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Aggregation of frictional particles due to capillary attraction
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Capillary attraction between identical millimeter-sized spheres floating at a liquid-air interface and the resulting
aggregation are investigated at low Reynolds number. We show that the measured capillary forces between two
spheres as a function of distance can be described by expressions obtained using the Nicolson approximation at
low Bond numbers for far greater particle sizes than previously assumed. We find that viscous hydrodynamic
interactions between the spheres needs to be included to describe the dynamics close to contact. We then consider
the aggregates formed when a third sphere is added after the initial two spheres are already in contact. In this
case, we find that linear superposition of capillary forces describes the observed approach qualitatively but not
quantitatively. Further, we observe an angular dependence of the structure due to a rapid decrease of capillary
force with distance of separation, which has a tendency to align the particles before contact. When the three
particles come into contact, they may preserve their shape or rearrange to form an equilateral triangle cluster—the
lowest-energy state—depending on the competition between attraction between particles and friction. Using
these observations, we demonstrate that a linear particle chain can be built from frictional particles with capillary
attraction.
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I. INTRODUCTION

Aggregates can be observed to form in particulate systems
with attractive interactions with shapes that depend on the
nature of forces between particles and on their initial positions.
An important example is the aggregation of floating objects at
the surface of a liquid due to capillarity. This phenomenon can
be easily observed in everyday examples such as clustering of
bubbles in a sink [1], clumping of breakfast cereals floating
in a bowl filled with milk [2], and biomaterials such as
pollen or eggs of some insect species observed floating at
the surface of ponds [3] and even swimming nematodes [4].
Capillary aggregation has many important applications as
in flotation processes in ore extraction, and self assembly
of micrometer-sized floating particles to fabricate new two-
dimensional materials [5]. Further, this phenomenon has been
exploited to study formation of ramified fractal aggregates [6],
and recently by our group to examine the heterogeneous nature
of cohesive granular media using spheres floating at a liquid-air
interface [7]. While floating particles of the same kind always
attract each other, particles with different wetting properties
can repel each other. For simplicity, we limit our discussion in
the following to identical spherical particles.

The first attempt to introduce capillary forces due to a liquid
interface between floating bodies, was given by Poynting and
Thomson [8], who derived the forces between semi-immersed
plates. The level of fluid in between is increased if the plates
are hydrophilic or decreased if the plates are hydrophobic. In
both cases the curvature of the interface modifies hydrostatic
pressure between the plates, which overcomes the pressure
on the external sides, leading to an attraction between the
plates. This mechanism cannot be directly applied to floating
particles [2], because gravitation, buoyancy, and capillary
forces set the height of the objects. Because the location of
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the contact line and the shape of the meniscus result from a
competition between gravity and capillarity, their horizontal
extension is of order of the capillary length Lc = √

γ /(ρ g),
where γ is the surface tension between the liquid and the
atmosphere, ρ the density of the liquid, and g the gravitational
acceleration. Thus, a particle in range of the meniscus caused
by other particles is out of equilibrium because the horizontal
projection of surface tension and hydrostatic pressure is no
longer isotropic. However, the exact calculation of capillary
interactions becomes difficult even for spherical particles due
to geometrical complexity. Therefore, an analytical approach
becomes possible only by simplifying the problem.

Nicolson [1] first proposed a linear superposition ap-
proximation to calculate the force between two identical
bubbles at a liquid interface, which has since been applied
to floating spheres [2,9]. Using this approximation implies
that the calculations are restricted to small deformations of the
interface and to particles of radius R which is small compared
to Lc. The Bond number Bo = R2/Lc

2 is the corresponding
dimensionless parameter to compare particle size and the
capillary length and consequently linear calculations are
limited to Bo � 1. The force also depends on the contact
angle θ at the contact line between the atmosphere, the fluid,
and the particles. A complementary approach starting with
the Young-Laplace equation in bipolar coordinates for small
deformations and particle sizes has also been used to derive the
shape of the liquid interface and the force of attraction [10–12].
Singh et al. [3,13] have developed a numeric simulation to
study the motion of floating bodies coupled with free surface
flow, but the results were not compared with experimental
measurements. Capillary forces between partially submerged
spheres have been experimentally investigated but the particles
were constrained from moving [14,15], or were submillimeter-
sized particles at liquid-liquid interfaces where the Nicolson
approximation is expected to work [16].

For particles larger than a millimeter, the approximations
used in theoretical derivations discussed above become less
obvious. The capillary force between millimeter-sized spheres
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has been measured by Camoin et al. [17] and a decreasing
exponential shape was found. But the particles in that study
were not free to move and no comparison with theory was
presented. A further important factor which has received little
attention during the aggregation is the surface friction of the
particles, which can become important when more than two
particles aggregate [7]. Therefore, careful experiments are
necessary to clarify the physics of capillary aggregation for
millimeter-sized particles.

