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We provide numerical constructions of one-dimensional hyperuniform many-particle distributions that exhibit
unusual clustering and asymptotic local number density fluctuations growing more slowly than the volume of an
observation window but faster than the surface area. Hyperuniformity, defined by vanishing infinite-wavelength
local density fluctuations, provides a quantitative metric of global order within a many-particle configuration
and signals the onset of an “inverted” critical point in which the direct correlation function becomes long
ranged. By targeting a specified form of the structure factor at small wavenumbers (S(k) ∼ kα for 0 < α < 1)
using collective density variables, we are able to tailor the form of asymptotic local density fluctuations
while simultaneously measuring the effect of imposing weak and strong constraints on the available degrees
of freedom within the system. This procedure is equivalent to finding the (possibly disordered) classical ground
state of an interacting many-particle system with up to four-body interactions. Even in one dimension, the
long-range effective interactions induce clustering and nontrivial phase transitions in the resulting ground-state
configurations. We provide an analytical connection between the fraction of constrained degrees of freedom
within the system and the disorder-order phase transition for a class of target structure factors by examining the
realizability of the constrained contribution to the pair correlation function. Our results explicitly demonstrate
that disordered hyperuniform many-particle ground states, and therefore also point distributions, with substantial
clustering can be constructed. We directly relate the local coordination structure of our point patterns to the
distribution of the void space external to the particles, and we provide a scaling argument for the configurational
entropy (analogous to spin-frustated system) of the disordered ground states. By emphasizing the intimate
connection between geometrical constraints on the particle distribution and structural regularity, our work
has direct implications for higher-dimensional systems, including an understanding of the appearance of
hyperuniformity and quasi-long-range pair correlations in maximally random strictly jammed packings of hard
spheres.
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I. INTRODUCTION

The relationship between the local structure of a many-
particle system and interparticle correlations is fundamental to
condensed-matter theory. This intimate connection provides
a useful image of the regularity [1] of all phases of matter,
allowing researchers to track the local structure over increasing
length scales approaching the global system. In practice, one
measures pair correlations between distinct points in the form
of the structure factor S(k), which is proportional to the scatter-
ing intensity from x-ray or small-angle neutron scattering [2].
It is intuitive from such measurements that a hierarchy of
structural order can be established, ranging from crystalline
structures such as Bravais lattices [3] to highly disordered
systems, the prototypical example of which is the ideal gas
[4–7]. Unfortunately, quantitative descriptors consistent with
this stratification of order are difficult to identify, and this
area of research is currently open. One recently introduced
order metric [8] involves the notion of hyperuniformity
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of point patterns, whereby infinite-wavelength local density
fluctuations vanish [4,6]. This order metric explicitly indicates
the degree to which density fluctuations are suppressed on
large length scales.

The local structure of a hyperuniform many-particle
configuration (i.e., on the order of a few nearest-neighbor
distances between particles) is by definition indicative of
the global arrangement of particles [4]. Also known as
superhomogeneity [9], this phenomenon is fundamental to the
description of all Bravais lattices, lattices with a multiparticle
basis, quasicrystals, and certain disordered systems possessing
pair correlation functions decaying to unity exponentially
fast [6]. We emphasize that while hyperuniformity in periodic
configurations is a trivial consequence of their intrinsic long-
range order, the fact that disordered many-particle systems
can also display this property is nonintuitive. This behavior is
especially surprising since the appearance of hyperuniformity
marks the onset of an “inverted” critical point in which the
structure factor vanishes in the limit of small wavenumbers
while the direct correlation function, defined through the
Ornstein-Zernike formalism, becomes long ranged [4].

Hyperuniform systems have played a fundamental role in
our understanding and design of materials, including those
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with large, complete photonic band gaps [10], “stealth”
materials invisible to certain frequencies of radiation [11],
and prototypical glassy structures consisting of maximally
random strictly jammed (MRJ) monodisperse hard spheres
[12,13]. Other examples of disordered hyperuniform systems
include noninteracting spin-polarized fermions [14,15], the
ground state of liquid helium [16], the density fluctuations
of the early Universe [17], one-component plasmas [4], and
so-called g2-invariant processes [4], in which the form of the
pair correlation function is held fixed over a certain density
interval. Note for equilibrium many-particle configurations
at positive temperature, hyperuniformity implies that the
isothermal compressibility vanishes; this relationship does not
hold, however, for nonequilibrium systems.

Hyperuniform particle distributions possess structure fac-
tors with a small-wavenumber scaling S(k) ∼ kα for α > 0,
including the special case α = +∞ for periodic crystals.
This behavior implies that the variance σ 2

N (R) in the number
of particles within a local observation window (here a d-
dimensional sphere of radius R) increases asymptotically
as [6]

σ 2
N (R) ∼

⎧⎪⎨
⎪⎩

Rd−1 ln R, α = 1

Rd−α, α < 1

Rd−1, α > 1

(R → +∞). (1)

However, all known hyperuniform configurations to date
have a scaling parameter α � 1 [18,19], meaning that the
second asymptotic regime of the number variance in (1) has
never been observed in either theoretical or experimental
studies. Indeed, the aforementioned MRJ packings, which
are maximally disordered among all jammed sphere packings
with diverging elastic moduli, possess a small-wavenumber
scaling α = 1, and this observation has provoked the question
of whether this value corresponds to a minimal scaling among
all hyperuniform point patterns. Zachary, Jiao, and Torquato
have provided strong arguments that this claim is indeed true
for strictly jammed hard-particle packings [13], but it is unclear
whether general point patterns must also possess exponents
α � 1. Here we provide for the first time constructions of
“anomalous” disordered hyperuniform many-particle (zero-
temperature) ground states for which α < 1, demonstrating the
diversity of possible structures within of this class of systems.

Our approach involves placing explicit constraints on
the so-called collective coordinates associated with a point
distribution, which are defined by a Fourier transform of the
local density variable (discussed in Sec. II below) [18,20,21].
Controls on collective coordinates have been previously used
in the development of novel stealth materials [11] and in the
identification of unusual disordered classical ground states
for certain classes of pair potentials [22]. In general, the
problem of constraining collective coordinates can be viewed
as the determination of the ground state of a many-particle
system, possibly with up to four-body interactions [18]; duality
relations, which relate the energy per particle of a many-body
potential in real space to the corresponding energy of the
dual (Fourier-transformed) potential, can be used to examine
analytically the ground-state structures and energies [23]. Im-
portantly, since collective coordinates directly probe the con-
figuration space associated with the two-particle information

of the structure factor, they are ideally suited to the construction
of hyperuniform point patterns. Formally, we numerically
construct a configuration of particles whose spatial distribution
is consistent with a targeted form of the structure factor at small
wavenumbers. By constraining a certain number of degrees of
freedom in the system, we “fix” the positions of a known
fraction of the total number of particles based on the locations
of the remaining particles and the implicit constraints imposed
by the targeted form of S(k). By varying the fraction of
constrained degrees of freedom within the system, we are able
to explore directly the relationship between hyperuniformity
and internal structural constraints of a many-particle configu-
ration, allowing us to interpolate between the “disordered” and
“ordered” regimes of hyperuniformity. We note that this same
technology of placing constraints on collective coordinates
has recently been used in the design of novel hyperuniform
disordered materials with complete photonic band gaps [10],
which have recently been fabricated in the laboratory [24].

