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Critical role of friction for a single particle falling through a funnel
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We investigate a single frictional, inelastic, spherical particle falling under gravity through a symmetric funnel.
A recent study showed that, for a frictionless particle in such a system, several anomalous phenomena occur:
The particle can stay longer, lose more energy, and exert more impulsive force in a funnel with steeper walls.
For frictionless particles, such phenomena exist for many small ranges of funnel angles and are a consequence
of the many possible repeated patterns in particle trajectories. However, in reality, friction always exists and it
is a natural question whether the anomalous phenomena still exist for frictional particles in such systems. We
show that, surprisingly, the inclusion of friction in the dynamics actually dramatically enhances the anomalous
phenomena. For frictional particles, the anomalous phenomena exist for all funnel angles steeper than 45◦ and are
thus more robust than the frictionless case. Furthermore, instead of many possible complicated repeated patterns
in particle trajectories, there is a unique repeated pattern for frictional particles. Moreover, this is the simplest
possible repeated pattern. We derive an analytical expression for this unique repeated pattern and provide a
theoretical explanation for the anomalous phenomena observed in frictional particle systems. We further show
that the friction, no matter how small, plays a critical role in the dynamics, that is, the dynamics of the frictionless
particle system is singular.
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I. INTRODUCTION

In this paper we consider a system in which a single inelastic
frictional particle with uniform density falls under gravity
through a symmetric funnel. A recent study of a frictionless
particle falling through a funnel showed several surprising
results [1]. Counterintuitively, the study showed that there are
several small ranges of funnel angle where the particle will
fall through funnels with less steep sides more quickly, exert a
smaller total impulse on the funnel walls, and lose less energy.
This counterintuitive behavior exists due to the existence of
repeated patterns in the particle trajectories. Stability analysis
of these trajectories shows that the anomalous phenomena
can occur only in narrow ranges of funnel angles. However,
in general, particles are always frictional. Friction leads to
particle rotation, which does not occur in the frictionless case.
This rotation makes the dynamics more complicated and may
destroy the repeated patterns. This raises an important question
of whether such an anomalous phenomenon still exists in
systems with frictional particles. In this paper we show that
the friction not only preserves the anomalous phenomenon,
but also enhances it considerably. In particular, due to the
effects of friction, we show that the average time the particles
stay in the funnel is anomalously long for funnels with walls
inclined at angles greater than 45◦ to the horizontal. This is in
direct contrast to the frictionless case in which the anomalous
behavior occurs only in narrow angular ranges. Moreover,
there is a unique repeated pattern instead of the large number
of complicated repeated patterns observed in the frictionless
case.

Funnel systems are widespread in many industrial devices
in which falling particles must be steered into a thin slot or
hole. Depending on the particular application, the fulfillment
of different design objectives may be required. Examples
include minimizing the duration that particles spend in the
device, reducing the machine wear, or reducing the speed of
particles exiting the machine. In this paper we show that an

apparently simple system has a number of complicated and
subtle features that make the achievement of design objectives
highly counterintuitive.

The behavior of dense granular flow through funnels has
been widely studied and a number of important results have
been obtained. Schick and Verveen [2] studied dense flow
through an hourglass and made detailed observations of the
noise in such systems. Baxter et al. [3] studied dense flow
through a funnel and found that the formation and propagation
of density waves depend on the mass flow rate and geometry
of the funnel. Wu et al. [4] and Veje and Dimon [5] considered
dense flows in a closed-top hourglass and found that the
counterflow of air can induce surprising dynamics such as
oscillatory behavior and cluster formation. Veje and Dimon
[6] considered a dense flow consisting of a single layer of
uniform balls and showed that the geometry of the funnel can
have a strong effect on the resulting flow patterns. Moriyama
et al. [7] performed careful experiments of sand flowing
through a vertical pipe and were able to determine the form
of the density variations in such systems. Le Pennec et al. [8]
studied two-dimensional dense funnel flow and determined
how the flow depends on the geometry of the funnel. Longhi
et al. [9] studied the force fluctuations at the boundary of
a two-dimensional dense granular flow and determined the
distribution of impulses. Horlück et al. [10] investigated the
effects of rough walls and polydispersity on shock waves in
two-dimensional granular flow. Helbing et al. [11] proposed
a continuum model for dense granular flow through a funnel
that explains a number of important features of funnel flow
including intermittency.

Surprisingly, in the funnel setting, the case of dilute flows
that contain a small number of particles or even only a
single particle (such as the study in this paper) has received
much less attention. In other settings, studies of this type of
system have led to important insights into the way in which
granular materials behave. Mehta and Luck [12,13] showed

051303-11539-3755/2011/83(5)/051303(16) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.051303


QIANG ZHANG, YUAN FANG, AND JONATHAN J. WYLIE PHYSICAL REVIEW E 83, 051303 (2011)

that a single particle moving under gravity on a vibrating
plate can give rise to highly unexpected behavior such as
abrupt termination of period-doubling sequences. McNamara
and Young [14] showed that a finite number of particles is
required to obtain an infinite number of collisions in a finite
time. Wylie and co-workers [15,16] investigated the dynamical
behavior of a one-dimensional inelastic particle system with
particles of unequal mass traveling between two walls and
showed that two driven inelastic particles can experience a
bifurcation in which large numbers of complicated periodic
orbits collapse onto a single simple orbit. Gao et al. [17]
studied the collapse phenomena when a rigid, frictionless,
inelastic particle interacts with a rigid boundary that has a
corner.

To study the dynamics of frictional granluar particles
falling through a funnel, one needs to specify a model for
collisions between particles and funnel walls. Such a model
has been developed by Walton [18]. The model is based on
three constant impact coefficients, which are the coefficient
of normal restitution, the coefficient of friction, and the
coefficient of tangential restitution. Foerster et al. [19] carried
out experiments to measure the collision properties of small
spheres involved in binary collisions or in collisions with a
flat surface and showed that Walton’s model [18] provides
an accurate description of the dynamics of the impacts.
Luding [20] simulated two-dimensional systems of spheres in
a vibrating box using Walton’s model [18] and found that the
behavior of the system depends on the frictional properties
of both particles and walls and presented an expression
for the ratio of kinetic to rotational energy. In Ref. [21],
Brilliantov et al. proposed a collision model in which the
restitution coefficients for the normal and tangential motion
can be calculated as functions of the impact velocity from
considerations of dissipative viscoelastic collisions. In this
paper we will adopt the model used in Refs. [18–20].

The rest of the paper is organized as follows. In Sec. II
we present the theoretical formulation for the system of a
frictional, inelastic particle falling through a symmetric funnel.
In Sec. III we demonstrate numerically the counterintuitive
phenomena in frictional particle systems. In Sec. IV we pro-
vide a theoretical explanation for the anomalous phenomena
in such systems. In Sec. V we examine three-dimensional
systems with an axisymmetric conical funnel. Finally, we
summarize in Sec. VI.

