW liquid
density matches the aluminum liquid density nl(Tm) = 5.26 ×
1022 cm−3 at the melting point Tm = 933.5 K (=0.026l0) [41]
and that the vdW latent heat [shown in Fig. 3(b)]

l = a(nl − ng) + Pl,g

(
1

nl

− 1

ng

)
(4)

coincides with the experimental value l(Tb) = 4.88 ×
10−12 erg/atom for aluminum at the boiling temperature
Tb = 2792 K (=0.078l0) [41]. Note that the critical parameters
obtained in this way are consistent with the best estimates to
date, although not very precisely [42].

In Fig. 3(a) are also displayed the simple, useful approxi-
mations for nl and ng at lowest orders in θ that one obtains
directly from Eqs. (2) and (3):

nl � 1

b
(1 − θ − θ2), (5)

ng � 1

bθ
exp

(
− 1

θ (1 + θ )

)
. (6)

Note that Eq. (6) is, at lowest order in θ , equivalent to the
Clausius-Clapeyron formula applied to a perfect gas. We also
show in Fig 3(c) the approximations at first order in θ for the
liquid and gas bulk energies per particle:

eg � 3

2
kBT , el � 5

2
kBT − a

b
. (7)

For the surface tension, van der Waals himself had already
proposed to model it using density gradients [39], but we have
chosen to use a simple formula that is universally verified in
simple fluids [43]:

σ ∝ (1 − T/Tc)1+r with r = 0.27. (8)

To model aluminum, we fit this formula to the experimental
value σ (Tm) = 1050 erg/cm2 [44], as shown in Fig. 3(d). Note
that in the following, the total liquid energy in the cell is
El = Nlel + σSl , where Sl is the surface area of the droplet.

B. Kinetic equations. Validity condition

Our goal is to compute the evolution of droplets in cells.
In this paper we limit ourselves to the case of one droplet in
one Lagrangian cell undergoing adiabatic expansion. It is a
closed system out of equlibrium, and its complete description
requires the determination of the four variables Nl,nl,Tl,Tg .
To compute their evolution, we need four rate equations: a
liquid-gas particle exchange rate, an energy exchange rate, a
total energy loss rate (work to the outside), and an internal
equilibrium condition to determine the liquid density. As
shown in Fig. 4(a), the particle fluxes between liquid and gas
are divided between evaporating, condensing, and condensing
but not-sticking particles.

The volume expansion V (t) shall later be prescribed by
a global hydrodynamic code. For our study, we assume
cylindrical symmetry and we use a simple model behavior
[15,16],

V (t) = V0(1 + ηzt)(1 + ηr t)
2, (9)

where V0 = L3
0 is the inital cell volume and ηz = (dvz/dz)t=0

and ηr = (dvr/dr)t=0 are the axial and radial strain rates,
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FIG. 4. (Color online) The “droplet-in-cell” kinetic model.
(a) Sketch of the kinetic fluxes. (b) Sticking coefficient β calculated
with formula from [49] and our aluminum vdW parameters.

respectively defined as the initial velocity gradients in the beam
direction and the target plane.

The evaporation and condensation fluxes are computed
using the standard Hertz-Knudsen formulas [45–47],

	cond = ng

√
kBTg

2πm
, 	vap = n∗

g(Tl,R)

√
kBTl

2πm
, (10)

where m is the particle mass and n∗
g(Tl,R) is the equilibrium

gas density for a droplet at temperature Tl and of radius R.
To estimate n∗

g , we use the Kelvin equation, which describes
the increase of the equilibrium vapor pressure surrounding a
droplet due to surface tension:

n∗
g(R) = n∗

g(∞) exp

(
2σ

kBT nlR

)
. (11)

The Kelvin equation is approximate because its derivation
assumes a perfect gas. Also, we use a constant value for σ ,
thus neglecting its increase at small radii [36,37]. Still, this
approach is probably not too bad after all [48] and satisfactory
enough for our qualitative purpose.