In this paper, the force of attraction between floating spheres
is investigated by measuring and analyzing trajectories of
identical spheres with friction. In particular, we investigate
if the mechanism of aggregation that has been calculated
and tested for R � Lc can be extended to R ∼ Lc. We will
also examine the dynamics of three particles to study the
effect of friction and the validity of a linear superposition of
capillary forces for many-particle systems. We introduce first
the theoretical background related to the capillary interactions
and the effect of viscous drag in Sec. II, and then describe the
experimental apparatus in Sec. III. The experimental study
of the dynamics of two initially isolated particles and the
corresponding analysis are presented in Sec. IV; experiments
with three particles are discussed in Sec. V. We conclude
by demonstrating fabrication of a linear chain of spheres by
exploiting friction and giving some remarks on the general
implication of our study.

II. BACKGROUND

To discuss the nature of the approximations, we first
describe in brief the derivation of the force of attraction
between two identical floating spheres using the Nicolson ap-
proximation [1,2,9]. Then we consider the viscous interactions
that need to be calculated to describe particle dynamics near
contact.

A. Capillary attraction between floating spheres

A schematic of spheres with density ρs floating at a liquid-
air interface and its deformation is shown in Fig. 1. We denote
the height of the contact line relative to the fluid level by zc

and the interfacial slope at the contact line by z′
c. The vertical

position of the sphere is parametrized by the angle φc between
the lowest point of the sphere and the level of the contact line.
From geometrical considerations this angle is related to the
contact angle by the relation

φc = π − θ + arctan(z′
c).

To find φc, we use the vertical force balance for a particle at
rest at a liquid-air interface:

P + A + Tz = 0, (1)

θφ

FIG. 1. (Color online) A schematic diagram of two spherical
particles floating at a liquid-air interface.

where P is the sphere weight, A the buoyancy for a semi-
immersed body, and Tz the surface tension integrated along the
contact line, which by symmetry is along the vertical direction;
they are given by

P = −4/3 π R3 ρs g,

A = π R3 ρ g

[
2

3

(
1 − cos3φc

) −
(zc

R
+ cos φc

)
sin2φc

]
,

and

Tz = 2π γ R sin φc

z′
c(

1 + z′
c

2
)1/2 .

Assuming that z′
c � 1 and zc � R, the following expression

can be obtained [2,9]:

sinφc z′
c = sinφc tan(φc + θ ) = Bo �. (2)

Here, � = 2ρs/ρ−1
3 − 1

2 cos θ + 1
6 cos3 θ . Given the physical

parameters of the particle and fluid, the values of φc and z′
c =

tan(φc + θ ) can then be numerically computed. Because of
axisymmetry, z as a function of the distance to the particle
center r is given by the Young-Laplace relation z(r)

Lc
2 = C(r),

where C(r) is the local interface curvature. For small z′(r), we
then obtain

z(r)

Lc
2 = ∇2z(r). (3)

This equation with boundary conditions z → 0 as r → ∞
and z′[r = Rsin(φc)] = z′

c admits solution with a modified
Bessel function of the first kind Kn(x), and further noting that
dK0(x)

dx
= −K1(x), one obtains

z(r) = − tan(φc + θ ) Lc

K0(r/Lc)

K1[R sin(φc)/Lc]
. (4)

The numerical value of the deformation at a point along the
contact line (meniscus size) zc is found by replacing the value
of r by R sin φc.

Next, we use the Nicolson approximation [1,9] to compute
the force experienced by a particle due to the meniscus of
a second particle (see Fig. 1). In this case, the horizontal
projection of the capillary force integrated along the contact
line has a resultant which is directed toward the center of
the second sphere. The expression remains difficult to solve.
However, using linear superposition, and noticing that for
small deformations the resultant of surface tension is modified
in direction but not in amplitude, Fcap can be approximated
as Fcap = T z′

2, where z′
2 = dz2

dl
is the slope of the interface

created by the second particle [18]. Using Eq. (1) and
expressing the elementary work of the capillary force, we
obtain

δW = −Fcap dl = (P + A) dz2.

By integration and using Eq. (2), the energy of interaction,
E(l), between these particles is expressed as the product of an
effective weight Peff = (P + A) = 2πγRBo� and the liquid
surface deformation z(r = l). Using the expression of � given
by Eq. (2), the effective weight can be expressed as

Peff = 2πγR sin(	c) tan(	c + θ ).
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Then the energy of interaction E(l) = Peff z(r = l) is written
as

E(l) = −2πγR
sin(	c) tan(	c + θ )2 Lc K0(l/Lc)

K1[R sin(	c)/Lc]
.

