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Self-diffusion of biomolecules in solution
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A simple soft-core model potential is proposed to discuss the self-diffusion of biomolecules in solution.
Extensive Brownian-dynamics simulations are performed to obtain the long-time self-diffusion coefficient. Then
the simulation results are compared with the experimental data from a unified point of view recently obtained
for suspensions of hard spheres. Thus, it is shown that the proposed potential can qualitatively well describe the
experimental data.
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I. INTRODUCTION

The main purpose of the present paper is to propose a
simple soft-core model potential to describe the self-diffusion
of biomolecules in solution. Self-diffusion of hard-sphere
colloids has been studied experimentally [1–6], theoretically
[7–12], and numerically [13,14] over the last two decades
because of their simple nature. Self-diffusion of protein
molecules in solution is also an interesting subject for
studying a variety of biological phenomena [15–27]. Until
now, however, its theoretical understanding is still incomplete.
This is mainly for the following two reasons. The first is that
the conventional soft-core potential Un(r) is not appropriate to
describe biomolecules as soft particles; it is given by

Un(r) = kBT
(σ

r

)n

, (1)

where n is an integer, T temperature, and σ a positive
constant. In Eq. (1), the effective diameter σeff is determined
by Un(σeff ) = kBT . Hence σeff = σ here. In fact, for any
system in which the volume fraction φ (= πσ 3N/6V ) is a
control parameter, the long-time self-diffusion coefficients
obtained by experiments and simulations for suspensions are
well described by a singular function of φ as [28]

DL
S (φ) = DS

S (φ)

1 + κ
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S (φ)
D0

(
φ
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) (
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φc

)−2 (2)

with the coefficient [29]

κ =
∫ ∞

1
dr̂r̂3

(
−∂Ûn(r)

∂r̂

)
= n

n − 3
, (3)

where DS
S denotes the short-time self-diffusion coefficient, φc

a fictive singular point to be determined by fitting, r̂ = r/σ ,
and Ûn = Un/kBT . Here m is the particle mass, N the
total number of particles, V the total volume of the system,
and D0 a single-particle diffusion constant. As discussed
in a previous paper [30], the analyses of several sets of
experimental data for biomolecules by Eq. (2) suggest that
their short-time behavior is hard-sphere-like because DS

S is
described well by the relation obtained for a suspension of hard
spheres by Tokuyama and Oppenheim [11]. Those analyses
also suggest that the long-time behavior is soft-sphere-like
because κ is found to be 2.0 but not 1.0. From Eq. (3),

this leads to n = 6. Then Brownian-dynamics (BD) and
molecular-dynamics (MD) simulations were performed with
the conventional soft-core potential given by Eq. (1) with
n = 6. As is shown later, however, both simulation results
suggest that the potential given by Eq. (1) cannot describe the
experimental data qualitatively or quantitatively. This must be
because that potential has no effective core. Hence we propose
a modified soft-core potential with an effective core as

Un(r) = kBT

(
σ

r − bσ

)n

, (4)

where b is a positive constant to be determined. Here
σeff = (1 + b)σ . Hence the volume fraction φ is given by
φ = (πσ 3N/6V )(1 + b)3. In order to use Eq. (2), therefore,
one might replace φ by φ/(1 + b)3. The constant b is chosen
so that the BD simulation results for DL

S coincide with those
of MD when the values of DS

S are taken from the theoretical
values for hard spheres. Thus, one finds b = 0.25.

The second reason for the lack of theoretical understanding
is that the hydrodynamic interactions between biomolecules
cannot be calculated analytically and numerically. There are
two kinds of hydrodynamic interaction. One is a short-time
hydrodynamic interaction, which leads to a short-time self-
diffusion coefficient DS

S . The other is a long-time hydrody-
namic interaction, which leads to a long-time self-diffusion
coefficient DL

S . Both interactions have been analytically
calculated only for hard spheres [11].