Considering mass conservation, and combining the two
fluxes of Eq. (10), the particle exchange rate equations are

d(Nl + Ng)

dt
= 0,

dNl

dt
= β(−	vap + 	cond)Sl, (12)

where Sl is the surface area of the droplet and 0 < β < 1
the sticking coefficient that is usually assumed of order 0.5.
A recent study [49] has proposed a simple expression for β

that is in good agreement with MD calculations for several
simple fluids. This expression depends only on the ratio of the
molecular volumes in the liquid and vapor phase: β = [1 −
(vl/vg)1/3] exp(− 1

2
1

(vl/vg )1/3−1 ) that we plot for our vdW model
for Al in Fig. 4(b). Note however that, for the calculations
presented in this paper, we use a constant value β = 0.5.

Concerning the energy fluxes, the first equation comes from
the assumption of adiabatic expansion of the cell:

d(El + Eg)

dt
= −Pg

dV

dt
. (13)

In this global energy loss rate we have neglected three terms
that could be added in the near future. The first one is heat
conduction between cells. This term may play a role, but it
cannot be very important as we are considering a supersonic
flow (see Sec. I). The second neglected term is radiation.
Radiation becomes indeed the dominant cooling mechanism
at long times, as we see later, but it is negligible for the initial
dynamics, so the approximation is reasonable, because our
purpose in this paper is to study the expansion in a time

range where the two phases are interacting and the system
is not just a collection of isolated clusters flying in vacuum.
The third neglected term is thermionic emission. One expects
electrons to be thermally emitted from the droplet, taking away
some energy. Non-neutral effects are totally absent from our
model, but we expect that the associated cooling rates will
be small compared to the adiabatic and evaporative cooling
rates [50].

The energy exchange rate between the liquid and the gas
has contributions from the three fluxes of Fig. 4(a). The
contribution of the colliding but nonsticking particles can
be described with a flux proportional to the temperature
difference Tg − Tl , with a relaxation coefficient 0 < α < 1
(see, e.g., [51] for more discussion). For the condensing gas
particles, we make the simplest assumption, that each of them
brings into the liquid the average gas energy per particle eg .
For the evaporating particles, we assume that the energy they
individually take away from the liquid depends only on the
liquid state. We note it e∗

g and define it as the energy of a virtual
gas particle that would be in equilibrium with the droplet of
radius R at temperature Tl . For the vdW fluid, those energies
are eg = cvTg − ang and e∗

g = cvTl − an∗
g(Tl,R), respectively.

Note that our definition of e∗
g is totally analogous to the

Hertz-Knudsen derivation of the mass evaporation rate of
Eq. (12). We finally get the exchange rate

dEl

dt
= [β(−e∗

g	vap + eg	cond)

+ (1 − β)αcv(Tg − Tl)	cond]Sl. (14)

Our set of kinetic equations is fully consistent in the sense
that at equilibrium both mass and energy fluxes between the
droplet and the gas are in balance. In particular, the average
energy that a liquid particle takes from the rest of the liquid
to evaporate is e∗

g − el . This term, which for the vdW fluid is
−a(n∗

g − nl), corresponds exactly to the latent heat per particle
for an arbitrary fluid l = (eg − el) − Pl,g(vg − vl), without the
second (work) term, which is expected since the latent heat is
an enthalpy and we are here dealing with energy exchanges at
constant volume.

To our knowledge, our set of rate equations is an original
model for the exchanges between a droplet and its vapor. Other
sets of kinetic equations can be found for analogous systems
(see, e.g., [52,53]), but they do not correspond to the purely
kinetic regime that we are considering, because they deal
with larger droplets (R > 1 μm) and longer time scales, more
relevant to the fields of combustion or atmospheric sciences,
so they need to combine the kinetic approach with the more
classic hydrodynamic theories of droplet evaporation [54].

Our model for WDM situations is simpler, because we do
not distinguish in the gas a Knudsen layer vs a hydrodynamic
layer. We assume that our computing cells are small enough
that the gas density inside them is constant. The variations
over the whole flow shall instead be treated by the global
hydrodynamic code that determines the expansion of each
kinetic cell. The kinetic and phase change processes in
our description are driven by the hydrodynamic expansion;
therefore, the validity condition of our model is that the initial
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cell size should be much smaller than the initial dimensions of
the expanding material:

L0 � δr,δz, (15)

where δz is the initial foil thickness and δr the heating beam
diameter. If Eq. (15) is verified, the global hydrodynamic
treatment is correct, with gradients properly resolved. Equa-
tion (15) is verified in the standard situations we consider, but
can break down if the initial droplet or cell size is not small
enough compared to the sample size.