Substituting Fc(l) = −dE/dl and using Eq. (4), we obtain
the following expression for the capillary force between two
particles:

Fc(l) = −CV M K1(l/Lc), (5)

where

CV M = 2π γ R sin(φc)
[tan(φc + θ )]2

K1[R sin(φc)/Lc]
.

For l 	 Lc, we can use the asymptotic form of K1: K1(x) ≈√
π
2x

e−x for x 	 1. Thus Fc decreases rapidly for distances
larger than the capillary length. Fc is also attractive and this
feature can be explained following Singh and Joseph [13].
For light hydrophilic particles, rise of liquid between particles
decreases the slope of the liquid interface at the contact line.
The horizontal projection of the tension force is therefore
increased between particles, exceeding those on the external
side and leading to an attractive force. The argument remains
the same for heavier hydrophobic particles, by decreasing the
slope of the liquid interface at the contact line.

It may be noted that a similar expression valid for small
Bo is found using a different method [10–12,16], but with a
slightly different prefactor:

Fc′(l) = −CPa K1(l/Lc), (6)

with

CPa = 2πγLc

[tan(φc + θ )]2

{K1[R sin(φc)/Lc]}2
.

For R � Lc, the prefactors can be simplified, and one can
replace the Bessel function by its asymptotic form K1(x) ≈
1/x for x � 1. Both Eqs. (5) and (6) then simplify to

Fc0 = −C0 K1(l/Lc), (7)

with C0 = 2πγRBo
5/2�2. It is important to note that in this

equation, the factor before the Bessel function was mainly
determined by the hypothesis Bo � 1, whereas the condition
of validity of Eq. (5) is given mainly by z′

c � 1. Moreover,
in using the Nicolson approximation, the contribution of
hydrostatic pressure is completely neglected, which may not be
true for millimeter-sized spheres. While the work of Allain and
Cloitre for cylinders [18] shows that the pressure contribution
becomes negligible when Bo < 10, an estimate of its amplitude
has not been reported for millimetric spheres when Bo is not
small. Finally, it can be noted that the expression for the
capillary force between two spheres expressed in Eqs. (5), (6),
and (7) is a product of a Bessel function −K1(l/Lc) giving
the spatial dependency and a constant depending on the model
(CV M , CV A, and C0). In the following the constant is simply
labeled C, regardless of the theoretical model.

These results can also be applied to the case with more
than two particles. Because Eq. (3) is linear, the deformation
experienced by one particle is the sum of those created by the
other particles individually. The resulting capillary potential

energy is again obtained by the Nicolson approximation,
i.e., by multiplying the effective weight by the fluid surface
deformation. Consequently the capillary force experienced by
one particle is also the sum of the forces created by the other
particles and computed using Eq. (5).

B. Hydrodynamics of floating spheres

Because a floating sphere begins to move due to capillary
interaction, one has to consider additional hydrodynamic
interactions. We limit our analysis to the case of small
Reynolds number Re = ρLV

μ
to neglect inertial effects and

also small capillary numbers Ca = μV

ργ
to neglect motion of

the contact line on the particle, where L is a typical length
scale, V a typical velocity, and μ the dynamic viscosity. The
drag force for a partially immersed sphere is given by the
Stokes law corrected by a drag coefficient fd :

Fd = −6πμRfdv, (8)

where v is the particle velocity. fd depends on the vertical
position of the sphere relative to the interface, the contact
angle, surface tension, and density of particle and liquid. In
order to take into account the hydrodynamic interactions due
to the flow created by the second sphere, we adopt the concept
of hydrodynamic mobility introduced by Batchelor [19] for
colloidal particle motion. For low Re, the difference of the
capillary and drag forces projected along the axes between
particle centers leads to

0 = Fc,1 + Fd,1 − Fc,2 − Fd,2,
(9)

0 = −2CK1(l/Lc) − 6πμRfd

dl

dt
,

or

−dl

dt
= CK1(l/Lc)

3πμRfd

. (10)

This last expression is corrected by multiplying it by the
hydrodynamic mobility G(x) in terms of x = l/R for two
spheres along the line joining their centers [19], and is given
by [16,19,20]

G(x) = 1 − 3

2x
+ 1

x3
− 15

4x4
− 4.46

1000
(x − 1.7)(−2.867). (11)

Therefore, the equation of the motion of a sphere is given by

dl

dt
= KG G(x) K1(xR/Lc) , (12)

where KG = 2C
6πμfdR

. This expression predicts no hydrody-
namic interactions when the spheres are far from each other
[G(x → ∞) = 1] and dl

dt
= 0 when the spheres come in

contact [G(2) = 0], because of lubrication created by the liquid
between the spheres.