II. FORMULATION

In this paper we consider a frictional, inelastic particle of
radius a with uniform density, falling under gravity g through
a symmetric funnel with walls aligned at an angle θ to the
horizontal and a gap of size d at the bottom of the funnel.
The particle is released with zero initial velocity and zero
initial angular velocity with its center at a height H above the
bottom of the funnel and at a horizontal location x0 measured
from the central axis of the funnel (see Fig. 1). A particle will
experience collisions with the walls when the center of the
particle is a distance a from the wall. It thus proves convenient
to consider the lines that are parallel to the walls and a distance
a from the walls. We choose the origin of coordinates to be the
point where these lines intersect. We choose the x axis to be
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θθ
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FIG. 1. Sketch of a system in which a frictional particle falls
through a funnel with an angle θ . The dash-dotted horizontal line
represents the range over which the center of the particle lies when
the particle is released. The dotted lines are parallel to the funnel walls
at a distance a from the walls. We choose the origin of coordinates to
be the point where the two dotted lines intersect.

horizontal and the y axis to be vertically upward (see Fig. 1).
We nondimensionalize lengths by H , times by

√
H/g, and

velocities by
√

Hg.
We will consider the case where particles are dropped into

the funnel at a random horizontal location x0. For simplicity,
we will consider the probability density function that is
uniform for all values of x0. We note that other choices
of probability density functions give qualitatively similar
results.

The trajectory of a particle is determined by a sequence
of collisions of the particle with the walls and free-fall
motion under gravity between the collisions. Determination
of the sequence in which collisions occur is a nonlinear
process and we show that this can lead to complicated
behavior.

We begin by discussing the nature of the collisions. When
the particle collides with the wall, the particle experiences
an impulsive force from the wall. We determine the dy-
namics of the particle by considering rigid-body motion
under an impulsive collisional force. Rigid-body motion is
composed of two parts: the motion of the center of mass
and the rotation of the body around the center of mass.
The description of the collision between the particle and
the wall is based on the collision model introduced by
Walton [18] and studied in detail by Foerster et al. [19] and
Luding [20].

We will assume that collisions between the particle and the
wall are inelastic with a constant coefficient of restitution e,
that is,

p′ = −ep, (1)

where p and p′ are the velocity components perpendicular
to the wall, before and after the collision, respectively. The
change of translational momentum in the direction perpendic-
ular to the wall is given by

m(p′ − p) = JN, (2)
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where JN is the component of the impulse exerted on the
particle perpendicular to the wall. Using Eq. (1), we obtain

−m(1 + e)p = JN . (3)

The change of momentum in the direction parallel to the wall
before and after a collision is given by

m(q ′ − q) = Jt , (4)

where q and q ′ are the velocity components tangential to the
wall, before and after a collision respectively, and Jt is the
component of the impulse exerted on the particle parallel to
the wall. The change in angular momentum due to the collision
is given by

I (ω′ − ω) = aJt , (5)

where I is the moment of inertia and ω and ω′ are the angular
velocities before and after the collision, respectively.

When the relative velocity between the particle and the
boundary is nonzero, i.e., the collision involves sliding, the
tangential and normal components of the impulse are related
by Coulomb’s law, that is, |Jt | = μ|JN |, with the coefficient of
sliding friction μ � 0, which is assumed to be a constant in this
paper. The direction of Jt is opposite the tangential velocity
at the contact point before the collision, q + aω, because the
contact is dissipative, i.e.,

Jt = −μm(1 + e)s|p|, (6)

where the quantity s is the sign of the particle’s tangential
velocity along the wall surface immediately before contact. On
the left wall, we define the downward direction along the wall
as being positive, so that s = 1, −1, and 0 when the tangential
velocity at the point of contact is downward, upward, or zero,
respectively. On the right wall, we define the upward direction
along the wall as the positive direction, so that s = 1, −1, and 0
when the velocity at the point of contact is upward, downward,
or zero, respectively.

If one substitutes Eq. (6) into Eqs. (4) and (5), the magnitude
of the tangential velocity at the contact point right after the
collision, |q ′ + aω′|, can be greater than |q + aω| in the case
of sufficiently large μ. To avoid this problem, Walton [18]
introduced the coefficient of maximum tangential restitution
β0, with −1 � β0 � 1. As |Jt | increases, sliding is deemed to
cease when

q ′ + aω′ = −β0(q + aω). (7)

For given p, q, and ω, we can determine a critical value
of the friction, μc, so that, for values of μ � μc, the collision
does not involve sliding; namely, from Eqs. (4)–(7), we obtain

μc = (1 + β0)|q + aω|
(1 + e)

(
ma2

I
+ 1

)|p| .

In Coulomb-type contacts [18], i.e., μ < μc, the tangential
velocity of the center of mass after a collision is determined
by Eqs. (4) and (6),

q ′ = q − μ(1 + e)|p| s, (8)

and the postcollisional angular velocity can be obtained from
Eqs. (5) and (6),

ω′ = ω − μ(1 + e)|p| sma

I
. (9)

In the case μ � μc, Eqs. (4), (5), and (7) give

q ′ = ma2 − Iβ0

I + ma2
q − Ia

I + ma2
(1 + β0) ω, (10)

ω′ = −q ′ + β0(q + aω)

a
= −ma(1 + β0)

I + ma2
q + I − ma2β0

I + ma2
ω.

(11)

We now calculate the energy loss during each collision.
We need to consider two cases: μ < μc and μ > μc. When
μ < μc, the velocity and angular velocity after the collision
are determined by Eqs. (1), (8), and (9) and the energy loss is

�E1 = 1

2
m(q2 − q ′2) + 1

2
m(p2 − p′2) + 1

2
I (ω2 − ω′2)

= 1

2
m(1 − e2)p2 + 1

2
mμ(1 + e)

× |p(q + aω)|
(

2 − μ(1 + β0)

μc

)
.

Note that μ < μc and therefore if μ �= 0 and e �= 1, any
collision must involve energy loss. When μ exceeds μc, the
velocity and angular velocity after the collision are determined
by Eqs. (1), (10), and (11), so we obtain the energy loss

�E2 = 1

2
m(q2 − q ′2) + 1

2
m(p2 − p′2) + 1

2
I (ω2 − ω′2)

= 1

2
m(1 − e2)p2 + 1

2

mI
(
1 − β2

0

)
I + ma2

(q + aω)2.

In this case the energy loss is independent of μ. Note that when
μ = μc, �E1 = �E2. It is easy to see that �E2 = 0 if and
only if e = 1 and

aω + q = 0 or |β0| = 1. (12)

Therefore, the energy is conserved for an elastic particle whose
tangential velocity of the contact point before collision is zero
or β0 = ±1.

Between collisions, the particle experiences free-fall mo-
tion and so the trajectory of the particle follows a parabolic
curve. The next collision point is determined by one of three
possible events: The particle collides with the left funnel
wall, it collides with the right funnel wall, or it exits the
funnel through the gap. One needs to determine which of
the three events occurs first. This makes determining explicit
expressions for the motion extremely difficult. However, the
motion can be easily determined numerically for a given
trajectory.

The phenomenon of inelastic collapse may occur, in which
the particle may experience an infinite number of collisions
with one of the walls in a finite time. It is easy to handle
inelastic collapse since the time of inelastic collapse can be
determined analytically. After the collapse, the particle will
roll down along one of the walls.

We will also study frictional particles falling through an
axisymmetric conical funnel. We note that the trajectory of
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a particle in a two-dimensional funnel and the trajectory of
a particle in an axisymmetric conical funnel are identical if
the particle is released at the same distance from the axis
of symmetry with zero initial velocity. However, if the initial
particle locations are assumed to be uniformly distributed, then
the averages in the two cases must be computed with respect
to different distributions. We will return to this issue in Sec. V,
where we show that the qualitative behavior is similar in both
cases.