C. Equilibrium condition between droplet and gas

In order to get a closed system of equations for particle
and energy fluxes, we still need one assumption. Our model is
a priori out of thermal equilibrium (Tl 
= Tg), so the density of
the liquid is not determined yet. It seems reasonable to assume
pressure equilibrium between the droplet and the gas [13],
because we expect that a few collisions are sufficient for the
droplet to “experience” the gas pressure, and adjusting the
liquid pressure to it requires only a small density change, due
to the very low compressibility of the liquid.

Due to the droplet curvature, the pressure equilibrium
condition is the Laplace equation:

Pl − Pg = 2σ

R
. (16)

An exact numerical implementation of Eq. (16) is difficult
because it requires to solve a nonlinear system at each time
step in order to determine the liquid density given a certain set
of values {V, Nl , Ng , El , Eg}.

To simplify the condition, one can approximate the liquid
density by the equilibrium value n∗

l (∞) for a flat interface
(R → ∞), but this is wrong for two reasons: first, because
due to the fast expansion, the gas pressure is lower than
the saturation value corresponding to the liquid temperature,
and second, because of the Laplace compression term of
Eq. (16). Running our model, we have checked that this
raw approximation leads to important inaccuracies in the
calculation of the pressure, especially at low temperatures
where the Laplace term becomes dominant. Still, these errors
do not cause important discrepancies in the global description
of the droplet evolution, which we attribute again to the low
compressibility of the liquid.

For more accuracy, we choose to compute the liquid density
in perturbation from the flat equilibrium value:

nl = n∗
l (∞)

(
1 + �P

Kl(Tl)

)
, (17)

where Kl(Tl) = nl(∂P/∂nl)Tl
is the isothermal bulk modulus

of the liquid that we compute directly from the vdW EoS,
and �P = 2σ/R − {Pl[n∗

l (∞),Tl] − Pg} is the pressure cor-
rection that we compute using Eq. (16). As we show in the next
section, this perturbative approach of the pressure equilibrium
condition is very satisfactory.

With Eqs. (9)–(17), we have a complete kinetic model
for the evolution of a droplet and its vapor in a cell. In the
following, we combine it with the vdW EoS to study the
different regimes of two-phase expansion.

IV. RESULTS

A. NDCX-II reference case (subcritical case)

The reference case envisioned as an upcoming experiment
on the NDCX-II machine at LBNL consists of heating an
aluminum foil of thickness δz = 3.5 μm with a short pulse
of ions of duration theating � 1 ns, which makes the picture of
rapid heating roughly correct [7]. The beam profile is taken as
a uniform disk of diameter δr = 1 mm. Initial temperatures up
to 1 eV are predicted for the expected beam fluences [24].

In Fig. 5, we present the numerical output of the model for
a cell containing a droplet and gas initially at equilibrium at
T0 = 8000 K with Vl = Vg = V/2, because this corresponds
to the onset of the “droplets regime” (see Sec. II B). As we
mentioned previously, we make the crude assumption of a
flow with linear speed profile and outward expanding speed
v0 = 3cs

0 � 5.0 km/s on both sides z > 0 and z < 0, where
the initial sound speed cs

0 is estimated roughly as the thermal
velocity vth(T0) = √

kBT0/m. Then the strain rates in Eq. (9)
are simply ηz = 6cs

0/δz and ηr = 6cs
0/δr . We display a full

3D case (solid lines) and a 1D case (dashed) where ηr = 0.
Here the hydrodynamic time is thydro = 1/ηz � 0.37 ns. The
time t3D = 1/ηr � 107 ns can be considered as the time of the
crossover to the 3D regime of expansion. The calculation is
carried out with α = β = 0.5 and we use the variable u = ln(t)
to span a wide temporal range. The result is displayed up to t =
100 μs because at this time the front has traveled over about
50 cm, which is comparable with the size of an experiment.
The initial droplet radius R0 = 25.4 nm is estimated using
Eq. (1) and is consistent with observations for similar initial
temperatures [13]. This size is the mean size of the liquid
fragments so we are considering the evolution of a typical
droplet.