In Sec. II, we first derive the starting stochastic equations for
the position vectors of particles from the generalized nonlinear
Langevin equations for many particles. We then perform BD
simulations based on those equations. In Sec. III, we briefly
review the formal expressions for the long-time self-diffusion
coefficient DL

S both in suspensions and in molecular systems
from first principles. We then discuss the important role of
the two kinds of hydrodynamic interaction in self-diffusion
by comparing the experimental data and the simulation results
for hard-sphere colloids. In Sec. IV, we discuss two types of
hydrodynamic effect on the self-diffusion coefficient in hard-
sphere suspensions, the short- and the long-time effects. In
Sec. V, we analyze the experimental data for biomolecules by
using Eq. (2) and show that they can be described well at κ = 2
if the theoretical values for a suspension of hard spheres are
taken as DS

S . In Sec. VI, we perform BD simulations to obtain
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the long-time self-diffusion coefficients for biomolecules. In
order to find a reasonable value of b, we also perform MD
simulations. Comparing both simulation results, we then find
b = 0.25. Thus, the BD simulation results are compared with
experimental data and are shown to be in good agreement with
them qualitatively. In Sec. VII, we conclude with a summary.

II. STARTING EQUATION

In the following, we assume that the short-time hydro-
dynamic interactions between soft spheres behave in the
same manner as those in hard spheres with diameter σ . As
is shown later, this is true for the modified potential. We
consider a suspension of N identical particles with mass m

and diameter σ in the total volume V at temperature T

and volume fraction φ (= πσ 3N/6V ). Let {X(t),P(t)} =
{X i(t),P i(t); i = 1, . . . ,N} denote a set of variables, where
X i(t) and P i(t) denote the position vector and the momentum
of the ith particle, respectively. It is also convenient to
introduce a generating function for {X,P} to have a set of
values {x, p} by �x, p(t) = ∏N

i=1 δ(X i(t) − xi)δ(P i(t) − pi).
Then, one can derive the nonlinear Langevin equation for
P i(t), on a time scale of order tB [11,12],

d

dt
P i(t) = − 1

m

N∑
j=1

ζ ij (X(t)) · Pj (t) + Fi(t) + Ri(t), (5)

and its corresponding stochastic Fokker-Planck equation [32]

∂

∂t
�x p(t) = 	(x, p)�x p(t) + ξx p(t) (6)

with the Fokker-Planck operator

	(x, p) = −
N∑

i=1

[
pi

m
· ∂

∂xi

+ ∂

∂ pi

· Fi

]

+
N∑

i=1

N∑
j=1

∂

∂ pi

· ζ ij ·
[

1

m
pj + kBT

∂

∂ pj

]
, (7)

where the function ξx p(t) denotes a Gaussian, Markov noise
with zero mean and satisfies

〈ξx p(t)ξx′ p′(0)〉 = 2kBT δ(t)
N∑

i=1

N∑
j=1

∂

∂ pi

· ζ ij · ∂

∂ p′
j

× δ(x − x′)δ( p − p′)w(x, p). (8)

Here w(x, p) (= 〈�x p(0)〉) denotes the equilibrium distribu-
tion function which satisfies 	w = 0, the brackets 〈· · · 〉 the
average over an equilibrium ensemble, and tB (= m/ζ0) a
Brownian relaxation time, where ζ0 is a single-particle friction
constant. The random force Ri(t) is given by

Ri(t) =
∫ ∫

dxd p piξx p(t), (9)

and satisfies

〈Ri(t)〉 = 0, 〈Ri(t)Rj (t ′)〉 = 2kBT 〈ζ ij 〉δ(t − t ′). (10)

The friction tensor ζ ij is given by

ζ ij = ζ0[(1 + g)−1]ij , (11)

where the tensor gij indicates the hydrodynamic interaction
between particles i and j (see Ref. [11] for details), and gii =
0. The function Fi denotes a total force acting on the ith
particle from the others and is given by

Fi(t) = − ∂

∂ X i

∑
j �=i

Un(|X i − Xj |). (12)

In order to distinguish the short-time hydrodynamic inter-
actions from the long-time ones, we next introduce a projection
operator ℘ by

℘G = 〈G� p(0)〉
〈� p(0)〉

∣∣∣∣
p=P(0)

, (13)

where � p(t) = ∫
dx�x p(t) and G is an arbitrary function.

