
PHYSICAL REVIEW E 83, 051131 (2011)
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We inquire into the possible coexistence of macroscopic and microstructured phases in random Q-block
copolymers built of incompatible monomer types A and B with equal average concentrations. In our microscopic
model, one block comprises M identical monomers. The block-type sequence distribution is Markovian and
characterized by the correlation λ. Upon increasing the incompatibility χ (by decreasing temperature) in the
disordered state, the known ordered phases form: for λ > λc, two coexisting macroscopic A- and B-rich phases,
for λ < λc, a microstructured (lamellar) phase with wave number k(λ). In addition, we find a fourth region in the
λ−χ plane where these three phases coexist, with different, non-Markovian sequence distributions (fractionation).
Fractionation is revealed by our analytically derived multiphase free energy, which explicitly accounts for the
exchange of individual sequences between the coexisting phases. The three-phase region is reached, either from
the macroscopic phases, via a third lamellar phase that is rich in alternating sequences, or, starting from the
lamellar state, via two additional homogeneous, homopolymer-enriched phases. These incipient phases emerge
with zero volume fraction. The four regions of the phase diagram meet in a multicritical point (λc,χc), at which
A-B segregation vanishes. The analytical method, which for the lamellar phase assumes weak segregation,
thus proves reliable particularly in the vicinity of (λc,χc). For random triblock copolymers, Q = 3, we find the
character of this point and the critical exponents to change substantially with the number M of monomers per
block. The results for Q = 3 in the continuous-chain limit M → ∞ are compared to numerical self-consistent
field theory (SCFT), which is accurate at larger segregation.
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I. INTRODUCTION

Random A-B block copolymer melts represent an inter-
esting class of materials both for applications, due to their
molecular self-organization for templating structures on the
nanoscale as well as for everyday materials, and theoretically,
as multicomponent systems with competing interactions and a
complex phase behavior [1–4].

For copolymer mixtures, phase separation was first
addressed by Scott [5] within a mean-field theory of multi-
component demixing based on Flory-Huggins theory (see, e.g.,
[6]). Scott computed the limits of stability of the disordered,
mixed state against macroscopic phase separation for arbitrary
distributions of chain composition (overall fraction of one
monomer type). The coarse-grained description of Ref. [5],
which disregards the conformations of individual chains, was
subsequently extended by Bauer [7] to assess the coexistence
of multiple homogeneous phases and the equilibrium transition
lines. The method was applied to random copolymers by
Nesarikar et al. [8], who computed the phase diagram for
various chain lengths and average compositions. The system
is treated as a multicomponent mixture, with components
distinguished solely by composition. Upon increasing the
incompatibility, successive separations into a growing number
of homogeneous phases with different compositions are
observed.

Taking into account the internal structure of the chains
and the block-type sequences in a melt of random block
copolymers is crucial for the description of microstructured
states (often termed microphase separation) [2,3,9–11]; see
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the example in the right panel of Fig. 1. Fredrickson, Milner,
and Leibler [2,3] formulated a microscopic model for random
block copolymers, with one block composed of M identical
monomers and with the block-type sequence distribution
parametrized by a correlation λ. Based on this model, they
derived a mean-field free energy of Landau form in the limit
of many blocks, Q → ∞. The resulting phase diagram shows
an isotropic Lifshitz point, separating a line of instabilities
with zero wave number (macroscopic phase separation) from
a line of instabilities with finite wave number (microphase
separation), cf. the lines in Fig. 2.

Several attempts have been made to go beyond mean-field
theory and to consider the effects of fluctuations, predicted
to be particularly important for the instability at finite wave
number [12,13]. Whereas the early works [14,15] deduced
complete stability of the disordered state against microphase
separation, it was later shown that proper inclusion of a local
term in the Landau-Wilson free energy restored microphase
separation [16]. The transition was found to be weakly
first order, yet wavelength and amplitude of the microstruc-
tured phases matched the mean-field predictions [3] rather
well.

Monte Carlo simulations for symmetric random copolymer
melts with different numbers Q of blocks per chain were
performed by Houdayer and Müller [17,18]. In contrast to
the mean-field calculations [3], macroscopic phase separation
was found only for small Q (in a λ range shrinking with
increasing Q), and further increasing incompatibility in the
two coexisting homogeneous phases resulted in a remixed
state. The latter was interpreted as the coexistence of three
phases, two homogeneous ones and a third microstructured one
with symmetric composition, as predicted for random diblock
copolymers (Q = 2), by simulation [19] and self-consistent
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field theory (SCFT) [20]. For Q = 3, the simulations [18]
pointed to a three-phase coexistence with fractionation
according to sequences: While the two homogeneous phases
displayed a higher content of homopolymers, copolymers
accumulated in the microstructured phase.

