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Free-energy functional for freezing transitions: Hard-sphere systems freezing into crystalline
and amorphous structures
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A free-energy functional that contains both the symmetry-conserved and symmetry-broken parts of the direct
pair correlation function has been used to investigate the freezing of a system of hard spheres into crystalline and
amorphous structures. The freezing parameters for fluid-crystal transition have been found to be in very good
agreement with the results found from simulations. We considered amorphous structures found from molecular
dynamics simulations at packing fractions η lower than the glass close packing fraction ηJ and investigated their
stability compared to that of a homogeneous fluid. The existence of a free-energy minimum corresponding to a
density distribution of overlapping Gaussians centered around an amorphous lattice depicts a deeply supercooled
state with a heterogeneous density profile.
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I. INTRODUCTION

When a liquid freezes into a crystalline solid its continuous
symmetry of translation and rotation is broken into one of
the Bravais lattices. In three dimensions the freezing of a
liquid into a crystalline solid is known to be a first-order
symmetry-breaking transition marked by large discontinuities
in entropy, density, and order parameters. The molecules in
a crystal are localized on a lattice described by a discrete
set of vectors {Ri} such that any functions of position, such
as one-particle density ρ(r), satisfies ρ(r) = ρ(r + Ri) for all
Ri [1]. This set of vectors necessarily forms a Bravais lattice.
But when a liquid is supercooled bypassing its crystallization,
it continues to remain in an amorphous state. With increase
in density a solidlike phase emerges with molecules getting
localized around their mean positions, which have a random
structure. The underlying lattice on which such localized
motion takes place is related to the time scale of relaxation
in the supercooled liquid. While the supercooled liquid starts
to attain solidlike properties, structurally it does not have
any long-range order like the one present in a crystal. This
phenomenon is termed the “glass transition” [2,3]. Although
glassy materials are well characterized experimentally, the
existence of a thermodynamic phase transition into the glassy
state remains controversial [4–6]. Our aim in this paper is not
to enter into this discussion but to examine the stability (or
metastability) of amorphous structures from a thermodynamic
point of view, using the standard method of density-functional
theory, which is also used to investigate the crystallization
of liquids. We refer to a structure in which particles are
localized around their mean positions forming a random lattice
as a glassy or an amorphous solid. Localization of particles
amounts to breaking of continuous translational symmetry of
the normal liquid and takes place in forming both crystals and
glasses.

The structural properties of a classical system can be
adequately described by one- and two-particle density distri-
butions. The equilibrium one-particle density distribution ρ(r)
defined as

ρ(r) =
〈∑

k

δ(r − Rk)

〉
, (1.1)

where Rk is the position vector of the kth particle and
bracket 〈· · ·〉 represents the ensemble average, is a constant
independent of position for an isotropic liquid, but contains
most of the information about the structure of crystals
and glasses. The two-particle density distribution ρ(2)(r1,r2),
which gives the probability of finding simultaneously a
molecule in a volume element dr1 centered at r1 and a second
molecule in volume element dr2 centered at r2, is defined as

ρ(2)(r1,r2) =
〈∑

j

∑
�=k

δ(r1 − Rj )δ(r2 − Rk)

〉
. (1.2)

The pair correlation function g(r1,r2) is related to
ρ(2)(r1,r2) by the relation

g(r1,r2) = ρ(2)(r1,r2)

ρ(r1)ρ(r2)
. (1.3)

The direct pair correlation function c(r1,r2), which appears
in the expression of free-energy functional (see Sec. II),
is related to the total pair correlation function h(r1,r2) =
g(r1,r2) − 1 through the Ornstein-Zernike (OZ) equation:

h(r1,r2) = c(r1,r2) +
∫

c(r1,r3)ρ(r3)h(r2,r3) dr3. (1.4)

Since in an isotropic liquid ρ(r1) = ρ(r2) = ρl = N/V

where N is the average number of molecules in volume V ,

g(|r2 − r1|) = ρ(2)(|r2 − r1|)
ρ2

l

, (1.5)

where |r2 − r1| = r is the magnitude of interparticle sepa-
ration. In a liquid of spherically symmetric particles g(r1,r2),
h(r1,r2), c(r1,r2) depend only on the interparticle separation r .
This simplification is due to homogeneity, which implies con-
tinuous translational symmetry, and isotropy, which implies
continuous rotational symmetry. Such simplification does not,
in general, occur for frozen phases. We refer to crystals as
well as to glasses as frozen phases. While a crystal is both
inhomogeneous and anisotropic, a glass can be regarded as
isotropic but inhomogeneous. The heterogeneity in a glassy
system over different length and time scales has been studied
in recent work [7] related to computer simulations.
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The total and direct pair correlation functions of a system
can be obtained as a simultaneous solution of the OZ equation
and a closure relation that relates pair correlation functions
to the pair potential. Some well-known closure relations are
the Percus-Yevick (PY) relation, the hypernetted chain (HNC)
relation, and the mean spherical approximation (MSA). It
may, however, be noted that while the OZ equation (1.4)
is general and connects the total and direct pair correlation
functions of liquids as well as of frozen phases, the closure
relations have been derived assuming translational invariance
[8] and therefore are valid only for normal fluids. The integral
equation theory has been used quite successfully to describe
the structure of isotropic liquids, but its application to frozen
phases has so far been very limited [9,10]. In Sec. III we
describe a method to calculate the direct pair correlation
function of frozen phases formed by breaking of continuous
translational symmetry of liquids and use it in a free-energy
functional described in Sec. II to study freezing transitions in
Secs. IV and V.