Then, use of Eqs. (5) and (6) leads to

d

dt
P i(t) = et	̂(X,P)(℘ + Q)	̂P i(0) + Ri(t) (14)

= −〈ζ ii〉
m

· P i(t) + Fi(t) + Ri(t) + H i(t) (15)

with the term due to the long-time hydrodynamic interactions

H i(t) = −1

m

N∑
j=1

et	̂(X,P)[ζij (X) − δij 〈ζ ij 〉] · P j (0), (16)

where 	̂(x, p)δ(x − x′)δ( p − p′) = 	(x′, p′)δ(x − x′)δ( p −
p′) and Q = 1 − ℘. The first term in Eq. (15) can be written
as [32,34]

〈ζ ii〉 = ζ0[1 + L(φ)]1, (17)

where L(φ) indicates the term due to the short-time hydro-
dynamic interactions. In the following, we neglect the term
Hi(t) because its numerical calculation is still not possible. On
the time scale of order tD (= σ 2/D0), one can safely neglect
the inertia term of Eq. (15), where D0 = kBT /ζ0. Thus, one
obtains

d

dt
X i(t) = DS

S (φ)
Fi(t)

kBT
+ f i(t), (18)

where f i(t) is a Gaussian, Markov stochastic function with
zero mean and satisfies

〈 f i(t) f j (t ′)〉 = 2DS
S (φ)δ(t − t ′)δij 1. (19)

Here the short-time self-diffusion coefficient DS
S is given by

DS
S (φ) = D0

1 + L(φ)
. (20)

Equation (18) is a starting equation to solve numerically by BD
simulations if DS

S is known. Then, the long-time self-diffusion
coefficient DL

S is described by Eq. (2).

III. FIRST-PRINCIPLES EXPRESSION FOR DL
S

In this section, we briefly discuss the first-principles
derivation of the long-time self-diffusion coefficient DL

S both
in suspensions (S) and in molecular systems (M).

In order to obtain DL
S (φ), it is convenient to introduce the

mean-square displacement by

M2(t) = 〈|X i(t) − X i(0)|2〉. (21)
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Then the long-time self-diffusion coefficient DL
S is given by

DL
S (φ) = lim

t→∞
M2(t)

6t
. (22)

The starting equation is given by Eq. (5) for suspensions, on a
time scale of order tB , while it is given by the Newton equation
for molecular systems, on a time scale of order t0,

d

dt
P i(t) = Fi(t), (23)

where Fi is given by Eq. (12) and t0 = σ/vth, vth [=
(kBT /m)1/2] being a thermal velocity. As shown in previous
papers [32–34], on the time scale of order ti , M2(t) then obeys

d

dt
M2(t) = 6D(t) (24)

with the time-dependent self-diffusion coefficient

D(t)

0
=

⎧⎪⎨
⎪⎩

DS
S /D0

1+ DS
S

D0

∫ t

0 ψS (s)ds

for (S),

1
t−1+∫ t

0 ψM (s)ds
for (M),

(25)

where 0 = D0 for (S), and 0 = σvth for (M). Here the
function ψi(t) indicates the memory function, which is given
by the correlation function of the fluctuating force. Use of
Eq. (22) thus leads to

DL
S

0
=

⎧⎪⎨
⎪⎩

DS
S /D0

1+ DS
S

D0

∫ ∞
0 ψS (s)ds

for (S),

1∫ ∞
0 ψM (s)ds

for (M).
(26)

In (S) there are three kinds of interaction acting
on colloids. The first is a force exerted by the fluctuating
fluid on colloids. The second is the hydrodynamic interactions
between colloids. The last is the interactions between colloids
through the potential Un(r). Hence the memory function ψS(t)
consists of the following three types of many-body correlation
[32]:

ψS(t) = ψFF
S (t) + ψFH

S (t) + ψHH
S (t) (27)

with the force term

ψFF
S (t) = 〈Fi(t) · Fi(0)〉 + ∫ t

0 ψS(s)ds〈P i(t) · Fi(0)〉
〈Pi (t) · P i(0)〉 ,

(28)

the hydrodynamic term

ψHH
S (t) = 〈H i(t) · H i(0)〉 + ∫ t

0 ψS(s)ds〈P i(t) · H i(0)〉
〈Pi (t) · P i(0)〉 ,

(29)

and the coupling term

ψHF
S (t) = 〈H i(t) · Fi(0)〉 + 〈Fi(t) · H i(0)〉

〈Pi (t) · P i(0)〉 . (30)