In this paper we aim at an analytical theory for three-
phase coexistence due to sequence-specific fractionation:
According to its internal structure, in particular the number of
bonded A-B contacts, a sequence class, e.g. AAB/BBA, may
have different concentrations in homogeneous and structured
phases. Our global copolymer distributions are symmetric in
A/B content, which causes the A-rich and B-rich phases in
a macroscopically separated state to map onto each other
by permutation of A and B. The distributions of these
two phases, though different in composition, are not called
fractionated, since they preserve the global concentration of
a sequence class, e.g., of AAB/BBA. Their A excesses
of opposite signs result from exchange of A- and B-rich
subspecies only within one sequence class. The A-rich phase,
for instance, successively substitutes BBA chains with AAB

chains, inversely the B-rich phase. In contrast, we define
sequence-specific fractionation to alter the sequence (class)
concentrations in parts of the system such that microphase
separation is favored in one part, while macrophase separation
persists in the other.

Our main results are the phase diagrams for Q = 3 as a
function of block correlation λ and incompatibility χ (see, e.g.,
Fig. 3 below) showing a three-phase coexistence region of two
homogeneous and one lamellar phase. Additional information
concerns the volume fractions, the wavelengths, and the
sequence distributions of the fractionated states, as well as the
behavior at the multicritical point. Some results provided by
the analytical method have been briefly presented in Ref. [21].
Coming from the macroscopically phase-separated state, a
lamellar phase emerges with zero volume fraction (called
shadow) and with finite amplitude; similarly, coming from
the lamellar state, two additional homogeneous phases appear
as shadows. The nature of the multicritical point, where four
states of the system meet, depends on the number M of
monomers per block: For M < 7, the wave number of the
incipient lamellar phase vanishes continuously on approach
to the multicritical point, and the segregation amplitude
vanishes linearly. For M � 7 and particularly in the limit of
continuous chains, the wave number remains finite, giving
rise to metastable regions on both sides. In this case, the
critical exponent for the segregation amplitude is 0.5. Detailed
sequence-concentration diagrams of the coexisting phases
show the partitioning according to their morphologies. Except
for at the multicritical point itself, the shadow phase emerges
with a finite deviation from the global, λ-defined distribution.
A numerical SCFT study for continuous triblock copolymers
covers larger segregation amplitudes, but yields a similar
phase behavior.

The paper is organized as follows: The microscopic model
is introduced in Sec. II. Free energies of macroscopic and
microstructured phase separation and the sequence-specific
correlators are derived in Sec. III. In Sec. IV, we construct
the free energy of a fractionated state and discuss the resulting
phase diagrams in Sec. V. SCFT as a complementary approach
is presented in Sec. VI. Sequence fractionation is addressed in

BAB
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lamellar microphase separation

~ 50nm

FIG. 1. (Color online) Cartoon of triblock copolymers and lamel-
lar phase separation.

Sec. VII. A discussion of the methods is given in Sec. VIII,
followed by conclusions and an outlook in Sec. IX.

II. MODEL

A. Symmetric random block copolymers

We consider an incompressible melt of j = 1, . . . ,N linear,
random A-B block copolymers in a volume Ṽ (Fig. 1 shows
triblocks). All chains have degree of polymerization L = QM ,
each of the Q blocks comprises M identical monomers,

block 1

M

block 2

M

... block Q

M
(1)

Both types of monomers or segments are assumed to have
the same statistical length b. To formulate the effective
repulsive interaction between segments of different types
(see Sec. II B), we introduce an A excess variable qj (s) for
the type of segment s on polymer j , which takes the values
+1 for A and −1 for B.

The type sequences of symmetric random block copolymers
are generated by a Markovian polymerization process with
average A excess q = 2p − 1 = 0 (p is the global concentra-
tion of type-A segments) and block-type correlation

λ := (1 − 2pAB) ∈ [−1, + 1] (2)

of adjacent blocks along a chain [3]. Here, pAB denotes
the probability that a block of type A is attached to one of
type B in the synthesis. Assuming homogeneity, p and λ

are independent of the position on a chain. Positive λ signal
a preference for homopolymers, and λ = 0 describes ideal
(uncorrelated) block sequences. This model for the synthesis
amounts to choosing the simplest nontrivial distribution with
only two parameters, p and λ. With p = 0.5 in our case, the
corresponding transition matrix M̂ for the probability vector
[pA(β),1 − pA(β)]T (probabilities to find A, respectively B,
at block β) reads

M̂ =
(

1+λ
2

1−λ
2

1−λ
2

1+λ
2

)
. (3)

Its diagonalized form is used to compute the probabilities of
individual sequences in the λ distribution, and moments of the
A excess distribution. Once generated, the block sequences
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remain fixed, i.e., thermal averaging affects only the chains’
center of mass locations and their conformations. For a
finite number of different sequences, a concentration for each
sequence is well-defined in the thermodynamic limit. Hence,
for finite Q, the quenched disorder due to the fixed block types
on one chain can be effectively translated to a multicomponent
system.