These results show that important features of dynamics of
capillary aggregation can be extracted from the analysis of
particle trajectories. In Sec. IV, we will study examples with
two floating spheres with Bo ∼ 1 and compare experimental
results with Eq. (12).
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FIG. 2. (Color online) A cross section of the experimental
apparatus with two particles floating at the liquid-air interface. The
liquid is filled up to a ledge in the sidewall to minimize particle
interactions with the container.

III. EXPERIMENTAL SETUP

Experiments are conducted in a container with an aluminum
frame with dimensions measuring 20.3 cm long, 20.3 cm wide,
and 2.54 cm deep, and a Plexiglas bottom (Fig. 2). A glass lid is
placed above to avoid evaporation and prevent dust from falling
in. To avoid boundary effects, the meniscus is pinned at a ledge
along the sidewalls of the container in order to minimize the
meniscus and ideally obtain a flat surface. The container is
kept horizontal to within 0.1◦, and the level of liquid can
be adjusted with a syringe. The particles are observed from
above with a 1280 × 1024 pixel camera, with a telecentric lens,
and back lit through the transparent bottom boundary. Images
are recorded with a frame rate of one image per second, and
particles are tracked with standard algorithms implemented in
IMAGEJ. Relative error in finding particle centers is less than
2% of the diameter.

In order to obtain a sufficiently viscous and dense liquid, we
use a mixture of glycerol (90% by weight) and distilled water.
The physical properties of this liquid are summarized in Table I
using the data from Ref. [21]. Polyethylene (high-density
polyethylene) or nylon (nylon 6) spheres are used in our study
and their properties and results are summarized in Table II.
These materials are hydrophilic and lighter than the liquid, and
were chosen in order to form stable aggregates. The contact
angle θ needed to compare with calculations is estimated
directly by imaging a sphere floating on the liquid from the
side. The particles are first immersed deep into the liquid and
then allowed to reach their vertical equilibrium. The contact
angle is measured from the image, as shown on Fig. 3 and
values are reported in Table II. Using these data, we estimate
the slope of the liquid interface z′

c and the amplitude of the
meniscus zc, using formulas in Eqs. (3) and (2). Even for

millimetric-sized particles where the Bond number is of order
1, the approximations used in Sec. II, i.e., zc/R � 1 and
z′
c � 1, are satisfied. Furthermore, we notice that the vertical

position of the sphere center zcenter = zc + R cosφc is negative,
so the particle centers are below the surface, which allows
us to assume that the drag coefficient for a semi-immersed
sphere fd ≈ 1. Also, when particles are touching each other,
the contact point between particles is located below the
liquid surface, which prevents high interface distortion when
particles are close.

Finally, we note that experiments are very sensitive to
vibrations and thermal convection. Therefore, room temper-
ature is regulated at 23 ◦C and several hours are needed after
filling the container to reach thermal equilibrium to commence
experiments.

IV. ATTRACTION BETWEEN TWO FLOATING
PARTICLES

In this section, we discuss the motion of two initially
separated floating particles. To obtain reproducible data, the
particles are first totally immersed in the liquid and then placed
in their initial positions with negligible velocities. We plot the
distance between the centers of two polyethylene spheres l as
a function of time in Fig. 4. Curves for various initial positions
overlap with each other when we choose the time of origin
to be the time of contact. This curve shows that the particle
dynamics before contact is a function only of separation
distance.

We then determine the velocity of the spheres vrel = dl/dt

from the separation distance over time and plot it in Fig. 5
versus x = l/R. The data were averaged over ten experiments
to reduce statistical and measurement errors. The velocity is
observed to first increase rapidly as the spheres approach each
other, and then decrease as the particles approach each other
more closely because of lubrication, and reaches zero once the
particles come into contact due to hard core repulsion.

From this measured velocity, we can extract the drag force
experienced by the particles, and assuming that inertia is
negligible, we can also obtain the capillary force by equating
it with the drag force. Now the maximum velocity is approx-
imately vrel/2 ∼ 4 × 10−5 m s−1. Therefore, the Reynolds
number Re = V Rρ

μ
≈ 4 × 10−4 � 1 and the capillary number

Ca = V Rμ

ργ
≈ 9 × 10−8 � 1, which are consistent with our

assumptions.
We fit the experimental data with Eq. (12), and find that

its form is well described with KG = 9.10 × 10−4 ± 0.1 ×
10−4 m s−1 (see Fig. 5). If we assume that the drag coefficient
for semi-immersed particles fd = 1, then from Eq. (5) we
obtain KV M = CV M

3πμR
= 9.66 × 10−4 m s−1. Considering the

significant number of assumptions, the difference of about 6%
between the fit and the theory is remarkably small. Further, the
decrease of velocity at small particle separation (l/R < 2.5 in

TABLE I. Physical properties of glycerol-water mixture used in the experiments [21].