Since its proposal in 1979 by Ramakrishnan and Yussouff
(RY) [11], density functional theory (DFT) has been applied to
the freezing transition of a variety of pure liquids and mixtures
[11,12]. A DFT requires an expression of the Helmholtz free
energy (or the grand thermodynamic potential) in terms of
one- and two-particle distribution functions and a relation that
relates ρ(r) to pair correlation functions. Such a relation is
found by minimizing the free energy with respect to ρ(r) with
appropriate constraints [12,13]. The DPCFs that appear in
these equations are in the frozen phase and are functionals
of ρ(r). When this functional dependence is ignored and
the DPCF is replaced by that of the coexisting isotropic
liquid [11] or by that of an “effective homogeneous fluid” [14]
the free-energy functional becomes approximate and fails to
provide an accurate description of freezing transitions and
stability of frozen phases. An improved free-energy functional
that takes into account the functional dependence of the DPCF
on ρ(r) has recently been developed [9,10] and applied to study
the isotropic-nematic transition [9] and the crystallization of
power-law fluids [10].

In this paper we investigate the freezing of fluids of hard
spheres into crystalline and amorphous phases and compare
our results with the results of previous investigations. Hard
spheres are ubiquitous in condensed matter; they have been
used as models of liquids, crystals, colloidal systems, granular
systems, and powders. Packing of hard spheres is of even
wider interest as they are related to important problems in in-
formation theory, such as signal digitalization, error correcting
codes, and optimization problems [15]. Recently, amorphous
packing of hard spheres has attracted much attention [6,16,18]
because for polydisperse colloids and granular materials the
crystalline state is not obtained for kinetic reasons. It is
therefore necessary to have a statistical-mechanical theory
based on first principles that can correctly describe the freezing
of hard spheres.

The paper is organized as follows: In Sec. II we describe
the free-energy functional for a symmetry-broken phase that
contains both the symmetry-conserving and symmetry-broken
parts of direct pair correlation functions. In Sec. III we describe
a method to calculate these correlation functions. The theory
is applied in Sec. IV to investigate the freezing of fluids into

crystalline solids and in Sec. V the metastability of amorphous
structures.

II. FREE-ENERGY FUNCTIONAL

An important step in the construction of a density functional
model of a frozen phase is the proper parametrization of the
extremely inhomogeneous density function ρ(r) whose value
near a lattice site may be orders of magnitude higher than in the
interstitial regions. One very successful prescription of ρ(r) is
as a collection of overlapping Gaussian profiles [19] centered
over a set of lattice sites {Rm}:

ρ(r) =
∑
m

(α

π

)3/2
exp[−α(r − Rm)2]. (2.1)

Here α is the variational parameter that characterizes the
width of the Gaussian; the square root of α is inversely
proportional to the width of the peaks. It thus measures the
nonuniformity; the value α = 0 corresponds to the limit of a
uniform liquid (infinitely broad Gaussians), and an increasing
value of α corresponds to increasing localization of the atoms
about their respective lattice sites.

Taking the Fourier transform of (2.1) one gets

ρ(r) = ρ0 + 1

V

∑
q �=0

ρqe
iq·r, (2.2)

where

ρq = e−q2/4α
∑

n

e−iq·Rn (2.3)

is the amplitude of a density wave of wavelength 2π/|q|. The
nature and magnitude of inhomogeneity of a frozen phase is
measured by ρq , hereafter referred to as the order parameter;
ρq = 0 for q �= 0 corresponds to isotropic fluid and ρq �= 0 to
a frozen phase. For a crystal in which Rm forms a periodic
lattice, eiq·Rm = δq,G where G are reciprocal lattice vectors
(RLVs), Eq. (2.2) reduces to

ρs(r) = ρ0 + ρ0

∑
G

e−G2/4αeiG·r. (2.4)

This is a well-known expression for ρ(r) of a crystal.
In the case of a glassy structure in which the lattice sites

{Rm} are randomly distributed, the summation in Eq. (2.3) is
replaced by integration. For this, one uses the value of site-site
correlation function g(R) as the number of lattice sites located
in a spherical shell of width dR, and radius R is given as
4πρ0g(R)R2dR. Thus for an amorphous structure Eq. (2.1)
reduces to

ρg(r) = ρ0 + 1

V

∑
q �=0

e−q2/4α

{
1 + ρ0

[∫
dRh(R)e−iq·R

]}
eiq·r,

(2.5)

where g(R) = 1 + h(R). The value of g(R) is found either
from experiment on glassy systems [20] or from numerical
simulations [21,22]. In Fig. 1 we plot ρg(r) for the packing
fraction η (≡ 1

6πρ0σ
3; σ being the diameter of a particle) =

0.576 and α = 150 (highly localized condition) and α = 15
(weakly localized condition). The distance r in this and in the
subsequent figures is expressed in units of σ . In calculating
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FIG. 1. Density ρg( r

σ
) of an amorphous structure calculated from

Eq. (2.5) using the data of g
(

R

σ

)
found from molecular dynamic

simulation of granular particles subjected to a sequence of vertical
tapes for α = 150 (strong localization condition) and α = 15 (weak
localization condition).