A chain can contain 0 to Q blocks of type A, which defines
Q + 1 classes of chains. This classification in the “crushed
polymer approximation” (see, e.g., [7,8]) is sufficient to study
the separation into homogeneous phases (see Sec. III D below).
However, it neglects differences in the sequence of the blocks,
i.e., the spatial structure of the chains (for example, the average
A excess for both AAB and ABA chains is 1/3). The spatial
correlation of types along a chain is essential for the formation
of structured phases with nonzero wave numbers.

B. Potentials

The Hamiltonian H consists of three parts,

H = HW + Hκ + Hχ , (4)

which reflect intra- and interchain interactions of the
monomers on a mesoscopic level. Explicitly, for the former we
consider the connectivity of Gaussian or ideal polymers [22]
acting between monomers on the same chain, for the latter
excluded volume and incompatibility acting between all
monomers, in units of kBT :

HW = 1

4

N∑
j=1

L−1∑
s=1

(
rj (s + 1) − rj (s)

)2
, (5a)

Hκ = κ

2ρ0

N∑
j1,2=1

L∑
s1,2=1

(j1,s1)�=(j2,s2)

U (|rj1 (s1) − rj2 (s2)|), (5b)

Hχ = − χ

4ρ0

∑
j1,2,s1,2

′
qj1 (s1)qj2 (s2)W (|rj1 (s1) − rj2 (s2)|), (5c)

where the primed sum in Eq. (5c) is shorthand for the con-
strained sum in Eq. (5b) (the constraint can be dropped in the
thermodynamic limit). Spatial variables r are dimensionless,
rescaled from physical positions R via

rα =
√

2dRα

b
, α = 1,2, . . . ,d (6)

with b the rms end-to-end distance of a Kuhn statistical
segment and d the spatial dimension. Accordingly, the constant
dimensionless monomer number density is

ρ0 := NL

V
:= NLbd

Ṽ (2d)d/2
. (7)

One effective segment of our model usually represents many
physical monomeric repeat units, as to fulfill the prerequisite
of statistical independence of subsequent bond vectors in the
coarse-grained Gaussian chain model.

The excluded volume interaction Eq. (5b) must
be accounted for, even if we later perform the incompressible
limit, since A excess and total density fluctuations are
coupled. The pair potentials U (r), W (r) are supposed to be

short-ranged, and we approximate them by δ functions,
neglecting short-wavelength fluctuations. Conceptually,
Gaussian chain connectivity and compressibility are
effective potentials, which are obtained after integrating out
microscopic degrees of freedom. They are chiefly of entropic
origin and thus originally proportional to kBT . The Flory
parameter χ expresses in an empirical way the local free-
energy change per monomer due to A-B contacts compared
to a surrounding of monomers of the same type with larger
attractive potentials [6]. Its main part is usually enthalpic, such
that in the normalized Eqs. (5), χ is inversely proportional
to temperature, χ ∝ T −1, and increasing incompatibility is
equivalent to cooling. In the following, kBT is set to unity.

C. Order parameter

A convenient order parameter that detects separation into
A- and B-rich domains (phases) is the thermal average of the
local excess of A segments [3],

σ (r) =
N∑

j=1

L∑
s=1

qj (s)δ[r − rj (s)] = 
A(r) − 
B(r), (8)

i.e., the difference of segment densities due to A and B. As a
second field, we introduce the total segment density


(r) =
N∑

j=1

L∑
s=1

δ[r − rj (s)] = 
A(r) + 
B(r). (9)

With these fields, and in the limit W (r) → δ(r), the incompat-
ibility (5c) takes the standard form [23]

Hχ = χ


0

∫
ddr

(

A(r) − 
(r)

2

)(

B(r) − 
(r)

2

)

= − χ

4
0

∫
ddr (σ (r))2. (10)

Note that as a zero of the incompatibility energy we have
chosen the homogeneously mixed state where the local
densities of A and B coincide with their global fractions
throughout the system. Analogously, the excluded volume
interaction Eq. (5b) in the limit U (r) → δ(r) is

Hκ = κ

2
0

∫
ddr (
(r))2. (11)