FIG. 5. (Color online) Droplet and gas evolution in the NDCX-II
reference case. Initially, the droplet of radius R0 = 25.4 nm and the
gas have equal volumes and are in equilibrium at T0 = 8000 K. All
liquid (gas) quantities are labeled with l (g). Plotted are the time
evolution of (a) the particle numbers and (b) the temperatures, for a
1D (dashed lines) or a full 3D expansion (solid lines). (c) Pressure
evolution in the 3D case. The pressure difference computed (dashed
lines) and expected from Eq. (16) (dotted lines) are indistinguishable.
(d) Trajectories in the phase diagram for the 1D (dashed lines) and
3D (solid lines) cases.
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At early times (t < 10 ns), a fraction of the liquid is
evaporated [Fig. 5(a)]. However, this process saturates at a time
tmin, after which the liquid fraction starts growing slowly. Then,
in the purely 1D case (dashed lines), the droplet continues to
grow steadily. In the more realistic situation, however (solid
lines), the droplet evaporates again when the 3D regime sets
in, at times t > t3D .

In Fig. 5(b), one sees that, almost instantaneously after
heating (t < 100 ps), a temperature difference �T = Tl − Tg

is established between the gas and the droplet and remains
roughly constant throughout the expansion in the 1D case.
On the contrary, in the 3D case, Tg drops quickly to almost
0 around t3D , whereas Tl decreases slowly to a value around
1600 K.

In the phase diagram trajectories [Fig. 5(d)], we see that
in both cases the liquid density remains very close to the
equilibrium value. By contrast, the gas density is clearly below
the binodal in the 1D case, and in the 3D case it dives deep
into nonequilibrium (supersaturated) conditions.

In Fig. 5(c), we check the pressure equilibrium condition
in the 3D expansion case. One cannot distinguish the pressure
difference in the computed evolution (dashed line) that uses
Eq. (17) from the theoretical value of Eq. (16) (dotted line),
as the agreement is better than 2% over the whole simulation
range. The increase of Pl at long times is due to the Laplace
term [Eq. (16)].

Clearly, from the NDCX-II example, two different regimes
can be identified. The first one, where the temperature
difference is small, and remains constant, is a quasithermalized
regime. In this regime the droplet grows. The second one,
where the gas becomes much colder than the drop, is a
nonthermalized regime. In this regime the droplet evaporates
again, as if it were in vacuum. We now discuss the various
regimes.

B. Thermalization condition, quasithermalized regime

Let us find a thermalization condition. In our equations,
the energy is extracted from the system only by the adiabatic
expansion of the gas [Eq. (13)] and the gas quenching is then
transmitted to the liquid via the liquid-gas energy exchange
term [Eq. (14)]. Therefore, we should compare those two
energy fluxes to find the thermalization condition.

Let us assume a small temperature difference �T/T � 1,
so that we are in the quasithermalized regime of expansion,
as in the 1D case of Fig. 5. From Fig. 5(a), one sees
that Nl and Ng are almost stationary if Tl � Tg . Hence, let
us make the approximation 	vap = 	cond (more precisely,
|	vap − 	cond| � 	cond).

The ratio between the two energy fluxes can be estimated as
follows. Let us consider a cell containing fixed numbers Nl and
Ng of liquid and vapor atoms, respectively, and let x = Nl/Ntot

be the liquid fraction in the cell, where Ntot = Nl + Ng . In the
low T limit, a small energy change can be written dEg =
Ng

3
2kBdTg for the gas and dEl = Ng

5
2kBdTl for the liquid,

according to Eq. (7). Noting dEtot = dEl + dEg the total
energy lost by the cell, we define ξ = dEl/dEtot. Requiring
stationary �T (i.e., dTl = dTg), we obtain ξ = 5x/(2x + 3).

In the low T limit, the adiabatic cooling of the gas
implies dEtot/dt = −PgdV/dt = −ngkBTgη̃V0, where we

FIG. 6. (Color online) Test of the thermalization formula Eq. (18).
(a) Time evolution of the ratio � = (�T/T )theo/(�T/T ) of the
temperature difference computed with Eq. (18) to the numerical
model in the NDCX-II reference case, in purely 1D (dashed line)
and full 3D (solid line) expansion. (b) � in the 1D expansion at
t1 = 1 ns (solid symbols) and at t2 = 10 μs (open symbols) with
β =0, 0.2, 0.4, 1 (circles); α =0, 0.2, 0.4, 1 (up triangles); δz =1, 2,
4, 8 μm (squares); and R0 =5, 10, 20, 40 nm (down triangles).