ρg(r) we used g(R) data found for amorphous structures of
granular particles [22] shown in Fig. 2. In Fig. 2 we also show
the value of g(R) of a liquid found from solving the integral
equations discussed in Sec. III, for comparison. From Fig. 1
we see that while inhomogeneity increases with the value of
α, unlike crystalline solids, it remains confined to about four
particle diameters even for α = 150 and decays rapidly on
increasing the distance.

The reduced free energy A[ρ] of an inhomogeneous system
is a functional of ρ(r) and is written as

A[ρ] = Aid [ρ] + Aex[ρ]. (2.6)

The ideal gas part is exactly known and is given as

Aid [ρ] =
∫

drρ(r){ln[ρ(r)�] − 1}, (2.7)

1 3 5
R/σ

0

2

4

6

8

g(
R

/σ
)

for isotropic liquid at η=0.576

for amorphous solid at η=0.576

2 4

FIG. 2. Comparison of pair correlation function g
(

R

σ

)
of an

amorphous structure and homogeneous liquid at the same packing
fraction η = 0.576.

where � is a cube of the thermal wavelength associated with
a molecule. The excess part arising due to intermolecular
interactions is related to the DPCF as [12]

δ2Aex[ρ]

δρ(r1)δρ(r2)
= −c(r1,r2; [ρ]). (2.8)

The function c that appears in this equation is the functional
of ρ(r) and can be written as a sum of two terms: one that
corresponds to the average density ρ0 and is found by treating
the system to be homogeneous and isotropic, and the other
that arises due to the heterogeneity in the density of the frozen
phase. Thus

c(r1,r2,[ρ]) = c(0)(|r2 − r1|,ρ0) + c(b)(r1,r2; [ρ]). (2.9)

Note that while c(0) depends on the magnitude of the
interparticle separation and is a function of the average number
density ρ0, c(b) is invariant only under a discrete set of
translations corresponding to lattice vectors {Rm} and is a
functional of ρ(r). It may be noted that at the freezing point
the homogeneity of the space is spontaneously broken and, as a
consequence, the correlation in distribution of molecules loses
the translational invariance of the fluid phase. This change of
symmetry leads to writing the distribution functions of a frozen
phase as a sum of two qualitatively different contributions
[9,10]. This for the case of the single-particle distribution ρ(r)
has already been shown. In Eq. (2.4) for a crystalline solid
and in Eq. (2.5) for an amorphous solid, ρ(r) is shown to
have two contributions: one that corresponds to continuous
symmetry and the other to the broken symmetry. Similarly in
Eq. (2.9) while c(0) corresponds to the symmetry-conserving
part, c(b) corresponds to the symmetry-broken part of the
DPCF. While c(0) passes smoothly without any abrupt change
through transition, c(b) vanishes in the fluid phase.

Using Eq. (2.9) we rewrite Eq. (2.8) as

δ2A(0)
ex [ρ]

δρ(r1)δρ(r2)
= −c(0)(r,ρ0), (2.10)

δ2A(b)
ex [ρ]

δρ(r1)δρ(r2)
= −c(b)(r1,r2; [ρ]), (2.11)

where A(0)
ex [ρ] + A(b)

ex [ρ] = Aex[ρ]. A(0)
ex and A(b)

ex are found
from functional integrations of (2.10) and (2.11), respectively.
In this integration the system is taken from some initial density
to the final density ρ(r) along a path in the density space;
the result is independent of the path of integration. As the
symmetry-conserving part c(0) is function of density only, the
integration of Eq. (2.10) in the density space is done taking an
isotropic fluid of density ρ0 (or ρl , the density of coexisting
fluid in case of a crystal) as a reference. This leads to

A(0)
ex [ρ] = Aex(ρ0) − 1

2

∫
dr1

∫
dr2	ρ(r1)	ρ(r2)c(0)(r,ρ0),

(2.12)

where 	ρ(r1) = ρ(r1) − ρ0 and Aex(ρ0) is the excess reduced
free energy of an isotropic system of density ρ0.

In order to do functional integration of Eq. (2.11) in which
c(b)[ρ] depends on order parameters in addition to the average
density, we chose a path in density space that is characterized
by two parameters, λ and ξ . These parameters vary from 0 to
1. The parameter λ raises the average density from 0 to the
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final value ρ0 as it varies from 0 to 1, whereas the parameter
ξ raises the order parameters from 0 to their final value ρq for
each q as it varies from 0 to 1. The integration gives [9,10]

A(b)
ex [ρ] = −1

2

∫
dr1

∫
dr2	ρ(r1)	ρ(r2)c̄(b)(r1,r2; [ρ]),

(2.13)

where

c̄(b)(r1,r2; [ρ]) = 4
∫ 1

0
dξξ

∫ 1

0
dξ

′
∫ 1

0
dλλ

×
∫ 1

0
dλ

′
c(b)(r1,r2; λλ

′
ρ0; ξξ

′
ρq). (2.14)

While integrating over λ the order parameter ρq are kept
fixed, and while integrating over ξ the density is kept fixed.
The result does not depend on the order of integration.
The free-energy functional of a frozen phase is the sum
of Aid [ρ], 	A(0)[ρ], and 	A(b)[ρ] given, respectively, by
Eqs. (2.7),(2.12), and (2.13).