III. FREE ENERGY

In order to assess the phase diagrams, particularly phase
coexistence for random block copolymer melts, we compute
the free energies of basic phase-separated states. The two
important control parameters are the incompatibility χ and
the block-type correlation λ. Figure 2 shows the topology
of the phase diagrams we will derive below. As discussed
already by Leibler and co-workers [3,24], the disordered
state of the symmetric melt becomes unstable toward either
macroscopic or lamellar phase separation, depending on
λ. Between these two well-known states, a new state will
be shown to become stable, viz. the coexistence of three
phases: an A-rich one, a B-rich one, both homogeneous,
and a lamellar phase. Coming from the macroscopically
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FIG. 2. (Color online) Qualitative phase diagram of random block
copolymers. Global instabilities of disordered melt. Solid (red) line:
macroscopic phase separation for λ > λc; dashed (blue) line: lamellar
phase for λ < λc. Fractionation creates an in-between state with three
coexisting phases.

phase-separated state, the new phase is created by expulsion
of chains with many A-B contacts from the homogenous
cloud phases (for the terms “cloud” and “shadow” phase,
see [25]) into a subsystem, which then displays deviations from
the global λ distribution. This fractionation increases the A

excess amplitude in the homogeneous phases. More explicitly,
lamellae can appear in the new phase because the altered
sequence distribution with fewer homopolymers gives rise to
a maximum of the structure factor at nonzero wave number,
whereas the structure factor of the global distribution favors
macroscopic phase separation. Conversely, starting from the
lamellar phase, homopolymer chains are expelled into two
new homogeneous phases. Thereby, for values of λ, at which
the global sequence distribution favors lamellae, homogeneous
phases become stable in a subsystem, resulting in a fractionated
state.

First, we present the free-energy densities of homogeneous
phases and of lamellae separately. The expressions are delib-
erately kept as simple as possible to focus on the effect of
varying sequence concentrations. In the following section, we
go on to set up a fractionated multiphase free energy, allowing
for sequence distributions different from the global one, and
discuss three-phase coexistence.

A. Free energy functional

Starting from the Hamiltonian of Eq. (4), we aim at
computing the canonical partition function

Z =
∫ ∏

j,s

d rj (s)e−H. (12)

Pair interactions are formally decoupled via functional inte-
grations over the collective density fields σ and 
, and over
two conjugated interaction fields σ̂ and 
̂ (with Fourier modes

{σ̂k,
̂k}) that restrict σ to the A excess and 
 to the total
segment density [cf. Eqs. (8) and (9)]:

Z =
∫

D[σ̂ ,σ,
̂,
] exp

⎧⎨
⎩
∑
k �=0

( χ

4NL
σkσ−k − κ

2NL

k
−k

+ iσ̂kσ−k + i
̂k
−k

)
+
∑

ν

Nν ln ẑν[σ̂ ,
̂]

}
. (13)

In this expression, the inner conformational integrations
have factorized into single-chain partition functions ẑj . All
Nν chains with a given block-type sequence ν, which is
characterized by the segment types {qν(s)}, contribute the
single-sequence partition function

ẑν[σ̂ ,
̂] :=
〈

exp

⎧⎨
⎩−i

∑
k �=0

∑
s

(σ̂kqν(s) + 
̂k)e−ik·r(s)

⎫⎬
⎭
〉

.

(14)

Here, 〈(· · · )〉 denotes the conformational average∫
D r(s)(· · · ) exp

{ − 1
4

∑L−1
s=1 [r(s + 1) − r(s)]2

}
∫
D r(s) exp

{ − 1
4

∑L−1
s=1 [r(s + 1) − r(s)]2

} (15)

for one Gaussian chain [cf. Eq. (5a)]. Combinatorial prefactors
1/Nν!, homogeneous contributions (k = 0), and the confor-
mational partition functions of noninteracting Gaussian chains
have been divided out in Eq. (13), since we are interested in the
free energy of a global ordered state relative to the disordered,
homogeneous state.

In order to perform the saddle-point approximation, we
choose to first integrate out the amplitudes of the physical
fields in favor of the conjugated ones, contrasting with the
procedere in, e.g., Refs. [3,24] [see the note below Eq. (23)].
From Eq. (13), we obtain the linear relations

σk = −i
2NL

χ
σ̂k and 
k = i

NL

κ

̂k, (16)

and, for convenience, rescale the conjugated fields as

σ̂k := i
χ

2NL
τ̂k and 
̂k := −i

NL
ω̂k (17)

before insertion into Z . The resulting partition function in
saddle-point approximation is

Z ≈
∫

D[τ̂ ,ω̂] exp{−Nh[τ̂ ,ω̂]}, (18)

with the effective Hamiltonian (per chain)

h[τ̂ ,ω̂] = 1

4N2L

∑
k �=0

(
χτ̂k τ̂−k − 2

κ
ω̂kω̂−k

)

−
∑

ν

pν ln zν[τ̂ ,ω̂], (19)

and the single-sequence partition functions

zν[τ̂ ,ω̂]

=
〈

exp

⎧⎨
⎩ 1

2NL

∑
k �=0

∑
s

[χqν(s)τ̂k − 2ω̂k]e−ik·r(s)

⎫⎬
⎭
〉

. (20)
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The probabilities pν : = Nν/N define, in the thermodynamic
limit, the sequence distribution over the up to 2Q possible
realizations of a random, binary Q-block copolymer. (For Q �
2, the actual number of different sequences is smaller due to the
symmetry with respect to the two ends, see below for triblock
copolymers.)