define the volume strain rate η̃ = d(V/V0)/dt . Note that,
in the 1D expansion regime, η̃ = ηz, whereas in the 3D ex-
pansion regime, for t 
 t3D , η̃ � 3ηzη

2
r t

2 and diverges. The
power transferred from the liquid to the gas is dEl/dt =
ng

√
kBTg/2πmSχcv�T , where χ = β + (1 − β)α. To get

this expression we have computed the contributions from the
three terms in Eq. (14) and used 	vap = 	cond. Expressing
S = 4πR2 and V0 = 2 × 4

3πR3
0, the balance between the

fluxes dEl = ξ dEtot finally yields

�T

T
= ξ η̃

χ

4
√

2π

9

R3
0

vth(Tg)R2
, (18)

where we note vth(Tg) = √
kBTg/m the thermal speed in

the gas. With the approximation R0 � R and neglecting the
prefactors of order unity, we obtain the simple scaling that is
expected to be valid for any EoS:

�T

T
∼ η̃ R0

vth(Tg)
. (19)

In Fig. 6 we check the validity of Eq. (18), computing the
ratio � = (�T/T )theo/(�T/T ) of the theoretical temperature
difference [Eq. (18)] to the result of the full numerical
calculation. To evaluate Eq. (18) we take the values of η̃,
R, Tg , and x from the result of the numerical simulation. In
Fig. 6(a), we show the evolution of the ratio � in the NDCX-II
reference case (same calculation as Fig. 5). In the full 3D
expansion case (solid line), the prediction becomes bad (error
larger than 100%) at t � t3D , which is expected since the
volume expansion rate η̃ diverges in 3D. In the purely 1D
expansion, after the first ns, one sees that Eq. (18) is accurate
within 20%. More precisely, the error has the same sign as the
derivative dNl/dt and vanishes when the droplet is stationary,
at t = tmin, which is expected since Eq. (18) is obtained with
the assumption dNl/dt = 0.

In Fig. 6(b), we show the ratio � at t1 = 1 ns and at t2 =
1 μs for the same parameters, but varying one by one those
that are relevant to Eq. (18): β, α, δz (in order to vary η),
and R0. The analytic formula overestimates (underestimates)
�T/T in all cases at t1 (t2), and for both cases the error is
larger when the expected (�T/T )theo is larger, which is natural
since Eq. (18) holds in the limit of small �T/T . Interestingly,
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the point β = 0 is separate from the others at both times and
is closer to 1, which is not surprising since β = 0 means no
particle exchange, and this again confirms that the main source
of inaccuracy of Eq. (18) is a nonzero value of dNl/dt . The
prediction could thus be refined if this effect was taken into
account, for example, using the analytical results of the next
section. At early times, one can see also that the error is larger
for droplets of radii smaller than 5 nm. This effect is switched
off if we set σ = 0, confirming that it is caused by surface
effects.

It is also possible to rewrite Eq. (19) in terms of the initial
conditions: Considering η ∼ cs

0/δz, one gets the very simple
scaling law: �T/T ∼ R0/δz. This last expression is only valid
in the case of a 1D linear expansion where η̃ is constant. In this
case, one sees using Eq. (1) that �T/T is expected to decrease
slowly when the initial sample size increases

R0 ∝ η− 2
3 ⇒ �T

T
∝ η

1
3 ∝ δz− 1

3 . (20)

For larger samples, the thermalization will be better even
though the droplets are bigger. This justifies again that in the
limit of large samples and slow expansions, an equilibrium
hydrodynamic description becomes valid.

In summary, Eq. (18) is expected to be always a good
estimate in the quasithermalized regime, and Eq. (19) can be
considered as a universal criterion to delimit the quasithermal-
ized regime.

C. Fully thermalized regime

In the previous section we could distinguish the regimes
of quasithermalized versus nonthermalized expansion. From
Eq. (18) it is clear that the quasithermalized regime will
become quickly invalid after t3D , because the volume strain
rate η̃ diverges. Nonetheless, in the early times of expansion,
or if one is interested in systems of large radial extent, it is
worth studying the limiting case of a fully thermalized flow.