The minimization of 	A[ρ] = A[ρ] − A(ρ0) where A(ρ0)
is the free energy of a homogeneous and isotropic system of
density ρ0 leads to

ln
ρ(r)

ρ0
= φ +

∫
dr2	ρ(r2)c(0)(|r2 − r1|,ρ0)

+
∫

dr2	ρ(r2)c̃(b)(r1,r2). (2.15)

Here φ is the Lagrange multiplier and is determined from the
condition

1

V

∫
V

ρ(r)

ρ0
dr = 1 (2.16)

and

c̃(b)(r1,r2) = 2
∫ 1

0
dλ

∫ 1

0
dξc(b)(r1,r2,λρ0,ξρq). (2.17)

In principle, the only information we need to know is the
value of c(0)(r) and c(b)(r1,r2; [ρ]) to calculate self-consistently
the value of ρ(r) that minimizes the free energy. In practice,
one, however, finds it convenient to do minimization for an
assumed form of ρ(r) [12].

III. CALCULATION OF DIRECT PAIR CORRELATION
FUNCTION

To calculate the values of c(0)(r) we use the integral equation
theory consisting of the OZ equation:

h(0)(r) = c(0)(r) + ρ0

∫
dr

′
c(0)(r

′
)h(0)(|r′ − r|) (3.1)

and a closure relation proposed by Rogers and Young [23].
This closure relation is written as

1 + h(0)(r) = exp[−u(r)/kBT ]

{
1 + exp[γ (r)f (r)] − 1

f (r)

}
,

(3.2)

where

γ (r) = h(r) − c(r) (3.3)

and

f (r) = 1 − exp(−ψr). (3.4)

Here ψ is an adjustable parameter used to achieve thermo-
dynamic consistency, and its value for a system of hard spheres
is found to be equal to 0.16 [23]. In Eq. (3.2) u(r) is the pair
potential, kB the Boltzmann constant, and T temperature. This
closure relation was found by mixing the PY and HNC closure
relations in such a way that at r = 0 it reduces to the PY
approximation, and for values of r where f (r) approaches 1,
it reduces to the HNC approximation. Equations (3.1)–(3.4)
together constitute a thermodynamically consistent theory that
has been found to give values of pair correlation functions that
are in very good agreement with Monte Carlo results.

The differentiation of Eqs. (3.1) and (3.2) with respect to
density yields the following two relations:

∂h(0)(r)

∂ρ0
= ∂c(0)(r)

∂ρ0
+

∫
dr

′
c(0)(r

′
)h0(|r′ − r|)

+ ρ0

∫
dr

′ ∂c(0)(r)

∂ρ0
h(0)(|r′ − r|)

+ ρ0

∫
dr

′
c(0)(r)

∂h(0)(|r′ − r|)
∂ρ0

(3.5)

and

∂h(0)(r)

∂ρ0
= exp

[
−u(r)

kBT

] {
exp [γ (r)f (r)]

∂γ (r)

∂ρ0

}
. (3.6)

The closed set of coupled equations (3.1), (3.2), (3.5),
and (3.6) have been solved using Gillen’s algorithm [24] for
four unknowns: h(0), c(0), ∂h(0)

∂ρ0
, and ∂c(0)

∂ρ0
. We compare the values

of c(0)(r) at packing fractions η = 0.50 and 0.55 in Fig. 3 and
values of ∂c(0)(r)

∂ρ0
for the same two values of η in Fig. 4 to see

the density dependence of these functions. While η = 0.50
is close to the value of packing fraction at which a system
freezes into a crystalline solid, η = 0.55 is close to the value
of packing fraction ηM at which the crystal melts.

0 1 2 3 4 5
r/σ

-100

-80

-60

-40

-20

0

c(0
) (r

/σ
)

1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

η= 0.55
η= 0.50

FIG. 3. Direct pair correlation function c(0)( r

σ
) as a function of

distance r

σ
at packing fraction η = 0.50 and 0.55 found from the

integral equation theory. The inset shows at magnified scale the value
for r

σ
� 1.
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FIG. 4. Density derivatives of direct pair correlation function
c(0)( r

σ
) at η = 0.50 and 0.55 found from the integral equation theory.

The inset shows at magnified scale the value for r

σ
� 1.