In order to elucidate the connection between the local
coordination structure and pair correlations for our anomalous
hyperuniform ground states, we have investigated the distri-
bution of the available void space external to the particles.
Prior work on MRJ packings of binary hard disks has shown
that the appearance of hyperuniformity in a many-particle
system is related to the underlying distribution of the local
voids between particles [13]; in this sense, the void space
is more fundamental to the local structure than the particles
themselves. Strong arguments have also been put forth to sup-
port the claim that exponential values α less than unity in the
small-wavenumber region of the structure factor indicate the
presence of larger interparticle voids with higher frequency,
thereby deregularizing the microstructure while maintaining
hyperuniformity [13]. This behavior is notable since it is
not obvious that hyperuniformity can be consistent with a
highly clustered microstructure; see Fig. 1. Here we provide
further evidence to link rigorously the void space and the local
coordination structure of a point pattern, and we highlight
the differences in the void space distribution for “regular”
and “anomalous” hyperuniform systems. Since we can di-
rectly control the fraction of constrained degrees of freedom

(a) (b)

FIG. 1. (Color online) Numerically generated configurations of
particles in two dimensions with a circular local observation window
of radius R. Both configurations exhibit strong local clustering
of points and possess a highly irregular local structure; however,
configuration (a) is hyperuniform while (b) is not. The hyperuniform
point pattern was generated with the same methodology outlined in
Sec. III of the text.
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via collective coordinates, our results have implications for
understanding how the void space distribution is affected
by increased constraints on the many-particle configuration.
Indeed, our work directly supports the fundamental role
of the void space in the microstructure and reinforces the
relationship between constraints on the local structure and
the aforementioned observed minimal scaling α = 1 found
in S(k) for MRJ hard-sphere packings, which are glassy
nonequilibrium structures.

Our major results are summarized as follows:
(i) Disordered hyperuniform many-particle ground states

can, counterintuitively, exhibit a substantial degree of clus-
tering in the absence of a large number of constraints on the
particle distribution (Secs. IV and V).

(ii) The order-disorder phase transition in ground states
that occurs on increasing the fraction of constrained degrees
of freedom is related to the realizability of the constrained
contribution to the pair correlation function g2(r) (defined
below) (Sec. IV).

(iii) Hyperuniform particle distributions with anomalous
asymptotic local density fluctuations (i.e., slower than the
volume but faster than the surface area of an observation
window) can be constructed, and these fluctuations are
intimately related to the distribution of void sizes external to
the particles (Sec. V).

(iv) With few constrained degrees of freedom (e.g., a
perturbation from an ideal gas), the entropy (configurational
degeneracy) of the disordered ground states decreases linearly
with the number of constraints imposed on the particle
distribution (Sec. V).

Section II provides a brief overview of the important
ideas related to point processes, collective coordinates, and
hyperuniformity. We apply these concepts in Sec. III to
discuss how control over collective coordinates can be used
to numerically generate configurations of hyperuniform point
patterns, including those with anomalous asymptotic local
density fluctuations, to a high numerical precision. Section IV
explores how increasing the fraction of constrained degrees
of freedom within hyperuniform systems affects the observed
pair correlations and, therefore, the local coordination struc-
ture. In Sec. V we provide explicit calculations for the void
statistics of our hyperuniform point patterns under weak and
strong constraints, and we draw explicit connections among
the regularity of the local structure, the exponential form of
the small-wavenumber region of the structure factor, and the
distribution of the local voids. Concluding remarks are given
in Sec. VI.

II. STOCHASTIC POINT PATTERNS, COLLECTIVE
COORDINATES, AND HYPERUNIFORMITY

We consider many-particle configurations to be realizations
of stochastic point processes in some subset of Euclidean space
Rd . A (finite) stochastic point pattern is formally defined as
a distribution of N points {rN } in some compact space V of
volume (Lebesgue measure) V . We consider the case where
the distribution is statistically homogeneous with periodic
boundary conditions on V; the thermodynamic limit N,V →
+∞ with ρ = N/V = constant can be taken appropriately to
extend the point pattern to Euclidean space Rd . The statistics

of the process are determined by an N -particle probability
density function PN (rN ), which need not be a Gibbs measure.
Equivalently, one can specify the countable set of generic
n-particle probability density functions ρn(rn), defined by

ρn(rn) = N !

(N − n)!

∫
PN (rn,rN−n) drN−n. (2)

The function ρn is therefore the probability density associated
with finding a subset of any n particles within volume elements
drn. Note that for statistically homogeneous point patterns
ρ1 = ρ. Related to the generic n-particle probability density
function is the n-particle correlation function gn(rn), defined
by

ρngn(rn) = ρn(rn). (3)

Of particular importance is the pair correlation function g2(r),
which can be made integrable by subtracting its long-range
value of unity to give the total correlation function h(r) =
g2(r) − 1. A Fourier representation of g2(r) is given by the
structure factor S(k), defined by

S(k) = 1 + ρĥ(k), (4)

where we utilize the following convention for the Fourier
transform:

f̂ (k) =
∫
Rd

exp(−ik · r)f (r) dr. (5)

Corresponding to any single configuration of points {rN } is
a local density variable

ρ(r) =
N∑

j=1

δ(r − rj ), (6)

where δ denotes the Dirac δ function. The ensemble average
of this local density with respect to the statistics of the point
process is

〈ρ(r)〉 = ρ, (7)

and the autocorrelation function is given by

〈ρ(r1)ρ(r2)〉 = ρδ(r) + ρ2g2(r) (8)

with r = r1 − r2. Note from Eq. (8) that the autocorrelation
function contains two contributions: a δ function correspond-
ing to the self-correlation of a point in the process and the
pair correlation function between two distinct particles. The
self-correlation contribution is independent of the distribution
of particles in the system and arises for all correlated and
uncorrelated point patterns.