Anticipating small field amplitudes, the next step is to
expand the effective Hamiltonian h Eq. (19) into a series in
both fields. Restricting ourselves to systems with global A-B
symmetry, the expansion contains no terms of odd order in τ̂

(the field conjugated to the A excess), since for n odd, moments
of the A excess distribution,

mn := 1

Ln

∑
ν

pν

∑
s1,...,sn

qν(s1) · · · qν(sn), n ∈ N, (21)

are zero. A sufficiently large compression modulus κ will
prevent instabilities with respect to fluctuations of the total
density. Hence we can eliminate their conjugated amplitudes
ω̂k perturbatively in favor of τ̂k and obtain, to lowest order, a
quadratic dependence

ω̂k = χ2

8NL

∑
k1 /∈{0,k}

S(α)(k1,k − k1)
2L
κ

+ D(L,k2)
τ̂k1 τ̂k−k1 + O(|τ̂k|4)

(22)

(see Appendix A for conformational averages of exponentials
and Appendix B for the correlators S(α) and D). Substituting
back this relation, and in the incompressible limit, κ → ∞,
the consistent expansion up to fourth order in τ̂ yields the
free-energy functional per chain,

f [τ̂ ] = χ

4N2L

∑
k

′
(

1 − χ
S(k2)

2L

)
τ̂k τ̂−k

+ χ4

384(NL)4

∑
k1,k2,k3

k1 + k2 + k3 �= 0

′
{

3
S(α)(k1,k2)S(α)(k3, − k1 − k2 − k3)

D
(
L,(k1 + k2)2

) − S(β)(k1,k2,k3)

}
τ̂k1 τ̂k2 τ̂k3 τ̂−k1−k2−k3

+ χ4

128(NL)4

∑
k1,k2

′ {
S(γ )

(
k2

1,k
2
2

) − S
(
k2

1

)
S
(
k2

2

)}
τ̂k1 τ̂−k1 τ̂k2 τ̂−k2 + O(|τ̂k|6), (23)

with
∑′

k(· · · ) := ∑
k �=0. The global second-order correlator

S(k2), called structure factor in the following and discussed in
Sec. III B, is given by

S(k2) =
∑

ν

pν qν(s1)qν(s2)e−k2|s2−s1| =:
∑

ν

pν Sν(k2), (24)

written as an average over intrachain correlators Sν(k2) of
single block-type sequences. These and the correlators S(α),
S(β), and S(γ ) are defined in Appendix B. In our global
sequence distribution, the probabilities pν will be confined to
λ-defined values [see Eqs. (29) below], but can take arbitrary
values in a fractionated subsystem.

As suggested by the functional Eq. (23), we assign the
conjugated field τ̂ the rôle of the order parameter, since at the
saddle point level, to which we adhere, averages of τ̂ and σ

are identical [cf. Eqs. (16) and (17)]. However, correlations of
the conjugated field are not proportional to those of the field
itself, cf., e.g., [26]. Therefore the vertices in Eq. (23) differ
from those of the functional of σ in Refs. [3,24] (apart from
differences due to restrictions, e.g., to continuous chains with
many blocks, which we do not impose). For instance, second
moments of the amplitudes of σ can be recovered from those
of τ̂ via

〈σk1σ−k2〉H − 〈σk1〉H〈σ−k2〉H
= 〈τ̂k1 τ̂−k2〉H − 〈τ̂k1〉H〈τ̂−k2〉H − 2NL

χ
δk1,−k2 , (25)

where 〈·〉H is the canonical average, Eq. (13), respectively
Eq. (18).

Aiming first at the simplest description, and in the spirit of
a Landau free energy, we ignore the wave-vector dependence

of the fourth-order coefficients in Eq. (23), i.e., we evaluate
the correlators in the limit kr → 0, (in Secs. III C 2 and V C,
we will relax this approximation):

f0[τ̂ ] = χ

4N2L

∑
k

′
(

1 − χ
S(k2)

2L

)
τ̂k τ̂−k + χ4

128N4

×
⎧⎨
⎩
(
m2

2 − m4

3

) ∑
k1,k2,k3

′
τ̂k1 τ̂k2 τ̂k3 τ̂−k1−k2−k3

+ (
m4 − m2

2

)∑
k1,k2

′
τ̂k1 τ̂−k1 τ̂k2 τ̂−k2

⎫⎬
⎭ , (26)

with the moments m2, m4 from Eq. (21).