Since all closure relations [including the one given by
Eq. (3.2)] that are used in the integral equation theory for
pair correlation functions are derived assuming translational
invariance [8], their use in calculating the values of pair
correlation functions of frozen phases may not be correct. In
view of this we use a series expansion in which the contribution
to the DPCF arising due to inhomogeneity in density of the
system is expressed in terms of higher-body direct correlation
functions of the uniform (isotropic and homogeneous) system.
Thus [12],

c(b)(r1,r2; [ρ]) =
∫

dr3c
(0)
3 (r1,r2,r3; ρ0)[ρ(r3) − ρ0]

+
∫

dr3dr4c
(0)
4 (r1,r2,r3,r4)[ρ(r3)

− ρ0][ρ(r4) − ρ0] + · · · , (3.7)

where ρ(rn) − ρ0 = ∑
q �=0 ρqe

iq·rn . In Eq. (3.7) c(0)
n are

N-body direct correlation functions of the uniform system.
These correlation functions can be found using the relations

δc(0)(r)

δρ0
=

∫
dr3c

(0)
3 (r1,r2,r3), (3.8)

δ2c(0)(r)

δρ2
0

=
∫

dr3dr4c
(0)
4 (r1,r2,r3,r4), (3.9)

etc. The values of derivatives of c(0)(r) appearing on the left-
hand side of the above equations have been found using the
integral equation theory described above.

We note that Eq. (3.7) satisfies the condition that c(b)

is zero in the fluid phase and depends on the magnitudes
(order parameters) and the phase factors of density waves.
These density waves measure the nature and magnitude of
inhomogeneity of frozen phases. While each wave contributes
independently to the first term of Eq. (3.7), interactions
between the two waves contribute to the second term, and so
on. The contributions made by successive terms of Eq. (3.7)
depend on the range of pair potential u(r) [10]. As the range
of potential increases, the contribution made by higher-order
terms increases. For a system of hard spheres we find that at the
freezing transition the contribution made by the first term to

free energy is already small, and therefore higher-order terms
are expected to be negligible; it is only for u(r) ∝ r−n, n < 12
that the contribution made by the second-order term becomes
important [10]. In view of fast convergence of the series,
Eq. (3.7) seems to be a useful expression for calculating
c(b)(r1,r2).

The first term of Eq. (3.7) involves a three-body direct
correlation function, which can be factorized as a product of
two-body functions [25]. Thus

c
(0)
3 (r1,r2,r3; ρ0) = t(r12)t(r13)t(r23). (3.10)

The function t(r) is determined using the relation of Eq. (3.8):

∂c(0)(r)

∂ρ0
= t(r)

∫
dr

′
t(r

′
)t(|r′ − r|). (3.11)

We adopt the numerical procedure developed in Ref. [25]
to calculate t(r) from known values of δc(0)(r)

δρ0
from (3.11). The

values of t(r) are plotted in Fig. 5 for η = 0.50 and 0.55 to
show their density dependence.

Taking only the first term of Eq. (3.7) we write

c(b)(r1,r2) = 1

V

∑
q

∑
n

μq

∫
dr3t(|r3 − r1|)

× eiq(r3−Rn)t(|r3 − r2|), (3.12)

where μq = e−q2/4α Using the relation

r3 = 1
2 (r1 + r2) − 1

2 (r2 − r1) + (r3 − r1), (3.13)

we find that c(b)(r1,r2) can be written in a Fourier series in the
center-of-mass variable rc = 1

2 |r1 + r2| with coefficients that
are a function of the difference variable r = r2 − r1, i.e.,

c(b)(r1,r2) = 1

V

∑
q

c(q)(r)eiq·rc , (3.14)

where

c(q)(r) =
∑

n

μqe
−iq·Rne− 1

2 iq·r
∫

dr
′
t(r

′
)eiq·r′

t(|r′ − r|).

(3.15)
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FIG. 5. Values of t( r

σ
) as a function of distance for η = 0.50 and

0.55.
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Since the DPCF is real and symmetric with respect to
the interchange of r1 and r2, c(q)(r) = c(−q)(r) and c(q)(r) =
c(q)(−r). For given values of α and Rn one can calculate
c(q)(r) from known values of t(r). We discuss our results for
crystalline and amorphous solids in the following sections.

IV. CRYSTALLINE SOLID

A. Calculation of c(b)(r1,r2)

For a crystal in which vectors Rn form a Bravais lattice,
Eqs. (3.14) and (3.15) can be written as [10]

c(b)(r1,r2) =
∑
G

c(G)(r)eiG·rc (4.1)

and

c(G)(r) = ρ0μGe− 1
2 iG·r

∫
dr

′
t(r

′
)eiG·r′

t(|r′ − r|), (4.2)

where μG = e−G2/4α . Equation (4.2) has been solved using the
Rayleigh expansion to give

c(G)(r) =
∑
lm

c
(G)
lm (r)Ylm(r̂), (4.3)

where

c
(G)
lm (r) = ρ0μG

2π2

∑
l1

∑
l2

(i)l1 + l2 (−1)l2
[
(2l1 + 1)(2l2 + 1)

2l + 1

]

×[Cg(l1,l2,l; 0,0,0)]2jl2

(
1

2
Gr

)
t(r)Bl1 (r,G)Y ∗

lm(Ĝ).