For statistically homogeneous point patterns subject to pe-
riodic boundary conditions, it is standard and computationally
convenient to assume ergodicity and equate ensemble averages
with volume averages over the unit cell. This assumption is
expected to be valid in the thermodynamic limit. One can show
that the volume-averaged local density and autocorrelation
function are

ρ(r) = ρ (9)

ρ(x + r)ρ(x) = ρδ(r) + 1

V

N∑
j �=�=1

δ(r − rj�), (10)
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where rj� = rj − r�. Equation (10) suggests the following
alternative definition of the pair correlation function, which
is well known [25]:

ρ2g2(r) =
〈

1

V

N∑
j �=�=1

δ(r − rj�)

〉
. (11)

Since the Dirac δ functions in Eq. (10) are by definition
localized, this result has little practical utility when handling
finite particle distributions. However, one can take advantage
of the periodicity of the unit cell to expand the local density in
a Fourier series according to

ρ(r) = 1

V

N∑
j=1

∑
k

exp[ik · (r − rj )], (12)

which is equivalent to a discrete (inverse) Fourier transform.
The wave vectors k in Eq. (12) are determined by the geometry
of the unit cell; if the unit cell is formed with basis vectors {ei},
then the wave vectors satisfy

k · ei = 2πm (13)

for all i and for some m ∈ Z. For simplicity, we will henceforth
consider a d-dimensional cubic cell [0,L]d ⊂ Rd , which
implies k = 2πn/L for some n ∈ Zd . Rewriting (12) in the
form

ρ(r) = 1

V

∑
k

exp(ik · r)ρ̂(k), (14)

where

ρ̂(k) =
N∑

j=1

exp(−ik · rj ), (15)

we observe that the local density is the discrete (inverse)
Fourier transform of ρ̂, which we call a collective density
variable.

The identity (9) can also be obtained using the Fourier
representation (12), meaning that only the mode k = 0
contributes to the local density on average. However, the
autocorrelation function is now of the form

ρ(x + r)ρ(x) = ρ

V

∑
k

exp(ik · r)

+ 1

V 2

∑
j �=�

∑
k

exp[ik · (r − rj�)] (16)

= ρδ(r) + ρ2

N2

∑
k

exp(ik · r)[|ρ̂(k)|2 − N ],

(17)

which, by comparing with (8), implies [26]

g2(r) = 1

N2

∑
k

exp(ik · r)[〈|ρ̂(k)|2〉 − N ]. (18)

The result (18) allows one to directly compute the pair
correlation function from the collective density variables ρ̂;
note that the k = 0 mode must be included in this calculation
to ensure the correct long-range behavior g2(r) → 1 as ‖r‖ →
+∞. In practice, one must truncate the wave vector summation

in (18), leading to oscillatory approximations to g2 within
some threshold determined by the cut-off magnitude of the
wave vectors.

Hyperuniform point patterns constitute a subclass of point
processes lacking infinite-wavelength local density fluctua-
tions [4]. Specifically, it has been shown that the variance
σ 2

N (R) in the number of points within a local spherical
observation windowW(R) of radius R and volume v(R) scales
asymptotically as [4]

σ 2
N (R) = 〈N (R)〉[AN (R) + BN (R)/R

+ lower-order terms], (19)

where 〈N (R)〉 = ρv(R) is the average number of points in the
observation window. The coefficients AN (R) and BN (R) in
(19) are determined solely by the two-particle information of
the point pattern:

AN (R) = 1 + ρ

∫
W(R)

h(r) dr (R → +∞) (20)

BN (R) = − ρ�(1 + d/2)

�[(d + 1)/2]�(1/2)

∫
W(R)

h(r)rdr (R → +∞).

(21)

So long as h(r) → 0 faster than r−d , the leading-order
coefficient AN (R) converges asymptotically as AN (R) =
AN ≡ lim‖k‖→0 S(k) [27]. By definition, a hyperuniform point
pattern possesses a number variance growing slower than the
volume v(R) of the observation window (equivalently, the
mean number of points 〈N (R)〉), implying that AN = 0 and
infinite-wavelength density fluctuations vanish.

The most common examples, including all Bravais lat-
tices, periodic non-Bravais lattices, quasicrystals possessing
Bragg peaks, and certain disordered point patterns with pair
correlation functions decaying to unity exponentially fast, of
hyperuniform point patterns possess constant number variance
coefficients BN (R) = BN [4]. This behavior implies that the
isotropic structure factor S(k) possesses a small-wavenumber
scaling Dkα with α � 2, including the special case α = +∞
for periodic structures. However, it is also possible to find
hyperuniform point patterns for which 0 < α < 2, in which
case C1 � BN (R) < C2R as R → +∞ for some constants
C1 and C2. The most well-known examples of these types of
“anomalous” local density fluctuations occur when S(k) ∼ k

as k → 0, in which case BN (R) = A1 ln(R) + A2 with A1

and A2 constant. This situation has been well-characterized
in three-dimensional maximally random jammed packings of
hard spheres [12], the ground states of liquid helium [16],
and noninteracting spin-polarized fermion ground states [14].
However, examples where α < 1 have heretofore not appeared
in the literature.

III. COLLECTIVE COORDINATE CONSTRUCTION OF
HYPERUNIFORM POINT PATTERNS

One goal of this work is to construct examples of
hyperuniform point patterns possessing the aforementioned
“anomalous” asymptotic local density fluctuations, meaning
that the number variance grows slower than the volume of an
observation window but faster than the surface area. Collective
density variables provide an attractive means to control the
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small-wavenumber region of the structure factor S(k), thereby
allowing us to construct a hyperuniform point pattern with
targeted local density fluctuations. Specifically, we define an
objective function 	 according to

	(rN ) =
∑
k∈Q

[S(k; rN ) − S0(k)]2, (22)

where S0(k) is the targeted form of the structure factor and
Q denotes some finite subset of wave vectors k. The struc-
ture factor is determined using collective density variables;
specifically,

S(k; rN ) = |ρ̂(k)|2
N

(k �= 0), (23)

where ρ̂(k), implicitly a function of the particle positions rN ,
is defined by (15). The zero-wave vector is excluded from
(23) since it provides an O(N ) contribution to the structure
factor, corresponding to a δ function in the thermodynamic
limit from the long-range behavior of g2. By expanding (22),
one can show that our minimization problem corresponds to
finding the classical ground state of a many-particle system
with up to four-body interactions [18]

	(rN ) =
∑

i �=j �=� �=m

v4(ri ,rj ,r�,rm) +
∑

i �=j �=�

v3(ri ,rj ,r�)

+
∑
i �=j

v2(ri ,rj ) + v0, (24)

where

v4(ri ,rj ,r�,rm) = 1

N2

∑
k∈Q

cos(k · rij ) cos(k · r�m) (25)

v3(ri ,rj ,r�) = 4

N2

∑
k∈Q

cos(k · rij ) cos(k · ri�) (26)

v2(ri ,rj ) = 2

N

∑
k∈Q

cos(k · rij )[1 − S0(k)] (27)

v0 =
∑
k∈Q

[S0(k) − 1]2. (28)

The set Q in (22) is chosen to contain all wave vectors,
excluding the zero mode, with norm less than some upper
bound K . This construction allows us to target specifically
the small-wavenumber region of the structure factor, which
controls the asymptotic local density fluctuations. The target
function S0 is chosen with the form

S0(k) = D‖k‖α for all k ∈ Q. (29)

In order for the target function to correspond to a realizable
point pattern, it is necessary that D � 0 to enforce positivity
of the structure factor. The parameter α determines the
asymptotic behaviors of the pair correlation function and the
number variance [cf. (1)]. Previous work [18] has considered
the array α = 1,2,4,6,8, and 10 in dimensions d = 2 and 3.
It has recently been conjectured that α = 1 corresponds to the
minimal exponent consistent with the constraints of saturation
and strict jamming in sphere packings [13]; however, systems
for which α < 1 have not been reported in the literature,
and their statistical properties are unknown. The objective
function (22) is minimized to within 10−17 of its global
minimum using the MINOP algorithm [28,29], which has

several computational advantages for this type of investigation
as previously reported in the literature [18]. MINOP applies
a dogleg strategy that uses a gradient direction when one is
far from the minimum, a quasi-Newton direction when one
is close, and a linear combination of the two when one is at
intermediate distances from the minimum.