III. COUNTERINTUITIVE PHENOMENA

The algorithm described in the preceding section allows us
to perform detailed numerical simulations of the complicated
nonlinear dynamical behavior of particles falling through a
funnel. In this section we demonstrate some counterintuitive
phenomena in such simple systems. We set a/H = 0.01 and
d/H = 0.04 in our simulations. For given values of e, μ, β0,
and θ , we simulate 4000 sample trajectories with uniformly
spaced initial horizontal locations x0. For each x0, we record
the duration that the particle stays in the funnel.

Figure 2 shows the duration that the particle stays in the
funnel averaged over the horizontal release position as a
function of θ for the different values of e in the frictionless
case that was studied in Ref. [1]. The overall trend for each
of the curves is that the average duration decreases with the
angle of the funnel. This is consistent with our intuition: A
particle will spend less time in a steeper funnel. However,
counterintuitively, there exist ranges of angles such that the
particle will stay longer in a funnel with a steeper angle. Fang
et al. [1] showed that such anomalous behavior in these ranges
of angles is due to the existence of some neutrally stable
quasiperiodic orbits in which the particle collisions follow
a simple repeating pattern. These simple repeating collision
patterns can imply that the particle can stay far from the exit
for long periods of time. Outside these ranges of angles the
particle collisions follow a complicated nonrepeating pattern
and the particle rapidly hits the exit. As e gets smaller, particles
lose more energy per collision and the collision locations move
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FIG. 2. Average duration (nondimensionalized by
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H/g) plotted
against θ for frictionless systems with different values of e.
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FIG. 3. Average duration (nondimensionalized by
√

H/g) plotted
against θ for systems with e = 0.99 and various values of μ for (a)
β0 = 0, (b) β0 = 0.31, and (c) β0 = −0.31. The curves with μ = 1
and those with μ = 5 almost coincide.

down toward the exit more quickly. Consequently, even the
simple orbits will stay a relatively short time in the funnel;
therefore, the jumps become less pronounced as e decreases.

In Fig. 3 we show how friction affects the anomalous
behavior observed in frictionless systems. We plot the average
duration with e = 0.99 and different values of μ for three
different values of β0. Figure 3(a) shows the case for β0 = 0;
Fig. 3(b) shows the case for β0 = 0.31, which is suggested by
the experiments of Ref. [19]; and β0 can be negative [20],
so we plot the case for β0 = −0.31 in Fig. 3(c). In the
absence of friction (μ = 0), the particle does not rotate. The
presence of friction allows the particle to rotate. This rotation
means that the motion of the particle has an extra degree of
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FIG. 4. Average impulse (nondimensionalized by m
√

gH ) plot-
ted against θ for systems with e = 0.99 and various values of μ for (a)
β0 = 0, (b) β0 = 0.31, and (c) β0 = −0.31. The curves with μ = 1
and those with μ = 5 almost coincide.

freedom. In general, the higher the degree of freedom, the
more complicated the trajectory can be. Consequently, one
might imagine that simple repeating patterns of collisions will
be less likely and so particles will have more of a chance to hit
the exit of the funnel earlier. This will lead to shortening the
average duration that particles stay inside the funnel. This is
indeed the case for θ < 45◦. Figure 3 shows that the average
duration is a decreasing function of μ and θ when θ < 45◦.
Therefore, the steeper the funnel wall, or the larger the friction,
the shorter the average duration is. This is consistent with our
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FIG. 5. Average energy loss (nondimensionalized by mgH )
plotted against θ for systems with e = 0.99 and various values of
μ for (a) β0 = 0, (b) β0 = 0.31, and (c) β0 = −0.31. The curves with
μ = 1 and those with μ = 5 almost coincide.

intuition. However, the effect of friction on duration is very
different for θ > 45◦. Figure 3 shows that the range of angles
θ over which the average duration is larger than that in a
funnel with θ = 45◦ widens as μ increases. For large values
of μ, almost all angles in the range θ > 45◦ have an average
duration longer than that at θ = 45◦.

In industrial applications, the impulse exerted on the walls
is an important quantity for understanding machine wear.
In Fig. 4 we show the average impulse as a function of
θ for different values of μ when e = 0.99 for the same
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FIG. 6. Average duration (nondimensionalized by
√

H/g), impulse (nondimensionalized by m
√

gH ), and energy loss (nondimensionalized
by mgH ) plotted against θ for systems with μ = 1 and different values of e. From left to right, the plots correspond to β0 = 0, 0.31, and −0.31
respectively.

values of β0 as in Fig. 3. The behavior for the average
total impulse is shown to be very similar to the behavior
for the average duration shown in Fig. 3, namely, for fixed
θ < 45◦, the average impulse decreases with μ and θ . This
is consistent with our intuition: The shorter the particle stays
inside the funnel, the fewer collisions it has with the wall

and consequently the smaller impulse it exerts. However, the
situation is very different for θ > 45◦. When μ is large, almost
all funnels with θ > 45◦ experience a larger average impulse
than the funnel with θ = 45◦. Although such behavior is
counterintuitive, it is consistent with the phenomenon shown in
Fig. 3.
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When the particle collides with the funnel boundaries, it
loses energy due to two factors: inelastic collisions and friction.
Figure 5 shows the average energy loss when the particle exits
the funnel. Generally speaking, the particle loses more energy
as friction increases until μ reaches a critical value; when
μ exceeds this critical value, the energy loss is independent
of μ.

We also plot the average duration, impulse, and energy loss
in the systems with large μ and various values of e in Fig. 6.
From left to right, the plots correspond to β0 = 0, 0.31, and
−0.31, respectively. We can see that as e becomes smaller, the
anomalous phenomenon becomes less pronounced. However,
from the figures of average impulse and energy loss, we can
observe that the behaviors in the systems with θ < 45◦ and
θ > 45◦ are still very different, even for moderate values of
e. For sufficiently small values of e (e = 0.4 and 0.1), we
can see that the average duration is almost monotonic. This is
because, when e is small, most particles do not have enough
energy to jump to the other wall and instead collide with only
one of the walls; the velocity component perpendicular to
the wall will be damped quickly and the particles just roll
down along the wall. Since the behavior for small e is quite
intuitive and natural, we will mainly focus on the counter-
intuitive behavior that occurs for particles with e close to
unity.