Density ρ (kg m−3) Surface tension γ (N m−1) Viscosity μ (Pa s) Capillary length Lc (mm)

1233 ± 3 0.064 ± 0.002 0.175 ±0.015 2.30 ± 0.04
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TABLE II. Properties of the plastic spheres made of polyethylene or nylon. The diameter D and the density ρs of the particles were given by
the provider, the contact angle θ is measured directly (see Fig. 3), and the Bond number Bo is the ratio R2/L2

c . The other parameters characterize
the equilibrium position of a floating sphere, including the angle φc computed from Eq. (2). The amplitude of the meniscus around the particles
zc and meniscus slope z′

c are estimated using Eqs. (3) and (2). The vertical position of a sphere center is given by zcenter = zc + R cosφc.

Material D (mm) ρs (kg m−3) θ (deg) Bo φc (deg) zc (mm) z′
c zcenter (mm)

Polyethylene 6.35 ± 0.05 950 40 ± 3 1.91 ± 0.1 124 0.49 − 0.29 −1.27
Polyethylene 3.175 ± 0.05 950 20 ± 2 0.48 ± 0.03 151 0.16 − 0.15 −1.23
Nylon 3.175 ± 0.03 1150 5 ± 5 0.48 ± 0.03 169 0.074 − 0.11 −1.48
Nylon 2.381 25 ± 0.05 1150 5 ± 5 0.27 ± 0.02 171 0.038 − 0.075 −1.14
Nylon 1.5875 ± 0.05 1150 5 ± 5 0.12 ± 0.009 173 0.014 − 0.042 −0.77

Fig. 5) is well described by the Batchelor model of viscous
hydrodynamics interactions at low Re.

We measured KG and KV M with spheres with other sizes
and material properties listed in Table III. The measured
velocity is scaled with KG and compared with Eq. (12) in
Fig. 6. Good agreement is observed except for the largest
separation for nylon spheres. The difference may arise due
to various reasons. First, Eq. (7) was established assuming
that the deformation of the interface and the slope are small.
Results for polyethylene spheres of diameter D = 6.35 mm
are less in agreement with the model, because we have
zc/R = 0.154 and z′

c = −0.29, which are not so small
compared with 1. Second, we assumed fd = 1, which may
not be accurate. Finally, nylon particles have a higher density,
and the resulting capillary force is an order of magnitude
smaller and difficult to measure for large l/Lc.

Overall, our experiments show that capillary attraction be-
tween millimetric floating spheres is reasonably well described
by the calculations presented in Sec. II. For completeness,
we present the theoretical results obtained with Eq. (6) in
Table III. The agreement is similar to those obtained with
Eq. (5) except for the highest KG. While it is not possible to
be conclusive as to which model is more accurate, it appears
that the Nicolson approximation [2,9] is simpler to apply to
experiments. Further, our experiments show that both models
remain valid for B0 ∼ 1 at least when the liquid surface is not
strongly distorted even during contact as in our case where
particle centers are well below the liquid surface.

Our results lead to interesting information on the aggre-
gation process. First, we can estimate the aggregation time
using the equation of motion when we neglect hydrodynamic
interactions. This approximation is reasonable because the

FIG. 3. (Color online) A side view of a floating particle with
D = 3.175 mm. The contact angle θ corresponds to the angle between
the liquid-air interface and the tangent to the particle at the same point.

time scale of the approach is dominated by the time when
particles are far from each other, when viscous hydrodynamic
interaction between particles can be neglected (see Fig. 4).
If one has a system of isolated spheres, and takes the initial
separation equal to the mean separation of the particles lm, we
estimate the contact time:

tc =
∫ 2R

lm

−1

KG K1(l/Lc)
dl. (13)

These experiments were performed with ten particles (D =
3.175 mm), with an initial separation lm = 1.85 cm. We find
that tc = 13 000 s, whereas the estimate gives tc(lm) = 24 000 s
which correctly captures its order of magnitude.