B. Structure factor and multicritical point

The second-order structure factor S(k2) for a distribution
of sequences sets the limits of stability of the homogeneously
mixed melt. For our global Markovian distributions, solely
the correlation parameter λ decides whether the maximum
position of S(k2) is located at zero or at finite wave number.
In the former case, the disordered state becomes unstable with
respect to macroscopic phase separation, in the latter case to
microphase separation [2]. Upon decreasing λ, the maximum
position of S(k2) becomes nonzero at a critical correlation
λc(M), depending on the number M of segments per block.
The corresponding point in the λ-χ plane where the lines of
macroscopic, respectively lamellar, phase separations meet is
termed a multicritical point, since also the transition lines to
three-phase coexistence must end here.
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For a λ distribution of Q blocks with finite M , the global
S(k2) can be calculated from the probabilities of all type
combinations of two segments with a given intrachain distance
(in blocks) using the transition matrix M̂ [cf. Eq. (B6) in
Appendix B]:

S(k2) = QD(M,K2) + 2λe−Mk2
sinh2

(
Mk2

2

)
(1 − λe−Mk2 ) sinh2

(
k2

2

)
×
[
Q − 1 − (λe−Mk2

)Q

1 − λe−Mk2

]
(27)

with the dimensionless wave number k2 := b2k̃2/(2d) and
k̃ the physical wave number. The discrete Debye function
D(L,k2) is given in Eq. (B1).

In the following, we restrict ourselves to the case of
symmetric random triblock copolymers, Q = 3. This system
features six different species, which we group into only three
different (classes of) sequences,

homopolymers: LLL; (28a)

copolymers: KLL; (28b)

LKL, (28c)

K,L ∈ {A,B}, K �= L, according to unfavorable intrachain
A-B contacts. Generally, pairs of species like AAB and
BBA are related by blockwise A-B permutation and have
the same topology of intrachain A-B contacts and thus the
same structure factor. To label these sequences, the index 1
is assigned to homopolymer chains (28a), 2 to copolymer
chains with two adjacent blocks of the same type (28b), and
3 to strictly alternating chains (28c). For a λ distribution, the
sequence (class) concentrations are

p1(λ) = (1 + λ)2

4
, (29a)

p2(λ) = 1 − λ2

2
, (29b)

p3(λ) = (1 − λ)2

4
. (29c)

At a critical correlation λc(M), we find the following
transition from macroscopic to lamellar phase separation:

(a) For M � 6, the maximum position of S(k2) is at k0 = 0
for all λ � λc(M) and grows continuously from k0 = 0 when
λ falls below λc(M) (see Fig. 3 below). The critical value of
the correlation, λc(M), is reached when the second derivative
of S(k2) at k = 0 changes sign:

λc(M) = −1

2

(
1 − 1

M

)
, M � 6. (30)

(b) For M > 6, however, a second maximum of S(k2) at
k > 0 evolves already for λ > λc(M) (see Fig. 7). Now, the
critical value λc is the one at which the second maximum
(associated with a metastable lamellar phase) attains a higher
value than the one at k = 0, and is accessible numerically only.

For continuous Gaussian triblocks (segments indexed by
a contour parameter instead of an integer) with unaltered
coil diameter, the structure factors are computed in the
combined limit M → ∞, b2 → 0, Mb2 = const, abbreviated
as limM→∞, preserving the finite number of blocks, here
Q = 3, and the rms end-to-end distance Rblock = √

Mb. In

this case, the wave number is conveniently rescaled with Rblock.
For a λ distribution of continuous triblocks, the global structure
factor is

s(k2) : = lim
M→∞

S(k2/M)/M2

= 3gD(1,k2) + 2λe−k2
sinh2

(
k2

2

)
(1−λe−k2 )k4/4

[
3− 1 − (λe−k2

)3

1 − λe−k2

]
,

(31)

now with k2 := R2
blockk̃

2/(2d), and with the continuous Debye
function

gD(�,k2) := e−�k2 − 1 + �k2

k4/2
. (32)

Continuous triblocks realize case (b), consistent with the
case of triblocks with M > 6 discrete segments. The wave
number of the global ordered (lamellar) state, k0(λ), jumps
discontinuously to zero as λ approaches λc = −0.464 from
below. The lamellar phase persists as a metastable state for
λ > λc, as well as macroscopic phase separation for λ < λc.
Remarkably, we discover this discontinuity of the global
wave number for the broader class of triblock copolymers
with M > 6 segments per block, whereas the literature on
copolymer mixtures seems to report only the behavior) (a)
(see, e.g., [20,27]), associated with a Lifshitz point [28].