We therefore examine further the dynamics of funnels with
e = 0.99 and a relatively large value of μ. To understand the
quite different behavior between the funnels with θ < 45◦ and
those with θ > 45◦, we demonstrate the duration spent in the
funnel as a function of the scaled input location x0/L for
funnels with various values of θ for the case of β0 = 0 (see
Fig. 7). Here L is half the effective opening of the funnel
for the center of the particle and is marked on Fig. 1. The
behavior of duration for other values of β0 is very similar
to that shown in Fig. 7. Figures 7(a)–7(d) show that when
θ < 45◦, the duration is highly sensitive to the initial location
x0, while Figs. 7(e)–7(i) show that for θ > 45◦, there are ranges
of initial locations where the duration is relatively insensitive
to the initial location. Figures 7(d) and 7(e) show that, even
when θ changes only from 44◦ to 46◦, the sensitivity to the
initial location changes dramatically. We now examine the
trajectories in these insensitive ranges. Figure 8(a) shows
a typical trajectory for θ > 45◦. After a certain number of
collisions, the trajectory starts to follow a simple repeating
pattern of collisions: bouncing back and forth between the
left and right walls while slowly falling down through the
funnel toward the exit. Our simulations showed that this
pattern of collisions is observed only in Figs. 7(e)–7(i), which
all have θ > 45◦, but not in Figs. 7(a)–7(d), which all have
θ < 45◦. In contrast, Fig. 8(b) is a typical trajectory, observed
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FIG. 7. Duration (nondimensionalized by
√

H/g) plotted against the scaled initial location x0/L for funnels with (a) θ = 20◦, (b) θ = 30◦,
(c) θ = 40◦, (d) θ = 44◦, (e) θ = 46◦, (f) θ = 50◦, (g) θ = 60◦, (h) θ = 70◦, and (i) θ = 80◦. Here e = 0.99, μ = 1, β0 = 0, and L is half the
effective opening of the funnel for the center of the particle (see Fig. 1).
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(b)(a)

FIG. 8. Particle trajectories for funnels with (a) θ = 60◦ and (b)
θ = 40◦. Here e = 0.99, μ = 1, and β0 = 0.

in Figs. 7(a)–7(d), that follows a complicated nonrepeating
pattern. Furthermore, this pattern of collisions in Fig. 8(a) is
observed only over the ranges of initial locations x0 in which
the average duration is insensitive to the location in Figs.
7(e)–7(i). When injecting a particle from other locations, the
trajectory is widely dispersed throughout the funnel without
any clear repeating pattern of collisions. Hence, in these
trajectories there is a large probability of the particle falling
through the funnel exit after a relatively small number of
collisions and in a relatively short time. We have extensively
checked other angles and found that the behavior of the average
duration versus x0 is similar to Figs. 7(a)–7(d) for θ < 45◦ and
similar to Figs. 7(e)–7(i) for θ > 45◦. We have also examined
the behavior for various values of −1 < β0 < 1 and found that
they are qualitatively similar to the case when β0 = 0 and so
we do not present those figures.

IV. THEORETICAL EXPLANATION

In the preceding section we demonstrated numerically that
for almost all funnels with angles in the range θ > 45◦,
the average duration is longer than that in funnels with
θ < 45◦ when μ and e are sufficiently large. The same
surprising phenomenon also occurs for an average impulse and
average energy loss. These phenomena are different from those
observed in systems with frictionless particles, in which the
overall trend is a monotonic function of θ except in the narrow
angular ranges in which the anomalous behavior occurs. For
frictionless particles, the anomalous behavior occurs only in
small ranges of θ , whereas for sufficiently frictional particles
the anomalous behavior is highly robust and occurs for all
angles θ > 45◦. In this section we analyze these phenomena
theoretically.

As we showed at the end of Sec. II, when the particle
is elastic and the tangential velocity at the contact before
the collision is zero, the collision can conserve energy even
though there is friction. Therefore, periodic orbits can exist
in elastic frictional systems. We now examine the possibility
of the existence of periodic orbits and, if so, the stability of
the periodic orbits. In contrast to the frictionless case, we will
show that, generically, there is a unique type of periodic orbit.

A particle trajectory can be represented by a sequence of
collisions. Given a collision sequence, the particle trajectory
can be easily determined. Let Zi ≡ (u′

i ,v
′
i ,ω

′
i ,xi,yi)T represent

the particle state immediately after the ith collision with the
wall, where xi and yi are the x and y locations of the ith
collision, respectively, u′

i and v′
i are the x and y components

of the particle velocity immediately after the ith collision, and
ωi and ω′

i are the angular velocities before and after the ith

collision, respectively. We define CL and CR as the operators
that determine Zi from Zi−1 if the collision is with the left and
right walls, respectively. That is, if the ith collision is with the
left wall, we write Zi = CLZi−1; if the collision is with the
right wall, we write Zi = CRZi−1. Hence we can write

Zn = Cn · · ·Cm+1Zm, n > m,

where Ci = CL if the ith collision is with the left wall and Ci =
CR if the ith collision is with the right wall (i = m + 1, . . . ,n).

Now we show that it is not possible to have Ci+1 = Ci in
an energy-conserving trajectory. That is, it is impossible that
both the ith and (i+1)th collisions occur on the same wall.
We prove this by the method of contradiction. Without loss of
generality, assume that Ci+1 = Ci = CL. Then, due to energy
conservation, the tangential velocity at the contact is zero for
general values of β0 [see Eqs. (7) and (12)] and we have

ω′
i = −q ′

i

a
= −u′

i cos θ − v′
i sin θ

a
, (13)

ωi+1 = −qi+1

a
= −ui+1 cos θ − vi+1 sin θ

a
, (14)

where q ′
i is the tangential velocity of the mass center after

the ith collision and qi+1 is the tangential velocity of the mass
center before the (i+1)th collision. Since there is no torque and
no horizontal force during the motion of the particle between
the two collisions, we have ωi+1 = ω′

i and ui+1 = u′
i . After

substituting these expressions into Eqs. (13) and (14), we
obtain

vi+1 = v′
i . (15)

In contrast, according to the free-fall motion of the particle
between the collisions, we have vi+1 = v′

i − ti , where ti is
the time interval between the two collisions. However, ti >

0 and thus vi+1 < vi , which contradicts Eq. (15). Similarly,
we can show that Ci+1 = Ci = CR is impossible. Therefore,
any energy-conserving trajectory must have the form Zn =
· · ·CLCR · · · CLCRZm (assuming that the mth collision is with
the left wall), namely, the particle must bounce back and forth
between the two walls.

Next we show that there can only be two collisions in a
periodic orbit, that is, Zm = Zm+2 = CLCRZm. This is clearly
the simplest periodic orbit. Because the tangential velocities
at the point of contact are always zero in energy-conserving
trajectories [see Eqs. (7) and (12)], we have

ω′
m = −q ′

m

a
= −u′

m cos θ − v′
m sin θ

a
, (16)

ωm+1 = −qm+1

a
= −um+1 cos θ + vm+1 sin θ

a
. (17)

The particle experiences gravity only during the free fall
between the two collisions, so ω′

m = ωm+1 and u′
m = um+1.

Hence Eqs. (16) and (17) imply that vm+1 = −v′
m, which

implies that ym+1 = ym. Similarly, we obtain ym+2 = ym+1 =
ym. Therefore, all collisions occur at the same height on both
walls, which we denote by y∗. From the relations um+1 = u′

m,
vm+1 = −v′

m, um+2 = u′
m+1, and vm+2 = −v′

m+1 and the fact
that friction has no effect during the collision since the
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tangential velocity at the contact point is zero, we obtain the
velocity after the (m+1)th and (m+2)th collisions as

u′
m+1 = u′

m cos 2θ − v′
m sin 2θ,

(18)
v′

m+1 = u′
m sin 2θ + v′

m cos 2θ,

u′
m+2 = u′

m+1 cos 2θ + v′
m+1 sin 2θ,

(19)
v′

m+2 = −u′
m+1 sin 2θ + v′

m+1 cos 2θ.