In this perspective, let us assume Tl = Tg = T . Again,
we look at the low T regime, which becomes valid very
early in the expansion process. Using the first order ap-
proximations in the vdW model nl � (1 − θ )/b and ng � 0
[Eqs. (5) and (6)] and neglecting the surface energy term,
we write the total energy Etot = Ntot[cvT − x(1 − θ )a/b],
where x = Nl/Ntot is still the liquid fraction in the cell.
The total energy change dEtot = −PgdV becomes, at first
order in θ : −(1 − x) θ dV

V
= ( 3

2 + x) dθ − dx. Noting that
dV � dVg , we convert θ d[ln(V )] = dθ − dθ/θ using the low
T approximation Eq. (6) and find finally

dx =
(

5

2
− 1 − x

θ

)
dθ. (21)

It is easy to push the approximation to higher orders in θ ,
but Eq. (21) already allows one to get good insight into
the evolution of the droplet. One sees that the droplet will
be stationary at a temperature satisfying θmin = 2

5 (1 − x)
corresponding to the time tmin already mentioned; it will
evaporate before this point, for temperatures θ > θmin, and
grow after it, for θ < θmin. This sequence is in agreement with
the NDCX-II reference case shown in Fig. 5. Note that, at long
times, and independently from the EoS, droplets will always

FIG. 7. (Color online) Thermalized evolution for a droplet of
initial radius R0 = 25 nm and initial temperatures T0 = 7000 K
to 10 000 K (solid lines). Temperature (a) and liquid fraction
(b) evolution versus the cell expansion. (c) Full numerical calculation
compared to solution of Eq. (21) (dashed) started at V/V0 = 10.

grow in a thermalized situation. This is due to the fact that
adiabatic expansion of a perfect gas is an algebraic trajectory
in phase-space (T ∝ ρ2/3), whereas Clausius-Clapeyron law
predicts an exponential curve for the gas binodal, meaning
that the gas in a two-phase expanding cell will always tend to
saturate and make the liquid fraction grow.

In Fig. 7, we show the exact numerical calculation of
the thermalized evolution of a droplet whose initial radius
is R0 = 25 nm and for initial temperatures ranging from
7000 K to 10 000 K. In the thermalized case, the time
evolution is irrelevant; that is why in Figs. 7(a) and 7(b) the
temperature and liquid fractions are plotted as functions of
the volume expansion ratio V/V0. An expansion remaining in
the thermalized regime over 10 orders of magnitude volume
expansion is unrealistic in the case of NDCX-II, but for
generality it is interesting to study this limiting trend.

In Fig. 7(c), the numerical liquid fraction versus temper-
ature is compared to the solution of Eq. (21), starting when
the volume has expanded by one order of magnitude. The
analytic approximation is accurate within 20%. This shows that
Eq. (21) can be used to make good estimates of the asymptotic
growth of the liquid fraction in the thermalized case, which
can be, e.g. for T0 = 9000 K, of a bit more than 10%.

This growth of the liquid fraction in the thermalized regime
is a rigorous upper bound for droplet growth. In the opposite
regime, one can get the reciprocal upper bound for droplet
evaporation.

D. Nonthermalized regime: Evaporation in vacuum

If the gas expands too fast for thermalization to occur, one
expects the droplet to evaporate as if it were in vacuum.
The corresponding limit consists in assuming 	cond = 0.
Obviously, in this case the droplet can only lose particles.
Moreover, the evaporation of the droplet is maximal in this
regime, because, if there was thermalization via collisions
with a gas, colder than the drop, it would be a way for the
droplet to lose energy without losing particles. Also, because
the vapor pressure decreases exponentially with temperature,
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one expects the evaporation in vacuum to slow down fast.
However, independently from the kinetics, it is clear that
there must be some upper bound to the evaporation of a drop.
Indeed, as every evaporating particle takes away energy from
the droplet (the latent heat), the droplet gets colder and colder,
until the evaporation is “frozen,” a strict limit being that T

cannot become negative.
Let us find analytic expressions for the maximal evaporation

of a droplet whose energy is noted El . Considering the
evaporating particles and using Eq. (14), the energy loss can
be written dEl = e∗

gdNl . On the other hand, considering the
liquid, and neglecting the surface energy term, one has dEl =
eldNl + Nl(∂el/∂Tl)dTl . Equating those two expressions, one
finds, for the vdW fluid,

dNl

Nl

= [cv − a(∂nl/∂Tl)]

a(nl − ng)
dTl. (22)