(4.4)

Here Cg is the Clebsch-Gordan coefficient, jl(x) the spherical
Bessel function, and

Bl1 (r,G) = (4π )2
∫

dkk2t(k)jl1 (kr)

×
∫

dr
′
r

′2
t(r

′
)jl1 (kr

′
)jl1 (Gr

′
). (4.5)

The crystal symmetry dictates that l and l1 + l2 are even and
for a cubic crystal, m = 0, ± 4. Here c

(G)
lm (r) depends on the

order parameter and on the magnitude of RLVs.
The Fourier transform of c(G)(r) defined as

c(G)(k) =
∫

c(G)(r)e−ik·rdr =
∑
lm

c
(G)
lm (k)Ylm(k̂), (4.6)

where

c
(G)
lm (k) = 4π (i)l

∫
drr2jl(kr)c(G)

lm (r) (4.7)

is calculated from the knowledge of c
(G)
lm (r). In Fig. 6 we plot

c
(G)
lm (k) for the first two sets of G at η = 0.55 and α = 170 for

a face-centered cubic (FCC) structure.

B. Liquid-solid transition

The grand thermodynamic potential defined as −W = A −
βμ

∫
drρ(r), where μ is the chemical potential, is used to

locate the transition as it ensures that the pressure and chemical
potentials of the two phases remain equal at the transition.
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FIG. 6. Values of harmonic coefficients c(G)
lm(kσ ) for the first

two sets of reciprocal lattice vectors of a FCC crystal for η = 0.55
and α = 170.

The transition point is determined by the condition 	W =
Wl − W = 0, where Wl is the grand thermodynamic potential
of the fluid. Using expressions given in Sec. II we find

	W

N
= 	Wid

N
+ 	W0

N
+ 	Wb

N
, (4.8)

where

	Wid

N
= 1 − ln ρl + (1 + 	ρ∗)

[
3

2
ln

(α

π

)
− 5

2

]
, (4.9)

	W

N
= −1

2
	ρ∗2

ĉ(0)(0) − 1

2

∑
G �=0

(1 + 	ρ∗)2|μG|2ĉ(0)(G),

(4.10)

	Wb

N
= −1

2

∑
G1

′ ∑
G

′(1 + 	ρ∗)2μGμ−G−G1
ˆ̄c(G)

×
(

G1 + 1

2
G

)
. (4.11)

Here 	Wid, 	W0, and 	Wb are, respectively, the ideal,
symmetry-conserving, and symmetry-broken contributions to
	W ; the prime on summations in Eq. (4.11) indicates the
condition, G �= 0, G1 �= 0, and G + G1 �= 0, and

ĉ(0)(G) = ρl

∫
c(0)(r)eiG·rdr, (4.12)

ˆ̄c

(
G1 + 1

2
G

)
= ρ0

∑
lm

∫
c̄G
lm(r,ρ0)ei(G1+ 1

2 G)·rYlm(r̂)dr,

(4.13)

where ρ0 = ρl(1 + 	ρ∗).
We used the above expression to locate the fluid-FCC

solid and fluid-body-centered cubic (BCC) solid transitions
by varying the values of ρl , 	ρ∗, and α. While we find
the fluid-FCC solid transition to take place at ηl = 0.490,
	η∗ = 0.106, and α = 170, no transition is found for a BCC
solid. In Table I we compare our results of freezing parameters
with those found by Monte Carlo simulation [26,27] and
from other density functional schemes [28–31]. The agreement
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TABLE I. Freezing parameters of a hard-sphere fluid derived from the various density functional schemes. Here L = (
3
α

)1/2 ( 3ηs

2π

)1/3
is

the Lindemann parameter, ηs = π

6 ρsσ
3, ηl = π

6 ρlσ
3, and 	η∗ = ηs−ηl

ηl
. Average errors are given in parentheses. MWDA stands for modified

weighted density approximation; RY DFT stands for Ramakrishnan-Yussouff density functional theory.

ηs ηl 	η∗ L

Present result 0.542 (<1%) 0.490(<1%) 0.106(<1%) 0.09
MWDA-static reference [27] 0.503(8%) 0.452(8%) 0.115(10%) 0.13
MWDA [28] 0.548(<1%) 0.474(4%) 0.156(49%) 0.10
RY DFT [29,30] 0.60(10%) 0.511(3%) 0.174(69%) 0.06
Simulation [25,26] 0.545 0.493 0.105 ∼0.13

found between our results and those of simulations are very
good, better than any other density functional schemes.

At the transition point the contribution of different terms of
Eq. (4.8) is as follows: 	Wid

N
= 4.44, 	W0

N
= −4.10, 	Wb

N
=

−0.34. The contribution made by the symmetry-breaking
term of free energy is about 8.3% to that of the symmetry-
conserving term. This is in accordance with the result found
earlier [10] for the inverse power potential u(r) = ε(σ/r)n,
where ε, σ , and n are potential parameters, that as n increases
(n = ∞ corresponds to hard-sphere potential) the contribution
made by the symmetry-breaking term to free energy decreases.
This explains why RY theory [11], while it gave good results
for the hard-spheres system, failed for potentials that have soft
repulsion and/or attractive tails.

V. AMORPHOUS STRUCTURE

In this section we investigate the heterogeneous density
profile of an amorphous structure and examine the question
of having metastable states between the normal fluid state
and the regular crystalline state at packing fraction η, which
lies between the packing fraction at the melting point of a
crystal ηM = 0.545 and the packing fraction corresponding
to the “glass close packing,” ηJ �= 0.65. The usual way
to construct an amorphous structure in experiment or in
numerical simulation is to compress the system according
to some protocol that avoids crystallization [17,21,22]. One
of the criteria used to signal the onset of the glassy phase
in supercooled liquids is the emergence of a split-second
peak in g(R). There may be an infinitely large number of
such metastable structures that when compressed jam along
a continuous finite range densities down to the glass close
packing ηJ [32,33].