Since the collision heights are equal, the time intervals between
collisions satisfy

tm = 2v′
m, tm+1 = 2v′

m+1, tm+2 = 2v′
m+2, (20)

where ti is the time interval between the ith and (i+1)th
collisions. The particle travels over the same horizontal
distances in these three time intervals, i.e.,

u′
mtm = −u′

m+1tm+1 = u′
m+2tm+2 = 2y∗ cot θ. (21)

From Eqs. (20) and (21) we also have

u′
mv′

m = −u′
m+1v

′
m+1 = u′

m+2v
′
m+2 = y∗ cot θ. (22)

After substituting Eq. (18) into the first equality of Eq. (22)
and Eq. (19) into the second equality of Eq. (22), we have

sin 4θ

(
v′

m

u′
m

)2

− 4 cos2 2θ
v′

m

u′
m

− sin 4θ = 0, (23)

sin 4θ

(
v′

m+1

u′
m+1

)2

+ 4 cos2 2θ
v′

m+1

u′
m+1

− sin 4θ = 0. (24)

When θ �= 45◦, Eq. (23) gives v′
m/u′

m = cot θ , which
leads to ω′

m = −q ′
m/a = −(u′

m cos θ − v′
m sin θ )/a = 0, and

Eq. (24) gives v′
m+1/u

′
m+1 = − cot θ , which leads to ω′

m+1 =
−q ′

m+1/a = −(u′
m+1 cos θ + v′

m+1 sin θ )/a = 0. After substi-
tuting v′

m/u′
m = cot θ and v′

m+1/u
′
m+1 = − cot θ into Eqs. (18)

and (19), respectively, we obtain

u′
m+1 = −u′

m, v′
m+1 = v′

m,

u′
m+2 = −u′

m+1, v′
m+2 = v′

m+1,

which gives

u′
m+2 = u′

m, v′
m+2 = v′

m,

so ω′
m+2 = −(u′

m+2 cos θ − v′
m+2 sin θ )/a = ω′

m = 0, There-
fore, we have Zm+2 = Zm. So for θ �= 45◦, there is only one
type of periodic orbit, which is shown in Fig. 9(a): The velocity
of the center of mass is perpendicular to the wall and the
tangential velocity at contact is zero. This implies that particles
executing this type of periodic orbit do not rotate for funnel
angles θ �= 45◦.

When θ = 45◦, sin 4θ = cos 2θ = 0, so Eqs. (23) and (24)
are automatically satisfied, and from Eqs. (18) and (19) we
obtain u′

m+1 = −v′
m, v′

m+1 = u′
m, u′

m+2 = v′
m+1, and v′

m+2 =
−u′

m+1. So u′
m+2 = u′

m, v′
m+2 = v′

m, and therefore we have
also Zm+2 = Zm. For this case the periodic orbit is shown in
Fig. 9(b). We note that in this case the rotation of the particle
can occur.

Therefore, as one drops a frictional elastic particle into a
funnel with no exit, only two possible final states can exist: (i)
The particle loses all its energy and rests on the bottom of the

(b)(a)

FIG. 9. Periodic orbits for e = 1 with (a) θ �= 45◦and (b) θ = 45◦.

funnel or (ii) the particle evolves into a simplest orbit of period
2, in which the particle bounces back and forth between the
two walls with both collisions occurring at the same height.

The above theoretical analysis shows the possibility of the
existence of periodic orbits. However, for such periodic orbits
to be realizable, the orbits must also be stable. Otherwise, any
infinitesimal deviation will eventually drive the particle away
from the periodic orbit. Since no funnel can be perfectly 45◦,
we need to consider only the orbit shown in Fig. 9(a), which
exists in funnels with θ �= 45◦.

To determine the states in the periodic orbits and the
stability of these orbits, we need to construct a map of the
collisions in an orbit that follows the sequence CL first and
then CR . Since xi and yi are constrained to be on the funnel
boundaries, we can eliminate xi in favor of yi . We need to
consider only i = 1,2,3 since the orbit under consideration
is period 2. Furthermore, we need to consider only the case
in which Eqs. (10) and (11) apply because we consider the
perturbation of the periodic orbit in which the tangential
velocity of the contact point before collision is infinitesimally
small, so any small friction can reduce it to zero before
the collision ends. We comment that these two equations
also hold for the situation in which the particle loses all its
energy, namely, q ′ = q = ω′ = ω = 0. The orbit is completely
specified by Pi = (yi,u

′
i ,v

′
i ,ω

′
i)

T for i = 1,2,3. Given P1, we
can determine P2 by constructing the map F1 defined by
P2 = F1(P1) as follows. The first and second collisions are
on the left and right walls, respectively, so we have

y1 = −x1 tan θ, y2 = x2 tan θ. (25)

Between collisions the center of mass of the particle experi-
ences free-fall motion under gravity and we have

y2 = y1 + v′
1t1 − 1

2 t2
1 , x2 = x1 + u′

1t1. (26)

This allows us to determine t , the time interval between the
two collisions, by eliminating x1, x2, and y2 from the above
expressions; the result is

t1 = v′
1 − u′

1 tan θ +
√

(v′
1 − u′

1 tan θ )2 + 4y1. (27)

Then the location and the x and y components of the velocity
immediately before the second collision can be obtained from
Eqs. (25)–(27):

y2 = x2 tan θ = (x1 + u′
1t1) tan θ = −y1 + u′

1t1 tan θ,

u2 = u′
1, (28)

v2 = v′
1 − t1 = u′

1 tan θ −
√

(v′
1 − u′

1 tan θ )2 + 4y1.
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The velocity of the center of mass perpendicular to the wall
immediately before the second collision can be expressed in
terms of u2 and v2,

p2 = −u2 sin θ + v2 cos θ = − cos θ

√
(v′

1 − u′
1 tan θ )2 + 4y1,

Therefore, after the second collision, this velocity component
becomes

p′
2 = −p2 = cos θ

√
(v′

1 − u′
1 tan θ )2 + 4y1. (29)

The velocity of the center of mass tangential to the wall
immediately before the second collision is

q2 = u2 cos θ + v2 sin θ = u′
1 sec θ

− sin θ

√
(v′

1 − u′
1 tan θ )2 + 4y1

and the angular velocity is

ω2 = ω′
1.

According to Eq. (10) we have

q ′
2 = ma2 − Iβ0

I + ma2
q2 − Ia

I + ma2
(1 + β0) ω2

= ma2 − Iβ0

I + ma2
[u′

1 sec θ − sin θ

√
(v′

1 − u′
1 tan θ )2 + 4y1]

− Ia

I + ma2
(1 + β0) ω′

1. (30)

The x and y components of the velocity immediately after the
second collision can easily be determined from Eqs. (29) and
(30) to give

u′
2 = q ′

2 cos θ − p′
2 sin θ = ma2 − Iβ0

I + ma2
u′

1

− Ia

I + ma2
(1 + β0) cos θ ω′

1 − 2ma2 + I (1 − β0)

I + ma2

× sin θ cos θ

√
(v′

1 − u′
1 tan θ )2 + 4y1, (31)

v′
2 = q ′

2 sin θ + p′
2 cos θ

= ma2 − Iβ0

I + ma2
tan θu′

1 − Ia

I + ma2
(1 + β0) sin θ ω′

1

+
(

1 − 2ma2 + I (1 − β0)

I + ma2
sin2 θ

)

×
√

(v′
1 − u′

1 tan θ )2 + 4y1. (32)

The angular velocity immediately after the second collision is
given by Eq. (11),

ω′
2 = −ma(1 + β0)

I + ma2
q2 + I − ma2β0

I + ma2
ω2

= −ma(1 + β0)