On the other hand, in (M) there is only one interaction
acting on molecules through the potential Un(r). Hence ψM (t)
consists of the force-force correlation ψM

FF (t) only [33].
When the long-time hydrodynamic interactions are neglected,
the memory functions ψi(t) in both systems (S) and (M) thus
coincide with each other. In the present paper, we discuss the

dynamics of colloids and molecules only in a liquid state.
Then, only the two-body correlation may play a role in ψi(t),
leading to

ψi(t) � 〈Fi(t) · Fi(0)〉
〈Pi (t) · P i(0)〉 + O(F 3). (31)

By comparing Eq. (26) with Eq. (2) in (S), one thus finds∫ ∞

0
ψi(s)ds = κ

x

(1 − x)2
, (32)

where x = φ/φc. Thus, it turns out that near the singular
point φc, the long-time self-diffusion coefficient DL

S /D0 in
(S) coincides with DL

S /σvth in (M), leading to

DL
S /0 � κ−1(1 − x)2. (33)

In general, the analytic form of the short-time self-diffusion
coefficient DS

S is not known, except in hard-sphere suspensions
[11]. Hence we next discuss how to obtain it numerically by
performing two types of simulations, BD and MD. First, we use
the fact that near φc the long-time self-diffusion coefficients
obtained by the BD and MD simulations are described by
Eq. (33). Second, we use the fact that if one scales time t

by (DS
S/D0)t in Eq. (18), the resulting equation is identical

to Eq. (18) with DS
S = D0. This is the usual case where

BD simulations are performed without the hydrodynamic
interactions. As shown in the previous paper [14], DL

S obtained
by BD simulation without the hydrodynamic interactions is
then described by

DL
S (φ)

D0
= 1

1 + κ
DS

S (φ)
D0

x
(1−x)2

. (34)

Near φc, we thus obtain

DL
S (φ)

D0
� D0

DS
S (φ)

κ−1(1 − x)2. (35)

If one multiplies Eq. (34) by (DS
S/D0) later, therefore, it

reduces to Eq. (2). Conversely, one can find DS
S/D0 by dividing

Eq. (33) in (M) by Eq. (35) in (S). Hence two types of
simulation, MD simulations and BD simulations without the
hydrodynamic interactions, must be done separately. Thus,
DS

S/D0 is obtained numerically by dividing the MD results by
the BD results.

IV. HYDRODYNAMIC INTERACTIONS IN HARD-SPHERE
SUSPENSIONS

By considering hard-sphere suspensions, we now discuss
the two types of hydrodynamic effect on the self-diffusion
coefficients, the short- and the long-time effects. For hard
spheres, one finds κ = 1.0 from Eq. (3) since n = ∞.

As shown in a previous paper [11], for a suspension of
hard spheres, the short-time hydrodynamic effect L(φ) is
analytically calculated as

L(φ) = 2B2

1 − B
− C

1 + 2C
− BC(2 + C)

(1 + C)(1 − B + C)
, (36)

where B = (9φ/8)1/2 and C = 11φ/16. Then, the short-time
self-diffusion coefficient given by Eq. (20) agrees well with
the experimental data obtained by van Megen et al. [2,6]. As
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FIG. 1. (Color online) A logarithmic plot of the long-time self-
diffusion coefficient DL

S /0 versus φ for the experimental data and
the simulation results. The filled squares indicate the BD results on
hard spheres with 6% size polydispersity [14] and the open diamonds
the MD results on hard spheres with 6% size polydispersity [35].
The filled circles indicate the experimental data from Ref. [6] and the
open circles from Ref. [2]. The dotted line indicates the theoretical
result given by Eq. (2) at φc � 0.586 and the solid line at φc � 0.562,
where κ = 1.0.

discussed in a previous paper [14], the short-time self-diffusion
coefficient obtained by dividing the MD results by the BD
results without the hydrodynamic interactions also agrees with
Eq. (36).