Using the development of nl at first order in θ [Eq. (5)], one
can integrate Eq. (22) from initial T0 and Nl0, yielding at the
final Tl the remaining fraction

Nl

Nl0
= exp

[
− 5

2
(θ0 − θl) − 13

4

(
θ2

0 − θ2
l

)]
. (23)

Figure 8 shows the exact numerical result for the evapo-
ration in vacuum of a droplet whose initial radius is 25 nm,
and initial temperatures ranging from 3000 K to 9000 K. The
volume expansion is not relevant here, so the variables are
displayed as a function of t only. In Figs. 8(a) and 8(b), one
sees that for all initial temperatures, the number evaporation
and cooling curves of the droplet follow a same asymptotic
behavior, which is increasingly slow at long times. In Fig. 8(b),
the numerical integration of Eq. (22) is shown for each T0

(dashed lines), with the final Tl taken from the full numerical
solution. The agreement with the final evaporation ratio is
excellent, showing that surface effects play a negligible role.
We have checked that surface effects cause an overestimation
of the maximal evaporation of less than 10% even for droplets
of initial radius 1 nm. The approximated Eq. (23) is also
displayed for each T0 (dotted lines), taking here also the final Tl

from the full numerical run. One sees that it predicts the good
limit for evaporation within 5% for initial temperatures up to
7000 K. This is very satisfactory because the nonthermalized
regime is expected to be valid only in the late times of

FIG. 8. (Color online) Evaporation in vacuum. Time evolution
of the temperature (a) and the nonevaporated fraction (b) for a
droplet of initial radius R0 = 25 nm and initial temperatures T0 =
3000 K to 9000 K (solid lines). The dashed lines on (b) are the
numerical integration of Eq. (22) and the dotted lines correspond
to Eq. (23).

expansion so the first order low T approximations should be
very accurate.

Let us now discuss the onset of the radiative cooling regime.
At long times and low temperatures, the particle evaporation
and the evaporative cooling rates decrease exponentially
[Eq. (6)], whereas the radiative cooling rate is algebraic (∝T 4).
Therefore, thermal radiation becomes the dominant cooling
mechanism at long times. Within our model it is not difficult
to express the temperature Trad below which radiative cooling
becomes dominant over evaporative cooling [55]. Using our
vdW parameters for Al, and assuming an emissivity ε = 0.2,
we find Trad � 1740 K. For Si nanoparticles, the same estimate
yields Trad � 2190 K. This is consistent with the measurements
reported in [12] where the cooling of Si nanoparticles formed
by laser ablation is found to be well explained by radiation at
expansion times 5–150 μs and for temperatures below 2000 K,
although the evaporative cooling rates that we obtain within our
model are significantly larger than the estimates they report.
As an example, for Si at 2000 K, our crude model predicts
a radiative cooling rate of �28 K/μs, while the evaporative
cooling rate in vacuum is still �6.5 K/μs. Note, however, that
the rate we compute is a strict upper bound.

E. Supercritical case: Nucleation and growth of liquid droplets

The last case to consider is the supercritical case, where
the material expands first as a supercritical fluid, and enters
the two-phase region of the phase diagram crossing the gas
binodal, as a supersaturated gas. In this case nucleation of
droplets may occur.

We do not propose a model for nucleation but we note
that it has been reported [13] that supersaturation of the vapor
does not reach high values and that above a certain threshold
value nucleation is very sudden, due to the exponential
dependence of the nucleation frequency on the supersaturation
ratio [35]. Then our model is expected to describe correctly the
subsequent evolution of the clusters. In particular, we expect
that thermalization will depend on the droplet radius and the
volume strain rate and that Eq. (18) will be a good estimate in
the quasithermalized regime. If clusters and gas are in thermal
equilibrium, we expect Eq. (21) to be valid as well.

Note that nucleation may also happen in a subcritical
expansion scenario if the gas becomes very supersaturated at
long times, as can be seen for the reference case in Fig. 5(d). In
this situation, close to the nonthermalized limit, condensation
on the existing droplets is too slow, and nucleation of new
droplets may happen even with liquid clusters already present
in the plume.