I + ma2
[u′

1 sec θ − sin θ

√
(v′

1 − u′
1 tan θ )2 + 4y1]

+ I − ma2β0

I + ma2
ω′

1. (33)

Thus Eqs. (28) and (31)–(33) can be combined to give the map
P2 = F1(P1), which determines the location and velocities

immediately after the second collision in terms of the location
and velocities immediately after the first collision. Following
similar steps, we can derive the map from the second collision
to the third collision P3 = F2(P2):

y3 = −y2 − u′
2 tan θt2, (34)

u′
3 = ma2 − Iβ0

I + ma2
u′

2 − Ia(1 + β0)

I + ma2
cos θω′

2

+ 2ma2 + I (1 − β0)

I + ma2

× sin θ cos θ

√
(v′

2 + u′
2 tan θ )2 + 4y2, (35)

v′
3 = −ma2 − Iβ0

I + ma2
tan θu′

2 + Ia(1 + β0)

I + ma2
sin θω′

2

+
(

1 − 2ma2 + I (1 − β0)

I + ma2
sin2 θ

)

×
√

(v′
2 + u′

2 tan θ )2 + 4y2, (36)

ω′
3 = −ma(1 + β0)

I + ma2
[u′

2 sec θ + sin θ

√
(v′

2 + u′
2 tan θ )2 + 4y2]

+ I − ma2β0

I + ma2
ω′

2,

(37)

where t2 = v′
2 + u′

2 tan θ + √
(v′

2 + u′
2 tan θ )2 + 4y2 is the

time interval from the second collision to the third. By
combining the two maps we obtain a map from the first
collision to the third P3 = F(P1).

Since the motion is periodic, we know that P1 = P3 =
F(P1). The solution of this set of nonlinear equations deter-
mines the existence of the periodic orbit shown in Figs. 9(a) and
9(b). Let P∗

1 be the solution to the equation P∗
1 = F(P∗

1). One
can easily show that a solution always exists for all values of θ .
From u′∗

1 v′∗
1 = y∗ cot θ and v′∗

1 /u′∗
1 = cot θ given by Eqs. (22)

and (23), we obtain u′∗
1 = √

y∗, v′∗
1 = √

y∗ cot θ , u′∗
2 = −√

y∗,
v′∗

2 = √
y∗ cot θ , and ω′∗

1 = ω′∗
2 = 0. However, the equilibrium

height of the periodic orbit y∗ cannot be determined using the
above arguments. When the particle is initially released, it
must experience frictional losses until it eventually reaches
the periodic orbit. The amount of energy loss determines the
height. Different initial locations follow different trajectories
as they evolve toward a periodic orbit and so they lose different
amounts of energy.

To determine the stability, we perturb P1 by dP1 and then
P2 and P3 will change by dP2 and dP3, respectively. We can
use the map F derived above in our stability analysis. Since
P2 = F1(P1) and P3 = F2(P2) = F2[F1(P1)], application of
the chain rule gives

dP3 = dF
dP1

∣∣∣∣∣
P1=P∗

1

, dP1 = dF2

dP2

∣∣∣∣∣
P2=P∗

2

· dF1

dP1

∣∣∣∣∣
P1=P∗

1

dP1.

(38)
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Using the maps given by Eqs. (28) and (31)–(36), we obtain

dF1

dP1

∣∣∣∣∣
P1=P∗

1

= ∂(y2,u
′
2,v

′
2,ω

′
2)

∂(y1,u
′
1,v

′
1,ω

′
1)0

∣∣∣∣∣
P1=P∗

1

=

⎛
⎜⎜⎜⎝

− cos 2θ 2
√

y∗ cos2 θ
√

y∗ sin 2θ 0
− 1

2
√

y∗ (1 + c) sin2 2θ (1 + c) sin2 θ cos 2θ + c − 1
4 (1 + c) sin 4θ −a(1 − c) cos θ

1√
y∗ (cos2 θ − c sin2 θ ) sin 2θ −(cos2 θ − c sin2 θ ) tan θ cos 2θ + c tan θ (cos2 θ − c sin2 θ ) cos 2θ −a(1 − c) sin θ

ma

I
√

y∗ (1 − c) sin 2θ sin θ −ma
I

(1 − c) sec θ (1 + cos 2θ sin2 θ ) ma
I

(1 − c) sin θ cos 2θ 1 − c − β0

⎞
⎟⎟⎟⎠

and

dF2

dP2

∣∣∣∣∣
P2=P∗

2

= ∂(y3,u
′
3,v

′
3,ω

′
3)

∂(y2,u
′
2,v

′
2,ω

′
2)

∣∣∣∣∣
P2=P∗

2

=

⎛
⎜⎜⎜⎝

− cos 2θ −2
√

y∗ cos2 θ
√

y∗ sin 2θ 0
1

2
√

y∗ (1 + c) sin2 2θ (1 + c) sin2 θ cos 2θ + c 1
4 (1 + c) sin 4θ −a(1 − c) cos θ

1√
y∗ (cos2 θ − c sin2 θ ) sin 2θ (cos2 θ − c sin2 θ ) tan θ cos 2θ − c tan θ (cos2 θ − c sin2 θ ) cos 2θ a(1 − c) sin θ

− ma

I
√

y∗ (1 − c) sin 2θ sin θ −ma
I

(1 − c) sec θ (1 + cos 2θ sin2 θ ) −ma
I

(1 − c) sin θ cos 2θ 1 − c − β0

⎞
⎟⎟⎟⎠ ,

where c ≡ ma2−Iβ0

I+ma2 . The stability of the orbit can be found by

considering the eigenvalues of the matrix dF2
dP2

|P2=P∗
2

dF1
dP1

|P1=P∗
1
.

Although the elements of the matrix dF2
dP2

|P2=P∗
2

dF1
dP1

|P1=P∗
1

depend on y∗, the characteristic polynomial for the eigenvalues
of this matrix does not. Therefore, the stability condition of
the orbit also will not depend on y∗. One can readily show that
one of the eigenvalues λ4 is always 1. Therefore, if |λi | < 1
(i = 1,2,3), the orbit is linearly stable, which means that
trajectories that start sufficiently close to the periodic orbit
will approach the periodic orbit. When |λ1| > 1, |λ2| > 1,
or |λ3| > 1, trajectories that start close to the periodic orbit
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FIG. 10. Stability of the orbit shown in Fig. 9(a) for β0 = 0.31.
The magnitude of the eigenvalues of ∂F(P1)

∂P1
is shown as a function of θ

when the moment of inertia I = 2
5 ma2. The solid curves indicate the

range of θ for which the corresponding orbit is neutrally linearly
stable. The dashed curves indicate the range of θ for which the
corresponding orbit is neutrally unstable.

will diverge from the periodic orbit until the particle can no
longer follow the collision sequence. In Fig. 10 we plot the
magnitudes of the eigenvalues as a function of funnel angle for
β0 = 0.31 when the particle is a sphere, i.e., I = 2

5ma2. Figure
10 illustrates that the orbit given by Fig. 9(a) is always unstable
for θ < 45◦ and is always stable for θ > 45◦. When β0 = 0,
the conditions for stability can be calculated analytically and
we can prove that the range of θ for stability is larger than 45◦
(see the Appendix). For other values of β0 ∈ (−1,1), one can
show that λ1 = λ2 = 1 at θ = 45◦, which suggests that there
is a change of stability at θ = 45◦; extensive numerical tests
indicate that the orbit is stable for θ > 45◦ and unstable for
θ < 45◦.