We next discuss the long-time hydrodynamic effects by
comparing the MD and the BD simulation results on hard
spheres with 6% size polydispersity [14] with the experimental
data [2,6] obtained for colloidal hard spheres with 6%
size polydispersity. In MD the force acting on the particle
of interest is due to only the direct interactions between
particles, while in BD it is due to both the direct interactions
and the short-time hydrodynamic interactions. On the other
hand, in experiments not only the direct interactions and the
short-time hydrodynamic interactions but also the long-time
hydrodynamic interactions play an important role in diffusion.
In Fig. 1, the long-time self-diffusion coefficient DL

S /0 for
experiments and simulations is plotted versus φ. Here we note
that since the original BD simulations [14] were performed
under DS

S = D0 without hydrodynamic interactions, we have
multiplied those results by DS

S and used Eq. (36) in Fig. 1.
Then, the BD results perfectly coincide with the MD results,
where both results are well described by Eq. (2) with κ = 1.0
and φc = 0.586. This means that the singular point φc � 0.586
for both simulations is determined only by the two-body
correlations due to the direct interactions between hard spheres
[14]. On the other hand, the singular point for the experiments
is φc � 0.562. Thus, the difference between experiments and
simulations may be caused by the long-time hydrodynamic
interactions given by ψHH

S (t) and ψFH
S (t), although there are

other possibilities, such as the intrinsic uncertainties in the
experimental determination of the volume fraction. We should
also note here that in both simulations crystallization occurs
at φ � 0.560, while in the experiments the glass transition
occurs at φ � 0.5604 where the experimental data start to
deviate from the singular function at log10(DL

S /D0) = −5.1,
leading to a nonequilibrium glass state [30,31]. This difference
is also caused by the long-time hydrodynamic interactions.
Thus, the hydrodynamic interactions are necessary to cause
the glass transition for a suspension of hard spheres with 6%
size polydispersity. Since all the results are described by the
same singular function given by Eq. (2), except φc, they all
must collapse on a single curve if they are plotted versus φ/φc.
In fact, this is shown in Fig. 2.This situation is also expected
for soft spheres.

V. ANALYSES OF EXPERIMENTAL DATA FOR
BIOMOLECULES

We first analyze the experimental data for suspensions
of biomolecules: hemoglobin and myoglobin measured by
Doster and Longevin [19], lysozyme by Porcar et al. [20],
α-crystallin by Giannoulou et al. [21], lecithin by Wolf and
Kleinpeter [22], and myoglobin by Nesmelova and Fedetov
[23]. As discussed in Ref. [30], those experimental data are
well described by Eq. (2) with the hard-sphere values given by
Eq. (36) at κ = 2.0, where the fitting values of singular point
φc are listed in Table I. In Fig. 3, all data for DL

S are plotted
versus φ, where the theoretical line is given by Eq. (2) at
κ = 2.0. In Fig. 4, all data are also plotted versus φ/φc. Thus,
it is shown that within error, all data are collapsed onto a single
line given by Eq. (2) with Eq. (36) at κ = 2.0 and φc = 0.558.
This suggests the following two important results. (i) The first
is that κ = 2.0 leads to n = 6 from Eq. (3). (ii) The second

FIG. 2. (Color online) A logarithmic plot of the long-time self-
diffusion coefficient DL

S /0 versus φ/φc for the experimental data
and the simulation results. The details are the same as in Fig. 1.
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TABLE I. φc for different biomolecules at κ = 2.0, where
W0 is the water-asolectin weight ratio and PDADMAC the poly-
diallyldimethylammonium chloride.

System φc Symbol Reference

Hemoglobin 0.495 	 [19]
Lysozyme 0.51 + [20]
Myoglobin 0.560 × [19]
α-crystallin 0.590 ♦ [21]
Lecithin (W0 = 0.080) 0.600 � [22]
Lecithin (W0 = 0.286) 0.630 
 [22]
Myoglobin 0.700 • [23]
Lecithin (W0 = 0.286 PDADMAC) 0.710 � [22]
BD for modified potential (n = 6) 1.09 � —

is that the short-time self-diffusion coefficient is identical
to that obtained theoretically for hard spheres. Hence those
biomolecules behave like hard spheres for a short time, but
they behave like soft spheres for a long time because κ = 2.0.
For comparison, the theoretical line for hard spheres at κ = 1.0
is also plotted in Fig. 4, where φc = 0.558. The experimental
data for biomolecules are all shown not to obey a theoretical
line with κ = 1.0 for hard spheres. Thus, the soft-core potential
must satisfy those two conditions to describe the experimental
data qualitatively. Next we discuss this.