Moreover, the cohesive force inside an aggregate can be
estimated using Eq. (5), with l = 2R. Because the contact
point between the spheres is below the surface, there is
indeed no discontinuity of the interface. For spheres with
D = 3.175 mm, and using the corresponding value of KG,
we find the cohesive force at contact:

FC(2R) = 3πμRKGK1(2R/Lc) ≈ 7.9 × 10−7 N,

which is significantly smaller than the effective weight of a
particle ≈4.3 × 10−5 N. Finally, the good agreement between
measurements and theoretical results obtained with the Nicol-
son approximation implies that the hydrostatic pressure con-
tribution is negligible, which is not obvious when Bo ∼ 1. The
force due to hydrostatic pressure results from the difference
of the liquid level around the particle caused by the meniscus
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FIG. 4. (Color online) The distance between the centers of the
two polyethylene particles versus time (D = 3.175 mm). The time is
chosen to be equal to zero when the spheres come into contact. The
different symbols correspond to various initial separation distances.
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FIG. 5. (Color online) Approach velocity vrel versus x = l/R of
polyethylene spheres with D = 3.175 mm. Error bars are estimated
from the statistical dispersion using 12 data sets. The curve is fitted
by Eq. (12) with coefficient KG = 9.10 × 10−4 ± 0.1 × 10−4 m s−1.

created by a second particle. Integration of the pressure on
a sphere with a spatially varying contact line cannot be
accomplished analytically. Using a linear superposition of sur-
face deformations and the expression of the capillary force be-
tween two plates [2,8], an estimate of the force experienced by
the first particle due to hydrostatic pressure can be obtained as

FP (2R) ≈ ρgR[z2(3R)2 − z2(R)2],

where z2(r), the deformation of the liquid surface due to
the second particle only, is computed using Eq. (4). For
D = 3.175 mm, we find FP (2R) ≈ 1.3 × 10−7 N. For the
largest spheres with D = 6.35 mm, FP (2R) ≈ 4.9 × 10−6 N
when the capillary force becomes FC(2R) ≈ 5.6 × 10−6 N.
Consequently, it appears that for particles of similar or larger
size, the hydrostatic pressure contribution should be taken
into account to compute the amplitude of capillary attraction.

V. EXPERIMENTS WITH THREE PARTICLES

We now discuss the formation of aggregates when a third
sphere is added at various positions relative to the two-sphere
cluster. We label particles 1 and 2 as the ones that are initially
in contact, with the first being closer to the third particle. We
label lM as the distance between the third particle and M ,

the point of contact between particles 1 and 2, and lij as the
distance between particles i and j . Inside the cluster, we have
l12 = 2R = D. β is the angle between particles 1 and 2 and
particle 3 and M (see Fig. 7). After the particles are placed
in their initial positions, we observe that the cluster of two
particles moves as a rigid body and can rotate depending on
the initial value of β. Once contact occurs between the cluster
of two particles and the third particle, a rearrangement can
occur depending on initial conditions producing an equilateral
triangle (Fig. 8).

A. Capillary force due to a cluster of two particles on a third
particle before contact

We define Fc as the force exerted on the particle 3 by the
two-particle cluster (see Fig. 7). We have F1 = CK1(l13/Lc)u1

and F2 = C K1(l23/Lc)u2, corresponding to forces which
would be exerted by particles 1 and 2 respectively on
particle 3, ignoring the effect of the other particle, and u1 and u2

are associated unitary vectors. The approach velocity is defined
as dlM

dt
. We consider the projection of Fc along this direction

using a unitary vector u. Then assuming linear superposition,
we obtain

Fc · u = F1 · u + F2 · u.

Drag forces are difficult to estimate in the presence of a cluster
of two particles. As hydrodynamic interactions are dominated
by the contribution of the closest particle, hydrodynamic
mobility can be estimated as G(l13/R) in first approximation.
Then,

−dlM/dt = KG G(l13/R) K1(l13/Lc) u1 · u

+KG G(l13/R) K1(l23/Lc) u2 · u. (14)

If lM/D 	 1, then we have K1(lM/Lc) ≈
√

πLc

2l
e−lM/Lc .

Therefore, F1 and F2 decrease rapidly with increasing separa-
tion distance between particles. As a result, the closer particle
is attracted more strongly, which causes the cluster to rotate
and decreases β.

Next, we test if linear superposition given by Eq. (14) can
be used to describe the formation of the cluster. The approach
velocity vrel is plotted versus the distance between particles
1 and 3 l13 in Fig. 9 for β(t = 0) = βi = 0◦ (a) and 90◦ (b).
The curves are quite similar to the one obtained previously
for attraction between two particles (Fig. 5). Then the right
part of Eq. (14) and the part exerted by particle 1 only, are
added in Fig. 9. We observe that the force exerted by particle 1
dominates as l13 < l23 but is not sufficient to describe the total

TABLE III. The coefficients KG observed in the experiments which set the amplitude of capillary attraction. The experimental values were
obtained using Eq. (12) and errors are estimated from the accuracy of the fit. The theoretical values were calculated from Eqs. (6), (5), and (7);
the errors arise from the uncertainties in the parameters values.