For θ > 45◦, even in the case of small friction, a particle can
approach the periodic state. However, one cannot determine
the height y∗ of the periodic state explicitly. This is because the
height y∗ is determined by the energy loss during the initial part
of the trajectory; this represents a complicated nonlinear dy-
namical problem. Although the analytical process is difficult, it
is straightforward to study this problem numerically. To study
the dependence of the periodic state on the initial location of
the particle x0 we perform simulations for an elastic frictional
particle in a closed funnel (d = 0) and record the x locations
of the periodic state for a given initial location x0. In Fig. 11 we
plot the result for θ = 50◦, β0 = 0, and several different values
of μ. There are only two final states: a periodic state, in which
the particle follows the periodic motion analyzed above, or a
dead state, in which the particle loses all of its energy and rests
at the bottom of the funnel. The dead state is represented by a
single point located on the axis y = 0 and a periodic orbit is
represented by two points located symmetrically about the axis
y = 0. We comment that in Fig. 11, at certain initial locations,
the vertical points appear to be widely spread [especially in
Fig. 11(a)]. One may think that this corresponds to orbits with
period longer than 2, which contradicts the orbit shown in
Fig. 9(a). Since this is not the case, there are only two collision
points for each given initial location. Thus Fig. 9(a) is indeed
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FIG. 11. Scaled x locations of the collisions (xc/L) after the particle has reached a periodic orbit plotted as a function of the scaled input
locations (x0/L) for θ = 50◦, e = 1, β0 = 0, and different values of μ: (a) μ = 0.01, (b) μ = 0.1, (c) μ = 0.2, and (d) μ = 1. The funnel is
closed, i.e., d = 0. The collision locations for the particles that eventually reach a periodic orbit are shown in gray. For any value of x0/L, there
are only two points that are symmetric with respect to the origin. The dark points represent collision locations for the other particles, which do
not reach periodic orbits and eventually lose all of their energy. The x locations of these points are all zero. Here L is half the effective opening
of the funnel for the center of the particle (see Fig. 1).

the only stable periodic orbit. The spread of the points is due to
the high sensitivity of trajectories (and hence energy loss) on
the initial location. Figure 11(a) is for systems with small μ;
therefore, it takes more collisions to damp out the tangential
velocity at the contact point and, consequently, longer to reach
the periodic orbit. Therefore, it will be more sensitive to the
initial location. As μ increases, fewer collisions are needed
to reach the condition μ > μc; therefore, the location of the
collision point at the final periodic state will become less
sensitive to the initial location. Figure 11 indeed shows this.
Since the particle is dropped into the funnel randomly with
each initial location having a uniform probability, it is natural
to ask what the probability is of reaching a periodic orbit as its
final state. This probability is plotted in Fig. 12 as a function of
μ for different values of θ . Figure 12 shows that for θ > 60◦,
the probability quickly reaches 100% at very small values
of μ. We have shown theoretically that the probability is zero
when θ < 45◦. We also performed simulations for other angles
in the range θ > 45◦; the results are similar to Fig. 11 for
θ = 50◦. The general trend is the following: For given μ, the
larger θ is, the higher the probability that the system reaches
the periodic orbit shown in Fig. 9(a). Investigations for other
values of β0 reveal behavior similar to that shown in Figs. 11
and 12.

The above analysis allows us to explain the surprising
results shown in Figs. 3–5. This is due to the key fact that the
stable periodic orbit always exists in funnels with θ > 45◦ and
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FIG. 12. Fraction of particles that can reach the periodic orbit
plotted as a function of μ for e = 1, β0 = 0, and different values of
θ (50◦, 60◦, and 70◦). The curve with θ = 60◦ and that with θ = 70◦

almost coincide.
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FIG. 13. Average duration (nondimensionalized by
√

H/g), impulse (nondimensionalized by m
√

gH ), and energy loss (nondimensional-
ized by mgH ) plotted against θ for axisymmetric conical funnels (solid curves) and two-dimensional funnels (dashed curves) with μ = 1 and
e = 0.99, respectively. From left to right, the plots correspond to β0 = 0, 0.31, and −0.31, respectively.

cannot exist in funnels with θ < 45◦. In general, when e < 1,
no periodic orbit can exist due to energy loss during collisions.
However, when e is close to 1, particle trajectories in funnels
with θ > 45◦ can follow the same pattern of hopping between
left and right walls. The main difference between the orbit for
e = 1 and that for e close to 1 is that, for e = 1, the collision
location y will remain the same, while for e ≈ 1, y will slowly
decrease. The situation for θ < 45◦ is very different. No orbit
can exist for e = 1; therefore, for e ≈ 1, the collision points
will be widely scattered within the funnel. This leads to a large
probability that the particle hits the exit in a relatively small

number of collisions. This is why the average duration that
the particle stays inside a funnel with θ > 45◦ is larger than
that in funnels with θ < 45◦. The phenomena demonstrated in
Figs. 4 and 5 can be explained in a similar way by considering
the existence of the periodic orbits shown in Fig. 9(a).

V. AXISYMMETRIC CONICAL FUNNEL

We have also examined the case of an axisymmetric conical
funnel, i.e., a single frictional, inelastic ball with zero initial
velocity and zero initial angular velocity falling under gravity
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through a funnel of conical shape. In this case, the center
of the particle always remains in the same plane and so the
dynamics is identical to the case above. The only difference
is in the distribution of the initial locations, which we assume
to be uniformly distributed over the circle at the top of the
funnel rather than uniformly distributed over the line in the
two-dimensional case. In Fig. 13 we plot the average duration,
average impulse, and average energy loss with e = 0.99,
μ = 1, and three different values of β0 (from left to right the
plots correspond to β0 = 0, 0.31, and −0.31, respectively). For
convenience of comparison, the results from two-dimensional
funnels with the same parameters are also shown in Fig. 13
as dashed curves. Figure 13 clearly show that the anomalous
behavior still exists for the conical funnel with μ = 1 and is
very similar to that shown in funnels in two dimensions. The
behavior for θ > 45◦ is very different from that for θ < 45◦ in
axisymmetric conical funnels as well. We comment that since
the trajectory of a particle in an axisymmetric conical funnel is
identical to that in a two-dimensional funnel, if both particles
have zero velocity and zero angular velocity and have the same
initial distance from the symmetry axis, our construction and
stability analysis for the periodic orbit in the two-dimensional
funnels remain valid for the axisymmetric conical funnel. It
follows that the anomalous phenomenon shown in Fig. 13 is
also due to the existence of the same simplest quasiperiodic
orbit.