FIG. 3. (Color online) A logarithmic plot of the long-time self-
diffusion coefficient DL

S /D0 versus φ for the experimental data and
the simulation results. The symbols indicate the experimental data
and the simulation results: (◦) myoglobin from [23], (♦) α-crystallin
from [21], (×) myoglobin from [19], (	) hemoglobin from [19],
(�) lecithin at W0 = 0.080 from [22], (
) lecithin at W0 = 0.286
from [22], (�) lecithin at W0 = 0.286 (PDADMAC) from [22], and
(+) lysozyme from [20]. The dotted lines (from left to right) indicate
the theoretical lines given by Eq. (2) with Eq. (36) for experimental
data at each φc listed in Table I (from top to bottom), where κ = 2.0.

FIG. 4. (Color online) A logarithmic plot of the long-time self-
diffusion coefficient DL

S /D0 versus φ/φc. The solid line indicates
the theoretical line given by Eq. (2) with Eq. (36) at κ = 2.0 and
φc = 0.558 and the dotted line the theoretical line for hard spheres at
κ = 1.0 and φc = 0.558. The details are the same as in Fig. 3.

VI. BD AND MD SIMULATIONS FOR SOFT SPHERES

We now perform two types of simulation, BD simulations
on suspensions of soft spheres and MD simulations on soft

FIG. 5. (Color online) A logarithmic plot of the long-time self-
diffusion coefficient DL

S /0 versus φ for the BD and MD simulation
results with the conventional soft-core potential at b = 0. The open
squares indicate the BD results with DS

S = D0 and the filled circles the
MD results. The filled diamonds indicate the short-time self-diffusion
coefficient obtained by dividing the MD results by the BD results.
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FIG. 6. (Color online) A logarithmic plot of the long-time self-
diffusion coefficient DL

S /0 versus φ for the BD and MD simulation
results with the conventional soft-core potential at b = 0. The solid
line indicates the theoretical result given by Eq. (2) with Eq. (36) and
the dashed line that given by Eq. (34) with Eq. (36) at κ = 2.0 and
φc = 0.558. The details are the same as in Fig. 5.

FIG. 7. (Color online) A logarithmic plot of the long-time
self-diffusion coefficient DL

S /0 versus φ for the BD and the MD
simulation results with the modified soft-core potential at b = 0.25.
The open squares indicate the BD results with DS

S = D0, the filled
squares with DS

S , and the filled circles the MD results. The solid line
indicates the theoretical result given by Eq. (2) with Eq. (36) and the
dashed line that given by Eq. (34) with Eq. (36) at φc � 1.084 and
κ = 2.0.

FIG. 8. (Color online) A logarithmic plot of the long-time self-
diffusion coefficient DL

S /D0 versus φ. The details are the same as in
Figs. 3 and 7.

spheres, under the conventional soft-core potential given by
Eq. (1) and also the modified one given by Eq. (2) separately
where n = 6, and N = 10 976 for BD and 2048 for MD. By
dividing the MD results by the BD results, we first obtain the
short-time self-diffusion coefficient DS

S numerically and then
check whether it is identical to that obtained for hard spheres.

The starting equation for the MD simulations is given by
Eq. (23). We scale space by σ , time by t0 (= σ/vth), and force
by kBT /σ . We employ the velocity Verlet method to integrate
Eq. (23) with time step 10−3t0 under periodic boundary and
appropriate initial conditions. On the other hand, the starting
equation for the BD simulation is given by Eq. (18). We also
scale space by σ and time by tD (= σ 2/D0). We employ the
forward Euler difference scheme to integrate Eq. (18) with
time step 10−4tD under periodic boundary and appropriate
initial conditions. In both simulations, we start from a random
configuration obtained by melting the fcc configuration and
wait for a long time of order 104tD (or 104t0) which is enough
to reach a final equilibrium state. In order to find the long-time
self-diffusion coefficient, we use Eq. (22).