Material D (mm) Experimental coefficient KG (m s−1) Theoretical coefficient KV M (m s−1) Theoretical coefficient KPA (m s−1)

Polyethylene 6.35 2.0 × 10−2 ± 0.3 × 10−2 3.7 × 10−2 ± 0.7 × 10−2 6.8 × 10−2 ± 1.2 × 10−2

Polyethylene 3.175 9.1 × 10−4 ± 0.1 × 10−4 9.7 × 10−4 ± 0.7 × 10−4 11 × 10−4 ± 0.7 × 10−4

Nylon 3.175 15 × 10−5 ± 0.1 × 10−5 7.9 × 10−5 ± 1.2 × 10−5 8.1 × 10−5 ± 1.4 × 10−5

Nylon 2.381 25 4.2 × 10−5 ± 0.1 × 10−5 1.8 × 10−5 ± 0.2 × 10−5 1.9 × 10−5 ± 0.2 × 10−5

Nylon 1.5875 4.5 × 10−6 ± 0.2 × 10−6 2.4 × 10−6 ± 0.4 × 10−6 2.4 × 10−6 ± 0.4 × 10−6
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FIG. 6. (Color online) Average dimensionless approach velocity vrel/KG versus l/Lc, for five different kinds of particle listed in Table II.
Measurements are compared with the spatial dependency given by Eq. (12).

force (Fig. 9). When the particles are initially aligned [βi = 0◦;
Fig. 9(a)], the linear superposition is a good approximation.
The decrease of vrel close to contact due to lubrication is also
well reproduced using the mobility for the closest particle.
For a larger initial angle βi , the result of linear superposition
fails to follow the experimental curve when the third particle
approaches the cluster. Failure of linear superposition may not
be surprising because the deformation for two particles is not
equal to the sum of the deformations of two individual spheres
when the spheres are close to each other. Nevertheless, the
linear superposition gives the correct qualitative description,
and even gives a reasonable estimate of Fc when a particle is
at a sufficiently large distance from the two-sphere cluster.

B. Particle friction: Shape and dynamics after contact

We plot the evolution of β for two initial angles βi in
Fig. 10(a) to illustrate the two different kinds of cluster
observed. In both cases, β decreases before contact, but while
the newly formed three-particle cluster stops evolving for
small initial angles, a rapid rearrangement is observed where
β increases to 90◦ for the larger initial angle. This second
situation corresponds to formation of an equilateral triangle,

Particle 3

Particle 2

Particle 1

23

13

M

l

l
β

α

FIG. 7. (Color online) The angles β and α corresponding to the
three-particle system viewed from above.

which is the lowest-energy state for a floating three-particle
cluster. In order to investigate the dependence of the two
final states on initial conditions, experiments were performed
systematically as a function of βi and are represented in
Fig. 10(b) by plotting the angle βc at contact and βf after
any rearrangement has occurred.

As argued previously, the rapid decrease of force with
distance tends to decrease β before contact as the spheres
approach each other. For the smallest and largest values of βi ,
clusters do not rotate significantly and βc remains very close
to βi . Then after contact, if βi is smaller than βi,t = (62 ± 2)◦,
the shape of the three-particle cluster does not evolve, and
thus βf = βc. Otherwise capillary attraction inside the cluster
modifies its shape and tends to increase the final angle to 90◦.
This shape corresponds to a regular triangular cluster where
all the spheres are in contact with each other. As the distances
between particles are minimal, this state has the lowest possible
energy.

We explain the difference of behavior because of the pres-
ence of friction which prevents the spheres from rolling and
sliding on each other once they come into contact. Figure 10(b)
can be considered as a transition diagram between two phases:
compact and aligned clusters due to the competition between
friction and capillarity. Below a certain value βi,t of β, the final
cluster shape is aligned, and the final shape is compact above

FIG. 8. A sequence of images showing aggregation of three
particles with βi = 77◦ and βf = 90◦.
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FIG. 9. (Color online) Test of the linear superposition assumption
for β = 0◦ (a) and 90◦ (b). Average approach velocity of the third
particle is plotted as a function of the distance l.

this value. The few exceptions observed may be due to particle
surface irregularities like small bubbles or dust trapped on the
spheres.

It appears pertinent to express the transition at the contact
instant, which gives βc,t = (33 ± 1)◦ and relate this value to
the angle α between l12 and l13 (see Fig. 7). The transition

TABLE IV. Transition angles at contact when triangular compact
clusters form, and the effective coefficient of friction for the various
kinds of sphere investigated.