Since we need to address sequence distributions different
from the λ-defined one in the next section, we calculate the
second-order structure factors from Eq. (24) for each triblock
sequence (class) defined in Eq. (28):

S1(k2) = D(3M,k2)

= 3M(1 + e−k2
)

1 − e−k2 − 2e−k2
(1 − e−3Mk2

)

(1 − e−k2 )2
, (33a)

S2(k2) = −D(3M,k2) + 2[D(2M,k2) + D(M,k2)], (33b)

S3(k2) = D(3M,k2) − 4D(2M,k2) + 8D(M,k2). (33c)

While the maximum of S1(k2) is located at k = 0, the
maximum positions of S2(k2) and S3(k2) at k > 0 are due
to the finite type-position correlation length within a chain of
the respective sequence.

The continuous-chain version of the homopolymer
structure factor Eq. (33a) is

s1(k2) := lim
M→∞

S1(k2/M)/M2 = gD(3,k2), (34)

again with k2 := R2
blockk̃

2/(2d); similar expressions hold for
s2(k2) and s3(k2). In the following, Sν(k2) or S(k2) refer to the
discrete structure factors, and the number of segments M is
usually not listed as an argument separately. The continuous
versions are denoted with sν(k2), s(k2), etc. Since the number
of sequences grows exponentially with Q, the explicit
calculation of sequence-specific structure factors is practically
limited to a comparatively small number of different sequence
classes, i.e., to a small number Q of blocks per chain.

C. Lamellar phase separation

In order to derive the free energy due to microphase
separation, we insert for our order-parameter field τ̂ the
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simplest single-harmonic ansatz [24]: lamellae with wave
vector k0, k0 := |k0| > 0 and an amplitude τ̂k0

τ̂k = τ̂k0 (δk,k0 + δk,−k0 ). (35)

More than one single wave vector is not considered here,
since the instabilities of the disordered state of symmetric
copolymers are known to be toward homogeneous or lamellar
phases. In the latter case, we additionally assume that A-B
separation is weak.

1. Simplified lamellar free energy

Insertion of the above ansatz into the simplified functional
Eq. (26) yields the free energy of a lamellar phase,

f0(k0,τ̂k0 ) = χ

2N2L

(
1 − χ

S
(
k2

0

)
2L

)
τ̂ 2

k0

+ χ4

64N4

(
m2

2 + m4
)
τ̂ 4

k0
, (36)

which is valid only for incompatibilities Lχ exceeding

Lχm(k0) = 2L2

S
(
k2

0

) , (37)

the onset incompatibility. (As usual, we shall use Lχ instead
of χ as one parameter of the phase diagrams, due to the scaling
of the transition incompatibilities with L.)

Minimization of the function Eq. (36) with respect to the
order-parameter amplitude gives

τ̂ 2
k0,m =

16N2

(
S
(
k2

0

)
2L

− 1

χ

)

Lχ2
(
m2

2 + m4
) . (38)

Variation with respect to the wave number of the instability
shows that the optimal k0 is the maximum position of S(k2).
With the single-harmonic approximation of the profile, the
lamellar free energy at Lχ � Lχm(k0) is

fm = −

(
S
(
k2

0

)
L2

− 2

Lχ

)2

m2
2 + m4

, k0 := argmax
k>0

S(k2). (39)

The first two phase diagrams in Sec. V are based on this
simplified version of the lamellar free energy.

2. Lamellar free energy with restored wave-number dependence
of fourth order coefficients

Restoring the k dependence of the fourth-order terms of
Eq. (23), and optimizing the amplitude at a given wave number
km, we arrive at the free-energy function

fm,km

=
−L4

(
S
(
km2

)
L2

− 2

Lχ

)2

[S(α)(km,km)]2

D
(
L,4k2

m

) − S(β)(km,km, − km) + S(γ )(k2
m,k2

m

) ,
(40)

given χ > 2L/S(k2
m). Now, minimization with respect to km

results in a wave number that additionally depends on the
incompatibility, k0 = k0(χ ).

D. Macroscopic phase separation

1. Coexistence of two homogeneous phases

Macroscopic phase separation can be assessed with a
real-space version of the free-energy functional Eq. (26).
Accounting for the symmetry, the appropriate ansatz is for
two phases with uniform fields τ̂ of opposite signs in equally
sized regions Vh,1 and Vh,2 of the system:

τ̂ (x) =
{

τ̂h, x ∈ Vh,1

−τ̂h, x ∈ Vh,2

}
, |Vh,1| = |Vh,2| = V

2
. (41)

With this ansatz, the free energy of Landau form becomes

fh,0 = Lχ

4
2
0

(
1 − χS(0)

2L

)
τ̂ 2

h + (Lχ )4m4

192
4
0

τ̂ 4
h , (42)

which provides a good description of macroscopic phase
separation for small values τ̂h close to the continuous transition
from the disordered state.