A. Conventional soft-core potential

We first discuss the simulations for the conventional
potential given by Eq. (1), where n = 6. Here the effective
diameter is σeff = σ . We set DS

S = D0 since the numerical
values of DS

S are not known for the conventional potential.
In Fig. 5, the BD and the MD results are shown versus φ.
The short-time self-diffusion coefficient, which is obtained by
dividing the MD results by the BD results, is also plotted.
In order to check whether those results satisfy the conditions
(i) and (ii) discussed before, we also plot those results versus
φ/φc in Fig. 6. Since the singular point φc for the simulation
results is not known, we adjust it so that the BD results coincide
well with the theoretical line. Then we find φc � 1.13 for both
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FIG. 9. (Color online) A logarithmic plot of the long-time self-
diffusion coefficient DL

S /D0 versus φ/φc. The details are the same as
in Figs. 4 and 7.

results. The solid line in Fig. 6 is the same as that in Fig. 4.
Thus, we conclude that the conventional soft-core potential
does not describe the long-time self-diffusion for biomolecules
at all.

B. Modified soft-core potential

We next discuss the simulations for the modified potential
given by Eq. (4), where n = 6. Here the effective diameter
is σeff = (1 + b)σ . In BD, Eq. (20) with Eq. (36) is used
to solve Eq. (18). The unknown parameter b is chosen so
that the BD results coincide with the MD results. The several
simulation results suggest b � 0.25. In Fig. 7, both simulation
results are plotted versus φ. For comparison, the BD simulation
results with DS

S = D0 are also shown. Both results are well
described by the theoretical lines given by Eq. (2) with Eq. (36)
and Eq. (34) with Eq. (36) at κ = 2.0 and φc = 1.09, where
φ in both equations is replaced by φ/(1 + b)3. Thus, the
modified potential can qualitatively describe the self-diffusion
of biomolecules well. In Fig. 8, the BD results with DS

S are
plotted versus φ together with the experimental data. As shown
in Table I, the singular point of the simulations is much larger
than that of the experiments. There are several reasons for
this. One of the main reasons is because we do not consider
the long-time hydrodynamic interactions in the simulations at
all. Those interactions reduce the singular point to a lower

value. This situation is the same as that in Fig. 1. Another
reason may be because we choose the simplest form for Un(r).
In all cases, the singular point strongly depends on the details
of the system. If one scales φ by φc, however, this difference
disappears. In fact, as is shown in Fig. 9, the BD results with
DS

S are collapsed onto the same singular curve as that on which
the experimental data are all collapsed.

VII. SUMMARY

In the present paper, we have proposed the simple model
potential given by Eq. (4) with n = 6 and b = 0.25 to describe
self-diffusion of biomolecules. This form was suggested
from the analyses of experimental data for soft spheres [30]
indicating that soft spheres behave as hard spheres for short
times while they behave as soft spheres with an exponent
n = 6 for long times. Then, we performed not only extensive
Brownian-dynamics simulations on monodisperse soft spheres
with the modified soft-core potential but also those with the
conventional one. Thus, we have shown that the soft spheres
with the modified potential can be treated as hard spheres for
short times, leading to DS

S given by Eq. (20) with Eq. (36). We
have also shown that the volume fraction dependence of their
long-time self-diffusion coefficients is qualitatively in good
agreement with that observed in the experiments, while the
conventional results are not. We should note here that there
still exists a quantitative difference between the experiments
and the simulations with the modified potential since the
singular point of the simulations is always larger than that
of experiments. The singular point strongly depends on the
details of the system. One of the main reasons is because the
long-time hydrodynamic interactions are completely neglected
in the simulations. In fact, they will reduce the singular point
as seen in colloidal suspensions (see Fig. 1). However, it is
still a difficult problem to solve Eq. (5) itself even numerically
because of the long-range nature of the hydrodynamic inter-
action tensor gij . Another reason might be because the charge
effects (i.e., attractive interactions) [36], the deformation of
spheres, and so on are not considered. In any case, the proposed
potential must satisfy two conditions consistently, (i) κ = 2.0
(or n = 6) and (ii) DS

S is identical to that obtained for hard
spheres. This will be discussed elsewhere.
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