It is important for this study to verify that the constructed
ground-state point patterns are indeed hyperuniform with the
correct targeted asymptotic local density fluctuations. This
criterion requires high resolution of the small-wavenumber
region of the structure factor. Specifically, the smallest ob-
servable wavenumber magnitude in the collective coordinates
representation (in a d-dimensional cubic unit cell) is kmin =
2π/L = 2πρ1/d/N1/d , where L is the box length, N is the
number of particles, and ρ is the number density. To ensure hy-
peruniformity, we therefore require that limN→+∞ S(kmin) =
0, where the limit is taken at constant density.

Since any simulation necessarily requires choosing N

finite, it is essential to select a value of N sufficiently
large to enforce both hyperuniformity and the desired form
of the structure factor near the origin. Unfortunately, the
O(N−1/d ) scaling of kmin makes obtaining such resolution
increasingly difficult in higher dimensions. Our interest is
in verifying the existence of anomalous hyperuniform point
patterns and understanding their statistical properties, and
we therefore limit our studies to one dimension, where the
scaling is most favorable, with N = 2000 particles. It should
be appreciated, however, that hyperuniform point patterns
with logarithmically-growing asymptotic density fluctuations
are known in arbitrarily high dimensions [14]. Importantly,
since our minimization procedure is equivalent to finding the
classical ground state of a long-range interaction with up to
four-body potentials and can be used in principle to construct
hyperuniform point patterns in any dimension, nontrivial phase
behaviors can still be observed [30], and we are therefore able
to extend our conclusions to higher-dimensional structures.

IV. COLLECTIVE COORDINATES AND REALIZABILITY
OF POINT PATTERNS

For a general d-dimensional point pattern of N particles,
there are dN translational degrees of freedom in the absence of
constraints on the system. One must therefore choose a set of
wave vectors Q for the objective function (22) containing only
a fraction χ of these degrees of freedom. In one dimension
there are 2M(K) = floor(KL/π ) wave vectors, excluding the
zero mode, with magnitude less than or equal to K . Inversion
invariance of the modulus of the collective density variable
implies that M(K) of these wave vectors can be independently
constrained; we therefore define a new parameter

χ = M(K)

dN
, (30)

which represents the fraction of independently constrained
degrees of freedom from the objective function 	.

For the case where the targeted structure factor S0(k) =
0 for all k ∈ Q, it has been previously shown [20] that
increasing the parameter χ induces a greater degree of order
on the particle distribution. Specifically, in one dimension the
corresponding point patterns are disordered for 0 < χ < 1/3
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and crystalline for χ > 1/2 [31]; intermediate values of χ

interpolate between these two regimes [32]. However, it is
known that target functions of the form (29) interfere with
this order-disorder phase transition; here we provide analytical
results suggesting that this transition is shifted to higher values
of χ for all finite α [33].

For a one-dimensional point pattern, the wave vectors are
of the form k = 2πm/L for m ∈ Z, and one can write the
collective density variable as

ρ̂(m) =
N∑

j=1

exp(−i2πmrj/L). (31)

Additionally, the total correlation function is of the form
[cf. (18)]

h(r) = 2

N2

+∞∑
m=1

cos(2πmr/L)[|ρ̂(2πm/L)|2 − N ], (32)

which for the targeted point pattern can be decomposed as

h(r) = 2

N

M∑
m=1

cos(2πmr/L)[D(2πm/L)α − 1]

+ 2

N2

+∞∑
m=M+1

cos(2πmr/L)[|ρ̂(2πm/L)|2 − N ]

(33)

= h0(r; M) + h1(r; M), (34)

where h0(r; M) is the contribution to the total correlation
function due to constrained wave vectors and h1(r; M) is the
unconstrained contribution. The function h0 can be simplified
as

h0(r; M) =
(

2α+1παD

NLα

) M∑
m=1

cos(2πmr/L)mα

− 2

N

M∑
m=1

cos(2πmr/L) (35)

= C(α,D)
M∑

m=1

cos(2πmr/L)mα − (2/N )

× cos[(M + 1)πr/L] csc(πr/L) sin(Mπr/L),

(36)

where

C(α,D) = 2α+1παD

NLα
(37)

is a parameter-dependent constant. The global minimum of
h0(r; M) occurs at r = 0, corresponding to

h0(0; M) = C(α,D)
M∑

m=1

mα − (2M/N) (38)

= C(α,D)H (−α)(M) − (2M/N), (39)

where

H (α)(n) =
n∑

m=1

m−α (40)

is the harmonic number of order α.

The negative contribution to h0(0; M) in (39) suggests
that there may be an upper threshold M∗ beyond which
h0(0; M) + 1 < 0. For any values of M in this region, the
constrained contribution h0 to the total correlation function
of the point pattern is no longer in itself realizable as a
point process. The realizability problem in classical statistical
mechanics [34] and the associated N -representability prob-
lem in quantum statistics [35] are notoriously difficult and
unsolved problems in physics that ask under what sufficient
and necessary conditions a reduced two-particle correlation
function can be expressed as the integral over a full N -particle
probability density. In the classical case, one can consider
specifying a pair correlation function g2 and attempting to
construct a corresponding point process. Known necessary
realizability conditions on g2 include

g2(r) � 0 for all r (41)

S(k) � 0 for all k (42)

along with the somewhat weaker Yamada condition

σ 2
N (R) � θ (1 − θ ) (43)

on the fractional part θ of the average number of particles in
an observation window [36]. The Yamada condition appears
easy to satisfy in all but relatively low dimensions [34]. The
determination of other realizability conditions on g2 is an open
problem [37].

Figures 2 and 3 compare the pair correlation functions
and the constrained contributions h0(r) + 1 for numerically
constructed point patterns (using the methodology of Sec. III)
with small-wavenumber exponents α = 0.5,1.0, and 2.0 and
χ = 0.1 and 0.35. For χ = 0.1, corresponding to a small
fraction of constrained degrees of freedom, the constrained
contribution h0(r) + 1 places only moderate constraints on the
local structure of the system, primarily controlling oscillations
in g2 beyond approximately five nearest-neighbor distances.
Interestingly, the small-r behaviors of g2(r) and h0(r) + 1
differ strikingly. Although the constrained contribution to
the pair correlation function generates an effective repulsion
between particle pairs, the full pair correlation function
indicates a tendency for particles to cluster at short pair
separations. It follows that the unconstrained contribution
to the pair correlation function plays a substantial role in
determining the local structure for this system.