The density functional approach provides the means to test
if such a structure is stable compared to that of a fluid at
a given temperature and density. In earlier calculations the
random close-packed structure generated through Bennett’s
algorithm [34] was used. Here g(R) giving the distribution
of particles at a given value of η was found using an ad hoc
scaling relation [35]:

g(R) = gB

[
R

(
η

ηJ

)1/3
]

, (5.1)

where ηJ was used as a scaling parameter such that at η = ηJ

the random close-packed structure gB(R) was obtained. While
Singh et al. [36] found that the state corresponding to this
structure becomes more stable than the fluid for η � 0.59 for

a very large value of α (∼ 280), which corresponds to a highly
inhomogeneous density distribution, Kaur and Das [37] found
that the same structure also becomes more stable than fluid for
η � 0.576 for a considerably smaller value of α (� 18). On the
other hand, Dasgupta [38] has numerically located the “glassy”
minimum of a free-energy functional and the structure that
gave this minimum. Here we use the value of g(R) found for
granular particles from molecular dynamics simulations [22]
at η = 0.576 and 0.596 and examine the stability of these
structures. The reason for choosing these data is that they are
available for η < ηJ and can, therefore, be used directly in the
theory without using any approximation such as relation (5.1).

A. Calculation of c(b)(r1,r2)

From the known values of g(R) the order parameter defined
by Eq. (2.3) is calculated. Thus, for q �= 0

ρq =
∑

n

e−q2/4αe−iq·Rn = μqSa(q), (5.2)

where μq = e−q2/4α and Sq(a) = 1 + 24η
∫

dRR2 (g(R) − 1)
j0(qR). In Fig. 7 we plot ρq as a function of q for α = 15
and 50 and η = 0.596. The values of the order parameters μG

for several G of an FCC crystal for α = 50 and η = 0.596 are
also shown for comparison. From the figure one may note that
the value of ρq of an amorphous structure has a very different

0 5 10 15 20 25 30
qσ

0

0.5

1

1.5

2

2.5

ρ q

• μ
G→

α=50
α=15

η=0.596
 amorphous structure}

f. c. c. crystal, α=50

FIG. 7. Comparison of order parameters of amorphous structure
for α = 50 and 15 and of a FCC crystal for α = 50 (up to 10th
neighbors) at η = 0.596.
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magnitude and dependence on wave vector q than that of a
crystal.

Using the fact that an amorphous structure can be consid-
ered on average to be isotropic, Eq. (3.15) is simplified to
give

c(q)(r) = 1

8π3
μqSa(q)t(r)

∑
q

(2l + 1)Bl(q,r)jl

(
1

2
qr

)
,

(5.3)

where

Bl(q,r) = (4π )2
∫

dkk2t(k)jl(kr)
∫

dr
′
r

′ 2
t(r

′
)jl(kr

′
)jl(qr

′
).

(5.4)

In Fig. 8 we show the value of c(q)(r) as a function of r for
q at which μqSa(q) is maximum for α = 15 and η = 0.596.

B. Determination of free-energy minimum

We calculate the minimum of 	A[ρ] = A[ρ] − Al(ρ0),
where Al(ρ0) is the reduced free energy of an isotropic fluid of
density ρ0 and A[ρ] is the reduced free energy of an amorphous
structure of average density ρ0. Using the expression given in
Sec. II we get

	A[ρ]

N
= 	Aid [ρ]

N
+ 	A0[ρ]

N
+ 	Ab[ρ]

N
, (5.5)

	Aid [ρ]

N
= 4π

(
α

π

)3/2 ∫
drr2e−αr2

ln

{[(
α

π

)3/2

e−αr2

]

+ ρ0

r

(
α

π

)1/2 ∫
dRRg(R)

× (e−α(r−R)2 − e−α(r+R)2
)
}

− ln ρ0 (5.6)
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FIG. 8. Values of c(q)( r

σ
) as a function of distance r

σ
at q = 7.53

at which ρq is maximum. Inset magnifies the value of c(q)( r

σ
) for

r

σ
� 1.

for α < 20,

	Aid [ρ]

N
= 1 − ln ρ0 + 3

2

[
ln

(α

π

)
− 5

3

]
(5.7)

for α > 20,

	A0[ρ]

N
= −1

2

∑
q

|μq |2Sa(q)ĉ(0)(q), (5.8)

	Ab[ρ]

N
= −1

2

∑
q

∑
q1

μq1μ−q−q1Sa(q1)ˆ̄c(q)
(∣∣∣∣q1 + 1

2
q

∣∣∣∣
)

,

(5.9)

where

ˆ̄c(q)
(

q1 + 1

2
q
)

=
∫

c̄(q)(r)ei

(
q1+ 1

2 q
)
·r
dr

and

c̄(q)(r) = 4
∫

dλλ

∫
dλ

′
∫

dξξ

∫
dξ

′
c(q)(r,λλ

′
ρ0,ξξ

′
ρq).