V. CONCLUSION

In conclusion, we have studied droplet evolution and
thermalization conditions with an original, simple kinetic
model based on a consistent set of rate equations for mass and
energy exchanges. Using the vdW EoS as a test-bed, we have
demonstrated that such a kinetic treatment is able to bridge
the gap between the molecular and equilibrium hydrodynamic
approaches that have mainly been used so far. Most of the
results of this work are general and should be extendable to
any EoS with which the kinetic equations are used.
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In particular, the main output of our study is to identify
the different regimes of two-phase expansion. On one side,
the quasithermalized case and its limit, the fully thermalized
case, on the other side, the nonthermalized case. To distinguish
the two situations, we identify a local thermalization condition
[Eq. (18)] which depends on the droplet radius R, the volume
expansion rate η̃, the gas temperature Tg , the liquid fraction
x, and the kinetic parameters α and β, but it can also be
traced back to the initial conditions: sample thickness δz and
initial temperature T0 [Eq. (20)]. Equation (19) is a simpler
alternative to Eq. (18) that involves only the initial droplet
radius R0, η̃, and Tg and gives the scaling expected for
any EoS.

Due to the crossover from 1D to 3D expansion at the
time t3D , the expansion is expected to take place in the
quasithermalized regime at early times, at least in the NDCX-II
reference case and for similar parameters, but at long times
the nonthermalized regime is almost inevitable. Equation (18)
shows that this is only a dimensional effect, driven by the
divergence of η̃ in 3D.

In the quasithermalized case, our study shows that the
relative temperature difference (Tl − Tg)/Tl remains almost
constant throughout the expansion. Equation (18) is derived
assuming no net particle exchange, so only kinetic energy
terms (but no latent heat) are involved, which makes it
suitable for generalization to other EoS. The predictions of
Eq. (18), and, more generally, the validity of the whole droplet
evolution model, could also be tested with MD calculations
and experimental measurements.

In the fully thermalized case, droplets can grow (mod-
erately) at long times and we give an approximate formula
for the vdW fluid [Eq. (21)]. In the opposite case of a fully
nonthermalized flow, one can find a strict upper bound for
the evaporated fraction at a given final Tl . For the vdW
fluid, this limit is Eq. (22). In both limiting cases, simple
implementations of the kinetic model, for example, with the
vdW EoS, can be used to make estimates and provide upper
bounds for the droplets evolution. Note that, in all the cases we
have studied, the droplets never grow or evaporate very much
from their initial situation.

For the moment, the model we have presented is local, but in
the future it could become part of a larger hydrodynamic code
that will treat many Lagrangian two-phase cells containing
droplets and gas. The extension of our model to several droplets

in one cell can be done easily. For more realistic simulations,
it will probably be necessary to take into account other effects
that are not two-phase phenomena and that we have left aside,
such as radiation, which can be nonblackbody in the early
stages of expansion, but also, thermal conduction between
cells, and thermionic emission. The velocity of the droplets,
which may differ from that of the expanding gas, may also be
treated separately with additional variables.

Before our kinetic model can be used to compute droplet
evolutions at the core of a global comprehensive code,
additional modules are needed to initialize the two-phase
regime. In the subcritical case, a hydrodynamic code and some
model for fragmentation is required to determine the droplets
distribution at each location. In the supercritical case, a model
for nucleation is needed. In any situation, the thermalization
condition [Eq. (18) or (19)] can be used to check wether the
two-phase computing cell can be treated as an equilibrium
cell or if a nonequilibrium treatment is required, the reason
being, of course, that an equilibrium (thermalized) description
is much easier to implement.

Finally, we have investigated the role of surface effects
in different cases. Surface tension is expected to play an
important role for droplets of radii R < Rσ = σ/kBT nl . This
can be seen from Kelvin equation or considering the radius at
which the surface energy becomes comparable to the kinetic
energy per particle in the liquid. With our vdW parameters
for aluminum, Rσ increases from 0.8 nm at T = 10 000 K to
64 nm at T = 2000 K. Surface effects are thus increasingly
important in the late stages of expansion, at low temperature,
and for the smallest fragments. This is also why a careful
treatment of the supercritical case of in-flight nucleation is
more difficult and remains to be done in order to complement
this work.
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