However, the situation differs markedly on increasing the
constrained degrees of freedom to χ = 0.35. Figure 3 shows
that the constrained contribution to g2 almost exactly mirrors
the full pair correlation function, implying that sufficiently
constraining the collective density variables places a strong
constraint on the local structure of the point pattern. It follows
that the value M∗ beyond which h0(0; M) + 1 < 0 is an
indicative precursor to the loss of realizability of the targeted
structure factor. We have mapped the threshold value M∗
(equivalently, χ∗) in Fig. 4. We emphasize that this loss of
realizability is associated with negativity of the real-space
pair correlation function; the structure factor itself is still
positive over its entire domain. Interestingly, as the exponent
α controlling the small-wavenumber region of the structure
factor increases, we recover the value χ = 0.5 corresponding
to crystallization in the case where S0(k) = 0 for all k ∈ Q.
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FIG. 2. (Color online) (a) Pair cor-
relation function g2 for numerically
constructed hyperuniform point patterns
with small-wavenumber scalings Dkα

and χ = 0.1. (b) Constrained contribu-
tions to the pair correlation functions.

This observation suggests that the threshold values of χ beyond
which h0(0; M) + 1 < 0 generalize this phase transition. In
Sec. V, we provide additional arguments to support this claim.

V. VOID STATISTICS AND COORDINATION STRUCTURE

A. Exclusion probability functions

The n-particle correlation functions contain information
concerning the relative locations of points within a point
process, and, in principle, specifying the countably infinite set
(in the thermodynamic limit) of such functions is sufficient
to completely determine the point pattern. However, any
finite collection of correlation functions contains only partial
details of the spatial arrangements of the points, implying that
there are degenerate structures with these same statistics [38].
In particular, the n-particle correlations functions do not in
themselves provide direct information about the space exterior
to the points, or the so-called void space. It has been shown
for point patterns [13,39] (and random media [40]) that the
distribution of the void space is indeed a more fundamental
descriptor of the point process than the arrangements of the
points themselves. Here we are interested in characterizing
the relationship between asymptotic local number density
fluctuations and the void space statistics; in particular, we
would like to examine the constraints that the exponent α in
the small-wavenumber region of the structure factor places on
the distribution of the void space.

One can define two types of “exclusion” functions, both
of which measure the availability of empty space surrounding
points of a stochastic process. The void exclusion probability
function EV (r) is the probability of finding a d-dimensional

spherical cavity of radius r centered at an arbitrary position in
Rd . The void exclusion probability has recently been shown
to play a fundamental role in the covering and quantizer
problems from discrete geometry and number theory [41].
Closely related to this descriptor is the particle exclusion
probability function EP (r), which is the probability of finding
a d-dimensional sphere of radius r centered on a point of
the point process but containing no other points. Figure 5
highlights the differences between these functions.

The exclusion probability functions are complementary
cumulative distributions of the void and particle nearest-
neighbor functions HV (r) and HP (r), respectively [39,40].
The void nearest-neighbor function is the probability density
of a finding the nearest point of a point process with respect
to an arbitrary location in Rd within a radial distance r + dr .
The particle nearest-neighbor function is defined similarly but
with respect to nearest neighbors between two points of a point
process. One therefore has the following simple relationships
between these sets of functions:

HV (r) = −∂EV (r)

∂r
(44)

HP (r) = −∂EP (r)

∂r
. (45)

We provide a simple mathematical relationship between the
void and particle exclusion functions in Appendix A.

One can without loss of generality define the exclusion
correlation function η(r) according to

η(r) ≡ EP (r)

EV (r)
. (46)
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FIG. 3. (Color online) (a) Pair cor-
relation function g2 for numerically
constructed hyperuniform point patterns
with small-wavenumber scalings Dkα

and χ = 0.35. (b) Constrained contribu-
tions to the pair correlation functions.
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FIG. 4. (Color online) Typical threshold values χ∗(α) beyond
which the constrained contribution h0(r) to the total correlation
function is no longer realizable as a point process. This curve
corresponds to choosing S(K) = 0.5, where K is the magnitude of
the maximally constrained wave vector. Note that as α → +∞ we
recover the crystallization threshold χ∗ = 0.5 reported in Ref. [20].

This function provides a measure of the correlations between
neighboring points in a stochastic point pattern and is
identically unity for a Poisson point process. It is interesting to
note that for a system of equilibrium hard spheres of diameter
D, the exclusion correlation function is given by [39]

η(r) =
{

[EV (r)]−1 r � D

[EV (D)]−1 r � D
(47)

which depends only on knowledge of EV (r) and is monotoni-
cally nondecreasing for all r with η(0) = 1. This result implies
that the void space of an equilibrium hard-sphere system is
more fundamental than the particle space [40].

Further insight into the probabilistic meanings of EP , EV ,
and η can be gained by introducing the notion of the particle
space, defined to be the subset (of Lesbesgue measure zero) of
Rd occupied by the points of the point process. The particle
exclusion probability function EP (r) is then the fraction of
the particle space that can be decorated by a d-dimensional
sphere of radius r containing no other points of the process.

FIG. 5. (Color online) Events contributing to the void exclusion
probability EV (r) (upper left) and the particle exclusion probability
EP (r) (lower). The points correspond to a realization of a disordered
point process.

To define the void exclusion probability EV (r), one decorates
all of the points in the process by spheres of radius r and
then determines the fraction of all space not occupied by the
spheres; this value corresponds to the portion of space available
to insert a cavity of radius r [41]. The exclusion correlation
function η(r) then provides a measure of the relative available
space for a cavity of radius r in the particle space compared to
the external void space.

Torquato and coworkers [39] have provided the following
series representations for the exclusion probability functions:

EV (r) = 1 +
+∞∑
k=1

(−ρ)k

�(k + 1)

∫
gk(rk)

k∏
j=1

m(‖x − rj‖; r) drj

(48)

EP (r) = 1 +
+∞∑
k=1

(−ρ)k

�(k + 1)

∫
gk+1(rk+1)

k+1∏
j=2

×m(‖r1 − rj‖; r) drj , (49)

where m(r; R) = �(R − r). Since these functions are special
cases of a more general canonical n-particle correlation
function [42], one can establish rigorous upper and lower
bounds by truncating these series at finite order. Specifically,
by writing

EV/P (r) =
+∞∑
k=0

E
(k)
V/P (r), (50)

where E
(0)
V/P ≡ 1, we have the following hierarchy of bounds:

EV/P (r) �
�∑

k=0

E
(k)
V/P (r) (� even) (51)

EV/P (r) �
�∑

k=0

E
(k)
V/P (r) (� odd), (52)

which become sharper with increasing �.