In Fig. 9 we plot the values of 	A found for different
values of α. A minimum of 	A is found at α � 7 for both
η = 0.576 and 0.596. This minimum is seen only for the
amorphous structure, which signifies a heterogeneous density
distribution and is referred to as glassy minimum. From the
figure it is clear that the glassy minimum is separated from the
liquid minimum by a barrier located at α � 0.6; the height
of the barrier increases with the density. The value of α

corresponding to the minimum is inversely proportional to
the root mean square displacement of the particles from their
sites. Since 1√

(α)
= 0.37, this is a case of weak localization as

the root-mean-square displacement is about five times larger
than that of the crystal ( 1√

α
= 0.08) at the freezing point.

Therefore this free-energy minimum can be associated with
a deeply supercooled state [39,40] with density distribution of
overlapping Gaussians centered around an amorphous lattice.
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Δ

FIG. 9. Free-energy difference 	A = A[ρ0] − Al[ρ0] as a func-
tion of localization parameter α at η = 0.576 and 0.596 for amor-
phous structures. The inset shows at magnified scale the energy
barrier that separates the minimum of amorphous structure from that
of homogeneous fluid.
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The schematic phase diagram that one expects in the
presence of a glass transition contains a pressure line that
bifurcates from that of the liquid at some η > ηb and that
diverges at ηJ [6]. The bifurcation point is connected with
the onset of glass transition. The pressure of a system can be
found from the knowledge of single- and two-particle density
distributions. For example, the virial pressure of a system in
three dimensions is given as

βP

ρ0
= 1 − 1

6kBT N

∫
dr1

×
∫

dr2ρ(r1)ρ(r2)g(r1,r2)[r · ∇u(r)], (5.10)

where r = r2 − r1. For an amorphous structure of hard spheres
this reduces to

βP

ρ0
= 1 + 2

3
πρ0g(1) + 2π

3
g(1)

∑
q �=0

|μq |2Sa(q)j0(q).

(5.11)

Note that for an isotropic fluid the third term of the above
equation is zero; the bifurcation of the pressure line from
that of the normal fluid starts as soon as particles start getting
localized. Localization of particles also leads to crossover from
nonactivated to activated dynamics and considerable increase
in relaxation time.

VI. SUMMARY AND PERSPECTIVES

A free-energy functional that contains both the symmetry-
conserved part of the DPCF c(0)(r) and the symmetry-broken
part c(b)(r1,r2) has been used to investigate the freezing of
a system of hard spheres into crystalline and amorphous
structures. The values of c(0)(r) and its derivatives with respect
to density ρ0 as a function of distance r have been found
using integral equation theory comprising the OZ equation
and a closure relation proposed by Roger and Young [23].
For c(b)(r1,r2) we used an expansion in ascending powers of
order parameters. This expansion involves higher-body direct
correlation functions of the isotropic phase, which in turn
were found from the density derivatives of c(0)(r). For this we
used the ansatz [25] embodied in Eqs. (3.10) and (3.11). The
contribution made by the symmetry-broken term to the free
energy at the freezing point (liquid-crystal transition point)
was found to be about 8% of the symmetry-conserving part.
Though this contribution is small, but, as shown in Table I
it improves the agreement between theoretical values of the
freezing parameters and the values found from simulations.

This result and the results reported earlier [10] for the power-
law fluids show that the contribution of the symmetry-broken
part of the free energy increases with the softness of the
potential. This explains why the RY free-energy functional was
found to give a reasonably good description of the freezing
transition of hard-spheres fluid but failed for potentials that
have soft core and/or attractive tail. These results also indicate
that the theory described here can be used to describe the
freezing transitions of all kinds of potentials.

We used the free-energy functional to investigate the
question of having metastable states between the homogeneous
liquid and the regular crystalline state. The value of the
site-site correlation function g(R) that provides the structural
description of the amorphous structure has been taken from a
molecular dynamics simulation of a granular system subjected
to a sequence of vertical taps [22]. The system has been found
to behave like a glass-forming system. The reason for our
choosing these data is that they are available for η < ηJ [22]
and therefore can be used directly in the theory without using
approximations such as scaling relation (5.1). Using the data
of g(R) at η = 0.576 and 0.596 from Ref. [22] we examined
the stability of amorphous structures with respect to the
homogeneous fluid. The minimum of free energy found at α �
7 suggests that the structures are stable compared to that of the
fluid and corresponds to a density distribution of overlapping
Gaussians centered around an amorphous lattice. This kind
of structure may be associated with deeply supercooled states
with a heterogeneous density profile. The transition of the
liquid into any of these states will be determined by considering
the dynamics of fluctuations around these minima. The
glassy minimum is separated from the homogeneous liquid
minimum by an energy barrier that height increases with the
density.

Among future applications, it will be instructive to inves-
tigate the contribution made by the second term of Eq. (3.7)
to free energy of different potentials, application of the theory
to the freezing transition in two dimensions, in particular to
examine the melting through the hexatic phase that other
density functional schemes have failed to show, and the
possibility of calculating total pair correlation functions of
frozen phases using the OZ equation.
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