VI. CONCLUSION

We have studied systems in which a frictional, inelastic
particle falls through a symmetric funnel with flat walls
inclined at an angle θ to the horizontal (see Fig. 1). Our
study has shown that the anomalous phenomena that we
found in a similar system with a frictionless particle not
only exist, but are also dramatically enhanced in systems
with a frictional particle (see Figs. 3–5). The main features
of the anomalous phenomena are that a particle may stay
longer, exert bigger impulses to the walls, and lose more
energy in a steeper funnel than that in a less steep funnel.
The anomalous phenomena in frictional particle systems may
appear to be similar to the anomalous phenomena observed
in the frictionless particle systems, namely, the anomalous
phenomena exist only in funnels with θ > 45◦ and they are
the consequences of the existence of stable quasiperiodic orbits
(i.e., repeated patterns in the particle-wall collision sequences).
However, the behavior of frictional particles is very different
from that of frictionless particles. For frictionless particles
(μ = 0), there are only certain narrow ranges of θ in which
the anomalous behavior occurs (see the peaks of the curve
for μ = 0 in Fig. 3). It has been shown in Ref. [1] that these
peaks correspond to an infinite set of periodic orbits, some
examples of which are shown in Fig. 14. In this paper we have
proved that all these orbits cannot exist even for infinitesimally
small μ and they all evolve into a new stable orbit given by
Fig. 9(a). We emphasize that this new orbit cannot be realized
by dropping a frictionless, elastic particle into a funnel. This
is due to the fact that the trajectories of a frictionless elastic
particle are time reversible. This means that, for a periodic
orbit, the particle must return to its initial dropping point.
At this point, the particle must have zero velocity due to

FIG. 14. Three simplest orbits in an elastic frictionless system
determined in Ref. [1].

energy conservation. This is clearly incompatible with the new
orbit in Fig. 9(a), whose velocity is always nonzero. We also
emphasize that this new stable orbit always exist for any funnel
with θ > 45◦ in frictional particle systems. Therefore, friction
plays a critical role in determining the dynamics of a particle
falling through a funnel. We have also shown that the same
anomalous phenomena also exist when a frictional, inelastic
particle falls through an axisymmetric conical funnel due to
the same physical mechanism.
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APPENDIX: PROOF OF THE STABLE RANGE OF θ WHEN
β0 = 0

For β0 = 0, one can readily show that the eigenvalues of
dF
dP1

|P1=P∗
1
= dF2

dP2
|P2=P∗

2

dF1
dP1

|P1=P∗
1

are given by

λ1 = A +
√

A2 + B, λ2 = A −
√

A2 + B,

λ3 = 0, λ4 = 1, (A1)
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where

A ≡ 8(1 + c)2η4 − 8(1 + c)2η3 − 2(1 − c2 + 4c)η2

+ 2(1 + 3c)η + 1, (A2)

B ≡ −16(1 − c)2η4 + 16(1 − c)2η3

+ 4(1 − c2)η2 − 4(1 − c)η − 1, (A3)

and η = sin2 θ . We can prove that |λ1| < 1 and |λ2| < 1 if
and only if θ < 45◦. The eigenvalues λ1 and λ2 can be either
complex or real; we consider these two cases separately.

We begin by considering the case in which λ1 and λ2

are complex. From Eq. (A1), λ1 and λ2 will be complex if
B < −A2. In this case, the norms of λ1 and λ2 are given by
Eqs. (A1),

|λ1| = |A +
√

A2 + B| = |A + i
√

−A2 − B| = −B,

|λ2| = |A −
√

A2 + B| = |A − i
√

−A2 − B| = −B.

Hence |λ1| < 1 and |λ2| < 1 can hold only if B > −1. So
we need to compute the range of θ such that B > −1. From
Eq. (A3) we obtain

B + 1 = −16(1 − c)2η4 + 16(1 − c)2η3

+ 4(1 − c2)η2 − 4(1 − c)η. (A4)

The roots of B + 1 = 0 are given by η1 = 0, η2 = 1
2 , η3 =

1
4 + 1

4

√
1 + 8

1−c
, and η4 = 1

4 − 1
4

√
1 + 8

1−c
. Using the fact that

c = ma2

I+ma2 ∈ (0,1), one can readily show that η3 > 1 and η4 <

0. Since η = sin2 θ , the only physically relevant root is η =
1
2 , which corresponds to θ = 45◦. One can further show that
|λ1| < 1 and |λ2| < 1 if θ > 45◦ and B < −A2.

We now consider the case in which |λ1| and |λ2| are real.
From Eq. (A1), |λ1| and |λ2| will be real if B � −A2. Using
Eq. (A1), |λ1| < 1 and |λ2| < 1 will be true if and only if

−1 − A <
√

A2 + B < 1 − A, (A5)

−1 + A <
√

A2 + B < 1 + A, (A6)

which can be written as

A > −1, B − 2A < 1, A < 1, B + 2A < 1. (A7)

Now we prove that A is always larger than −1. From
Eq. (A2) we obtain

A + 1 = 8(1 + c)2η4 − 8(1 + c)2η3

− 2(1 − c2 + 4c)η2 + 2(1 + 3c)η + 2.

(A8)

To prove that the quantity A + 1 is always larger than zero,
one must determine its stationary values and its values at the
boundary points (0 and 1). The stationary values of A + 1 can
be found by solving

32(1 + c)2η3 − 24(1 + c)2η2

− 4(1 − c2 + 4c)η + 2(1 + 3c) = 0,

which yields η = 1
4 and 1

4 ± 1
4

√
1 + 4(1+3c)

(1+c)2 . Among these

roots 1
4 − 1

4

√
1 + 4(1+3c)

(1+c)2 < 0, so by evaluating A + 1 at the

boundary values η = 0,1 and the stationary points η = 1
4 , 1

4 +
1
4

√
1 + 4(1+3c)

(1+c)2 in Eq. (A8), it is easy to see that A + 1 > 0 for

all η ∈ [0,1] and c = ma2

I+ma2 ∈ (0,1).
Next we prove that B − 2A is always smaller than 1. From

the expressions of A and B we get

B − 2A − 1 = −32(1 + c2)η4 + 32(1 + c2)η3

+ 8(1 − c2 + 2c)η2 − 8(1 + c)η − 4. (A9)

The stationary points of this quantity are given by solving

−128(1 + c)2η3 + 96(1 + c)2η2

+16(1 − c2 + 4c)η − 8(1 + c) = 0,

which yields η = 1
4 and 1

4 ± 1
4

√
1 + 4(1+c)

1+c2 . It is then straight-
forward to show that B − 2A < 1 for all η ∈ [0,1] and c ∈
(0,1).

Next we compute the range of θ for which A < 1. From
Eq. (A2) we have

A − 1 = 8(1 + c)2η4 − 8(1 + c)2η3

− 2(1 − c2 + 4c)η2 + 2(1 + 3c)η, (A10)

which has zeros at η1 = 0, η2 = 1
2 , η3 = 1

4 + 1
4

√
1 + 8(1+3c)

(1+c)2 ,

and η4 = 1
4 − 1

4

√
1 + 8(1+3c)

(1+c)2 . It is easy to see that η3 > 1 and

η4 < 0 and that A − 1 < 0 if and only if η > 1
2 , that is, θ >

45◦. Finally, we compute the range of θ for which B + 2A < 1.
From Eqs. (A1) and (A2) we have

B + 2A − 1 = 64cη4 − 64cη3 − 16cη2 + 16cη, (A11)

which has zeros at η = − 1
2 , 0, 1

2 , and 1, and it is easy to
show that B + 2A − 1 < 0 if and only if 1

2 < η < 1, that is,
θ > 45◦.

In both cases (λ1 and λ2 are complex and λ1 and λ2 are
real), the ranges of θ such that |λ1| < 1 and |λ2| < 1 are the
same (θ > 45◦). Therefore, |λ1| < 1 and |λ2| < 1 if and only
if θ > 45◦.
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