B. Local statistics of anomalous hyperuniform point patterns

We have been able to successfully construct point configu-
rations exhibiting anomalous asymptotic local number density
fluctuations. Figure 6 provides images of the structure factors
for our configurations at χ = 0.1 and χ = 0.35. As we show,
for all wave vectors within the constrained portion of the
spectrum, the structure factor matches its target value within an
exceedingly small numerical tolerance (on the order of 10−17).
In addition to the systems shown, we have also been able
to reliably construct configurations with small-k exponential
behaviors α � 0.25. In order to keep the exposition clear, we
have only presented results for α = 0.5 with the disclaimer
that our conclusions will apply for other point patterns with
anomalous local number density fluctuations.

It is interesting to note the substantial differences in the
structure factors of the systems for χ = 0.1 and χ = 0.35,
particularly for unconstrained wave vectors. For χ = 0.1,
the structure factor exhibits an unusually slow decay to its
asymptotic value of unity; we have fit the large-k region of the
structure factor with an asymptotic fit of the form 1 + β/kγ

and have found a power-law decay γ = 1. This behavior is due
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FIG. 6. (Color online) (a) Structure factor with small-k behavior Dkα (inset) for numerically constructed hyperuniform point patterns with
χ = 0.1. (b) Structure factor with small-k behavior for χ = 0.35.

to the local clustering of particles as expected from the small-r
region of the pair correlation function in Fig. 2 . This effect can
be directly observed in Figs. 7 and 8, which provide illustrative
portions of our numerically constructed hyperuniform point
patterns at χ = 0.1 and χ = 0.35. As has been previously
reported in the literature [11,18], increasing the fraction of
constrained degrees of freedom in the many-particle system
has the effect of imposing greater local order in the form of
an effective short-range repulsive interaction. By increasing χ

from 0.1 to 0.35, the relative influence of the constrained wave
vectors on the pair correlation function increases, suppressing
the formation of local clusters. However, we also observe that
as the exponent α controlling the small-wavenumber region of
the structure factor decreases (equivalently, as anomalous local
number density fluctuations appear), this effective repulsion
between particles becomes noticeable weaker, manifested in
the pair correlation function by larger values of g2(0). This
behavior suggests that anomalous hyperuniform point patterns
possess greater variability in their local structures, particu-
larly with regard to the shapes and sizes of voids between
particles.

We have verified the expected asymptotic behaviors of
the number variance for our numerically constructed point
patterns as shown in Fig. 9. The asymptotic scalings of these
fluctuations exactly correspond to their theoretical predictions.
In particular, we have provided the first example of a hyperuni-
form point pattern for which the asymptotic number variance
grows more slowly than the volume of an observation window
but faster than a logarithmic scaling. Interestingly, the local
clustering of points at χ = 0.1 generates strong oscillations in
the number variance that persist for several nearest-neighbor

(a) (b)

(c)

FIG. 7. (Color online) Portions of numerically constructed hyper-
uniform point patterns with χ = 0.1 and small-k exponential scalings
(a) α = 0.5, (b) α = 1.0, and (c) α = 2.0. The points have been given
a small but finite size for clarity.

distances. In contrast, these local oscillations essentially vanish
after two nearest-neighbor distances at χ = 0.35, reflecting
the strong constraints placed on the local structure by the
small-wavenumber region of the structure factor.

Our calculations for the void and particle exclusion prob-
abilities of these systems, shown in Fig. 10, demonstrate
previously unobserved statistical properties for hyperuniform
point patterns. For a Poisson point pattern, one has the result
that

EV (r) = EP (r) = exp[−ρv(r)], (53)

implying that the exclusion correlation function η(r) = 1 for
all r . This result follows from the absence of interparticle corre-
lations for the process and the underlying Poisson probability
distribution for the number of particles within an arbitrary
compact set. Gabrielli and Torquato [43] have provided
strong arguments to suggest that for any hyperuniform point
pattern, the void exclusion probability should asymptotically
decay faster than for a Poisson point process. This behavior
implies that arbitrarily large cavities within the system,
while not prohibited by the constraint of hyperuniformity,
are expected to be significantly rare events owing to the
underlying regularity of the global structure of the pattern.
It is therefore not unreasonable to expect the functional form
of EV (r) for the Poisson point process to provide an upper
bound on the exclusion probability of any hyperuniform point
pattern, and this observation is indeed rigorously true for
point patterns generated from fermionic particle distributions
(so-called determinantal point processes) [14]. More generally,
the Poisson result will place an upper bound on EV for any

(a) (b)

(c)

FIG. 8. (Color online) Portions of numerically constructed hy-
peruniform point patterns with χ = 0.35 and small-k exponential
scalings (a) α = 0.5, (b) α = 1.0, and (c) α = 2.0. The points have
been given a small but finite size for clarity.
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FIG. 9. (Color online) (a) Number variances σ 2
N (R) for numerically constructed hyperuniform point patterns with χ = 0.1.

(b) Corresponding number variances for χ = 0.35.

point pattern with n-particle correlation functions gn � 1 for
all n.

For χ = 0.1, we observe the unusual property that EV (r)
is greater than the Poisson result for all values of r that can be
reliably determined from numerical simulation. It is instead the
particle exclusion probability function that is bounded from
above by the Poisson curve. To understand this discrepancy,
we first note that EV (r) and EP (r) are rigorously bounded
from below by [cf. (51)] [14]

EV (r) � 1 − ρv(r) (54)
EP (r) � 1 − Z(r), (55)

where Z(r) is the cumulative coordination number

Z(R) = ρ

∫
Rd

�(R − r)g2(r) dr. (56)

These bounds become sharp at low density or small r .
Therefore, while EV (r) is related to the geometry of a cavity
within the void space, the particle exclusion probability EP

depends explicitly on the local coordination structure of the
underlying point process.

To elucidate further the relationship between the local
coordination structure and the void statistics, we can consider
a modification of the number variance problem, whereby
one measures fluctuations in the number of points within an
observation window centered on a point of the point process.
Let N

(i)
P (R) denote this quantity; it can be represented as

N
(i)
P (R) =

∑
j=1

′
�(R − ‖rj − ri‖), (57)

where the prime on the summation means that particle i is
excluded. The average value of this random variable is〈

N
(i)
P (R)

〉 = ρ

∫
Rd

g2(r)�(R − ‖r‖) dr = Z(R). (58)

The cumulative coordination number therefore measures the
local number density within the particle space. It follows that
when Z(R) � ρv(R), 〈N (i)

P (R)〉, the average number of points
in the particle space within an observation window of radius
R, is less than or equal to 〈NV (R)〉, the average number of

points of the process within a window in the void space. This
behavior then implies that the points are more greatly dispersed
within the particle space, and EP (R) � EV (R); equivalently,
η(R) � 1. Note that this analysis is consistent with the lower
bounds (54) and (55) on the exclusion probability functions.

Conversely, for the case where Z(R) � ρv(R), we have that
〈N (i)

P (R)〉 � 〈NV (R)〉, which suggests that the points are more
closely located within the particle space, leaving larger cavities
within the void space. We therefore conclude that EP (R) �
EV (R) [η(R) � 1], and the point process should exhibit local
clustering among points. These claims are also consistent with
our results for the exclusion probability functions in Fig. 10,
whereby we observe a transition from η(R) < 1 at χ = 0.1 to
η(r) > 1 for χ = 0.35. Indeed, the configurations at χ = 0.1
exhibit substantial clustering among points (cf. Fig. 7).