D βc,t αc,t

Material (mm) (deg) (deg) k

Polyethylene 6.35 41 ± 4 119 ± 4 0.0462
Polyethylene 3.175 33 ± 1 131 ± 1 0.0761
Nylon 3.175 21 ± 1 149 ± 1 0.0417
Nylon 2.381 25 29 ± 3 136 ± 3 0.0819
Nylon 1.5875 35 ± 2 128 ± 2 0.124
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FIG. 10. (Color online) (a) Evolution of the angle β for polyethy-
lene spheres (D = 3.175 mm) with two different initial values, 77◦

and 37◦. The cluster always turns before contact. For large values of
βi , it also turns after contact, and this evolution is faster than before
contact. (b) The angle between the third particle and the center of the
cluster of two particles at the instant of contact βc (red circles) and
after any rearrangement has occurred βf (blue crosses) as a function
of its initial value βi .

occurs when α is below αc,t = (131 ± 1)◦, when friction
can no longer balance the capillary force. Similar behavior
is observed using other kinds of particles with different
transition angles αc,t which are reported in Table IV.Using
the transition angles αc,t , one can estimate the effective
friction coefficient k between particles using the ratio of
the tangential and normal components of force acting on
particle 3 at the point of contact with particle 1. The
tangential component is entirely due to the force F23 caused by
particle 2, and is given by F23 cos(αc,t /2). The normal
component is due to the sum of the force F13 and component
F23 sin(αc,t /2) parallel with F13. Therefore,

k = F23 cos(αc,t /2)

F13 + F23 sin(αc,t /2)
.
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FIG. 11. (Color online) (a)–(f) An example of a chain of 12
spheres obtained by adding successively particles along the cluster
axis. The particles are assembled using capillary forces and stabilized
by friction.

Because F13 = CK1(D/Lc) and F23 = CK1(l23/Lc), we
obtain

k = K1(l23/Lc) cos(αc,t /2)

K1(D/Lc) + K1(l23/Lc) sin(αc,t /2)
, (15)

where l23 = D
√

2(1 − cos αc,t ) when particles 1 and 3 are in
contact. Computed values of k are reported in Table IV. It may
be noted that k decreases with particle size and further depends
on the material. While rolling and sliding friction coefficients
for these materials on various hard surfaces have been reported
and depend on the normal force [22], we were unable to find
corresponding data to compare to when particles are immersed
in a liquid which may be expected to modify the friction at
contact.

C. Linear chain assembly with capillary and friction forces

Building on our observation, we demonstrate an example
of an aggregate with frictional particles self-organized with
capillary forces, which is not possible with frictionless
particles. The chain is grown initially one particle at a time
in Figs. 11(a)–11(d) by dropping a particle near one end of a
developing chain. Then the chain can be straightened to remove
any kinks by introducing particles near opposite ends, which
tends to straighten the chain [see Fig. 11(e)]. The images shown
here correspond to polyethylene spheres with D = 6.35 mm.
Using this technique, we were able to grow chains as long
as 12 particles as shown in Fig. 11(f). Longer chains tend to
be unstable and fold to form two rows of particles, which is
energetically more favorable.

VI. CONCLUSIONS

We have experimentally investigated capillary aggregation
of a small number of floating spheres and shown that attraction
between two spheres is reasonably well described by the ex-
pression of capillary force originally developed for small Bond
number Bo [2]. Specifically, we have shown that for particles
which are hydrophilic and lighter than the fluid, the interface
deformation and its slope remain small even when the Bond
number is of order 1, allowing one to extend the range of va-
lidity of the theory. Further, our measurements are sufficiently
accurate to also demonstrate the crucial role of hydrodynamic
interactions producing rapid decrease of the spheres’ velocity
as they come into contact due to viscous effects.

We have also studied aggregation of a third particle after
formation of a cluster of two particles. The theoretical estimate
using linear superposition appears to be less accurate in
this case, but can still be used to explain the observations
qualitatively. The final shape of the cluster is determined by
the initial position of the third particle relative to the cluster
of two particles. Rotation of the cluster, due to the differential
attraction of the two spheres, tends to create aligned clusters of
three particles. But if the angle β between the three particles is
small enough, capillary forces between the two particles at the
ends overcome friction to form a compact triangular cluster.

Finally, we note that the observation of large heterogeneous
structures in larger capillary aggregates [7] can also be
explained by our analysis. Porous clusters were initially
observed to evolve in that study from a dilute concentration of
particles. As illustrated in our study, particles will rearrange
to form a compact triangular cluster only if friction at
contact can be overcome by capillary forces. Thus chainlike
structures which connect various parts of the aggregate can
be formed that encompass pores which are locked in place
unless compression is applied. Even as particle concentration
is increased, such regions lead to defects in the more dense
aggregates that form. Our observations demonstrate that
friction is clearly necessary to explain the shapes of capillary
aggregates at the millimeter scale.
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