Our arguments can be extended by examining the scaling of
the configurational degeneracy with the fraction of constrained
degrees of freedom χ . Here we measure this degeneracy by
calculating the entropy (logarithm of the degeneracy) of the
system relative to an ideal gas of N particles in a volume V

on the line. For the ideal gas, we coarse-grain the system
by dividing the volume V into M � 1 cells such that no
more than one particle occupies each cell with probability one,
thereby representing the degeneracy associated with the dN

translational degrees of freedom as a combinatorial occupancy
problem. The size of a cell determines the length scale,
meaning without loss of generality that we need only consider
the regime ρ = N/M � 1. Assuming that the particles are
indistinguishable, the number of configurations � available to
the system is

� = M!

(M − N )!N !
. (59)

Since the underlying distribution of particles is uniform within
the cells, Boltzmann’s formula for the entropy gives (with
kB = 1)

S = ln � = ln

[
M!

(M − N )!N !

]
, (60)
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FIG. 10. (Color online) (a) Void- and
particle-exclusion probabilities for the numer-
ically constructed hyperuniform point patterns
(χ = 0.1) along with the reference curve for
the Poisson point process. (b) Corresponding
functions for χ = 0.35.

which for large M and N becomes

S = M ln M − M − (M − N ) ln(M − N )

+ (M − N ) − N ln N + N (61)

= −M ln(1 − N/M) + N ln(M/N)

+N ln(1 − N/M). (62)

Under the assumption that N/M � 1, we have the following
result for the entropy per particle S ideal = Sideal/N :

S ideal = 1 − N/M + ln(M/N) ≈ 1 − ln(ρ). (63)

The entropy of the ideal gas is therefore large and positive as
expected. For the density regime ρ � 1 that we have in mind,
one can simplify further by taking S ≈ − ln(ρ), which diverges
to +∞ for small ρ. Note that this coarse-grained analysis is
able to reproduce the expected behavior of the configurational
entropy for a classical ideal gas in the continuum limit and
shows that the entropy per particle is an intensive variable.

Suppose now that we constrain K degrees of freedom,
where K � N . This construction correponds to making a
small perturbation away from the ideal gas configuration with
N − K degrees of freedom still available to the many-particle
system. We again divide the volume V into M cells of unit
length (N/M � 1). For sufficiently small values of χ (i.e.,
near the ideal gas), we may assume that the length scale of the
effective repulsion between particles is negligible compared to
the cell size, meaning that the N − K unconstrained particles
may be distributed freely among the M cells. Note that the K

constrained degrees of freedom are explicitly determined once
these particles have been placed. The number of microstates
available to the system is then

� = M!

(M − N + K)!(N − K)!
, (64)

and the configurational entropy is

S = ln � = M ln

(
M

M − N + K

)
+ K ln

(
N − K

M − N + K

)

+N ln

(
M − N + K

N − K

)
. (65)

Defining the fraction of constrained degrees of freedom χ =
K/N , we may write for the entropy per particle S = S/N :

S = (1 − M/N − χ ) ln(1 − N/M + χN/M)

+ (1 − χ ) ln(M/N) − (1 − χ ) ln(1 − χ ), (66)

where χ � 1. For N/M � 1, this expression simplifies as

S = 1 − χ − (1 − χ ) ln(1 − χ )

+ (1 − χ ) ln(M/N) − (N/M)(1 − χ )2. (67)

The last term in this expression is negligible within the density
regime where S ideal ≈ ln(M/N) = ln(1/ρ). Since S ideal is
large and positive compared to the first terms of this result,
we have the expected scaling

S

S ideal
≈ 1 − χ, (68)

suggesting a roughly linear decrease in the entropy of the
system for small values of χ . Our analysis applies directly to
higher-dimensional systems with the same linear scaling (68)
in the relative entropy per particle, reflecting the decreasing
dimension of the configurational phase space with increasing
χ . We therefore provide a classical analog for particulate
systems of the configurational arguments used to study
the unusual residual entropy from geometrical frustration
in ice and spin ice models [44]. Note that the fraction of
normal modes with vanishing frequencies for the same class
of disordered classical ground states has been numerically
observed to scale linearly with χ [22].

By increasing the parameter α, we expect also to increase
the rate at which S → 0 with respect to χ since higher
values of α are associated with larger effective radii around
the constrained particles. However, since we require that our
configurations are hyperuniform, there are additional implicit
constraints on the “unconstrained” degrees of freedom. For-
mally, hyperuniformity requires that the local structure of a
point process approach the global structure over sufficiently
short length scales, on the order of several nearest-neighbor
distances. This behavior is typically associated with a highly
regularized distribution of points, such as with a Bravais lattice.
However, our results for EV at χ = 0.1 suggest an alternative
mechanism by which hyperuniformity can be achieved in a
point pattern. Specifically, the fact that η(r) < 1 is consistent
with local clusters of particles that are globally regularized
by an increased probability of finding sufficiently large voids
to separate them. In this case, the appearance of these large
voids external to the particle space is apparently essential to
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FIG. 11. (Color online) Cumulative coordination numbers Z(R)
for numerically constructed hyperuniform point patterns with small-
wavenumber exponents α = 0.5 and α = 2.0. The fractions of
constrained degrees of freedom are χ = 0.1 and χ = 0.35.

enforce hyperuniformity of the point pattern by overcoming
the highly inhomogeneous local structure of the clusters. In
the context of our analysis above, for small perturbations from
the ideal gas, the high configurational degeneracy that remains
after constraining only a few degrees of freedom implies that
highly disordered configurations are most likely to appear from
our numerical constructions. However, with the added implicit
constraint of hyperuniformity the system will sacrifice local
structural regularity for clustering of points that are globally
separated by sufficiently large voids, resulting in a negatively
correlated exclusion correlation function.

Figure 11 highlights this behavior by examining the cumu-
lative coordination numbers Z(R) at χ = 0.1 and χ = 0.35 for
our systems. Although at χ = 0.1 the α = 2 system exhibits
greater clustering at small-r than for α = 0.5, at large r this
trend reverses, which is consistent with the appearance of
larger voids with higher probability and supports our claim
that these voids serve to regularize the global structures of the
systems. Using the lower bound (55) on the particle exclusion
probability function, we also observe explicitly the effect of
the locally clustered structure on the small-r particle exclusion
probability.

On reaching χ = 0.35, we recover the usual behavior
associated with hyperuniformity. By constraining a sufficient
number of degrees of freedom, the effective interparticle
repulsions induced by the collective coordinate constraints
control the small-r region of the pair correlation function (and,
therefore, the cumulative coordination number), prohibiting
local cluster formation. The regularizing factor in this case is
therefore the distribution of voids within the particle space,
contained in EP (r). Indeed, the void exclusion probability
EV (r) is highly constrained by this effective repulsion and
decays to zero faster than EP (r), resulting in a positively
correlated exclusion correlation function. By increasing the
exponent α governing the small-wavenumber region of the
structure factor, we observe increased regularity in the local
structure, corresponding to a decreased Z(R) and EV (r) and a
particle exclusion correlation function EP (r) that decays more
rapidly to zero, in perfect accordance with the aforementioned
void-space criterion on hyperuniformity put forth by Gabrielli
and Torquato [43]. It is also noteworthy that increased

void-space constraints associated with increased α are con-
sistent with the behavior of the structure factor for MRJ hard-
sphere packings, about which we have more to say in Sec. VI.

VI. CONCLUDING REMARKS AND DISCUSSION

We have provided the first known constructions of disor-
dered hyperuniform many-particle ground states possessing
anomalous local density fluctuations induced by a sublinear
small-wavenumber scaling in the structure factor. Such sys-
tems are defined by a number variance σ 2

N (R) that asymp-
totically scales faster than the surface area of an observation
window but slower than the window volume. By controlling
the collective density variables associated with the underlying
point pattern, we have also been able to probe the relationship
between interparticle correlations and constraints on the local
coordination structure. Specifically, we have provided detailed
statistics to measure the distribution of the void space external
to the particles, including measurements of the void and
particle exclusion probabilities.

Under sufficiently low constraints on the system, our nu-
merically constructed disordered many-particle ground states
exhibit substantial clustering, resulting in a highly inhomo-
geneous local structure. However, on the global scale of the
system as measured by asymptotic local density fluctuations,
these local clusters are separated by comparatively large
interparticle voids, thereby regularizing the microstructure
and preserving the constraint of hyperuniformity that we
impose. Indeed, this effect becomes more pronounced on
passing from the “anomalous” regime of hyperuniformity to
the more usual case, where σ 2

N (R) ∼ Rd−1 asymptotically
(i.e., for all periodic point patterns, quasicrystals with Bragg
peaks, and disordered systems with pair correlations decaying
exponentially fast) [4,6]. On increasing the fraction of con-
strained degrees of freedom within the system, we are able
to preclude this clustering affect by reinforcing the effective
interparticle repulsion imposed by our targeted structure factor
S(k). Furthermore, we have shown that this effective repulsion
becomes increasingly more pronounced as the exponent α

governing the small-wavenumber scaling of S(k) is increased.
It follows from these observations that one can formally

define an effective repulsive radius around each point within a
hyperuniform point pattern. However, so long as this radius is
not substantially large compared to the expected interparticle
spacing ρ−1/d , i.e., in the absence of microstructural con-
straints, clustering effects can still dominate the interparticle
correlations and the local coordination structure. We have
shown that this effect is entropically favorable since slight
deviations from the ideal gas are still associated with an
exponentially large configurational degeneracy. However, this
degeneracy is expected to increase rapidly on constraining
a sufficient number of degrees of freedom or, equivalently,
increasing the effective repulsive radius. We have shown
that this loss of configurational degeneracy is associated
with a highly constrained void space distribution, which can
be considered as a signature of predominantly “repulsive”
hyperuniform point patterns.

Our results have particular implications for understanding
the appearance and nature of hyperuniformity in MRJ packings
of hard spheres. It is interesting to note that equilibrium
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distributions of hard spheres are known not to be hyperuniform
[4] except at the close-packed density, at which point the
system freezes into a crystal with long-range order. MRJ
hard-sphere packings are therefore unique in that they are
nonequilibrium systems that are uniformly mechanically rigid,
and it is this rigidity that has been shown to be essential for
the onset of hyperuniformity (with logarithmic asymptotic
local density fluctuations) [13]. Importantly, rigidity places
severe geometric constraints on the local arrangements of
particles [45] and has been shown to regularize the void space
distribution on the global scale of the microstructure [13].
We have demonstrated in this work that by decreasing the
exponential form of the structure factor within the small-
wavenumber region, these void-space constraints are relaxed
in accordance with the decreased effective radius surrounding
the particles. Since MRJ packings are maximally disordered
among all strictly jammed packings, it follows that such
systems must already possess the maximal number of degrees
of freedom consistent with the geometric constraints of strict
jamming. Therefore, any increase in the distribution of the void
sizes is inconsistent with these same constraints, highlighting
why exponents α < 1 in the small-wavenumber scaling of S(k)
have never been observed for such systems.

Our work has also raised a number of interesting questions
related to the physics of collective coordinate constraints.
These issues are especially important since the construction
of hyperuniform systems via collective coordinate constraints
has played a fundamental role in the development of “stealth”
materials transparent to radiation of certain frequencies [11],
the identification of unusual classical disordered ground
states [22], and the design of novel disordered materials
with complete photonic band gaps [10]. The mathematical
properties associated with collective coordinates are surpris-
ingly subtle and have only partially been explored in the
literature [20,21]. Constraining a collective density variable,
including, for example, either a complete suppression to
zero or fixing its magnitude, results in a highly nonlinear
equation relating the components of the particle positions
{rj }. For higher-dimensional systems, it has been previously
observed [22] that these nonlinear equations have a tendency
to “couple” in such a way that one must go beyond χ = 0.5 to
crystallize the system, meaning that one cannot simply count
constraints and degrees of freedom. The analytical techniques
available for one-dimensional systems [20], therefore, do not

easily extend to higher dimensions. It is an open problem
to determine analytically the relationship between χ and the
“true” number of constrained degrees of freedom; recent work
has examined the fraction of normal modes with vanishing
frequency as a more appropriate indicator of the latter [22]. We
have provided some analysis here in one dimension to suggest
how the configuration space is constrained with increasing
χ by determining the entropy for small deviations from the
ideal gas. Certainly for higher values of χ our simple linear
scaling will break down; characterizing the deviations from
this linear behavior, especially in higher dimensions, is an
attractive problem warranting further consideration.
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APPENDIX: MATHEMATICAL RELATIONSHIP BETWEEN
THE VOID AND PARTICLE EXCLUSION PROBABILITY

FUNCTIONS

One can relate the void and particle exclusion probabilities
via a simple probabilistic construction [15]. Specifically, we
consider a generalized exclusion probability EV (r; ε), which
is the probability of finding a d-dimensional annulus of outer
radius r and inner radius ε; by definition, EV (r; 0) = EV (r).
Taking the derivative of this function with respect to the
inner radius ε gives a function proportional to the probability
of finding a point within a small radial region inside the
annulus and the annulus itself devoid of points. It follows
that EP (r), the conditional probability of finding a spherical
cavity centered on a point, is

EP (r) = lim
ε→0+

1

ρs(ε)

∂EV (r; ε)

∂ε
, (A1)

where s(ε) is the surface area of a d-dimensional sphere of
radius ε. This construction is known in the theory of point
processes [46] and has also been used in the literature to
identify the void statistics of certain point patterns related
to problems in number theory, random matrix theory, and
quantum mechanics [14].
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