However, the transition we aim at, from the macroscopically
phase-separated to a three-phase state, may occur at a value
Lχ considerably larger than the onset incompatibility of
macroscopic phase separation; see Fig. 3. Thus instead of the
free energy Eq. (42) that relies on an expansion in τ̂h, we prefer
and are able to derive a closed expression (cf. Appendix C)
by ignoring the copolymers’ internal structure, consistent with
uniform mean fields. For random triblock copolymers, the free
energy is

fh = Lχτ̂ 2
h

4
2
0

− (1 − p1) ln cosh
Lχτ̂h

6
0
− p1 ln cosh

Lχτ̂h

2
0
,

provided Lχ > Lχh := 2

m2
= 18

1 + 8p1
, (43)

with the homopolymer concentration, p1 = (1 − p2 − p3)
[the indices 2 and 3 refer to the sequence classification
Eq. (28) needed in the description of a lamellar phase]. Here,
the amplitude τ̂h is determined by

τ̂h


0
= 1 − p1

3
tanh

Lχτ̂h

6
0
+ p1 tanh

Lχτ̂h

2
0
. (44)

2. Homogeneous multiphase coexistence

Within multicomponent theory, the two homogeneous,
A- and B-rich phases in a random triblock copolymer melt
(formed at Lχh = 6 for λ = 0) are followed by four homo-
geneous phases at higher incompatibilities (e.g., Lχh,4 ≈ 16
for λ = 0). More than four phases are impossible within this
theory, since for Q = 3 there are only four different chain
compositions (A contents). The fact that no triblock sequence
is symmetric in A/B content might explain why, starting from
the A- and the B-rich phase, a third, homogeneous phase
balanced in A/B does not become stable.
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IV. FRACTIONATED THREE-PHASE COEXISTENCE

In the following, we show that both a global macrosopic
and a global lamellar phase separation become unstable toward
three-phase coexistence due to fractionation. In the former
case, mainly alternating sequences are expelled from the
macroscopically phase-separated state (cloud) to allow for a
third lamellar shadow phase, whereas in the latter case mainly
homopolymers are expelled from the lamellar state (cloud) to
allow for two additional homogeneous shadow phases.

A. Fractionation from two macroscopic phases

Here, we start at block-type correlations λ > λc and incom-
patibilities Lχ > Lχh, i.e., from a global, macroscopically
phase-separated state comprising two homogeneous A-rich,
respectively B-rich, phases. At further increase of Lχ , a third,
lamellar phase with zero average A excess will be created by
fractionation: Predominantly alternating sequences (ν = 2,3)
with few homopolymers will remix in a volume fraction
v(2) := V (2)/V of the system. For our symmetric distributions,
the two homogeneous phases coincide in the volume fractions,
in the field values up to the sign, in the sequence (class)
concentrations defined in Eq. (28), and thus in the free-energy
densities. Hence we can treat them as one effective state, and
study their joint sequence exchange with a lamellar phase.

The first term of the free energy relative to the homoge-
neous, two-phase state, is written as a weighted sum of the
free-energy densities f (2)

m of the conjectured lamellar phase
with volume fraction v(2), and f

(1)
h of the two homogeneous,

homopolymer-rich phases with joint volume fraction v(1) =
1 − v(2):

fsum := v(2)f (2)
m

({
n(2)

ν

}) + (1 − v(2))f (1)
h

({
n(1)

ν

})
. (45)

Here, the sequence concentrations in state (phase) P are
denoted as n(P )

ν , ν = 1,2,3, P = 1,2. The free-energy densi-
ties of global ordered states alone (for which combinatorial
terms due to the sequence distribution cancel) cannot com-
pletely describe the coexistence of different states that interact
via sequence exchange. Hence there are additional entropic
coupling terms: First, confinement of the chains to the volume
fractions of phase-separated subsystems gives rise to a loss

�fvol. red. := −v(2) ln v(2) − (1 − v(2)) ln(1 − v(2)) (46)

of translational entropy compared to the global state. Second,
the sequence-selective exchange between the two phases
effects a combinatorial gain �fcomb. due to the possibilities
to choose chains of each sequence in one subsystem out
of the total, λ-defined number Npν(λ) (the factorials are
approximated by Stirling’s formula):

�fcomb. : =
3∑

ν=1

{
v(2)n(2)

ν ln

[
v(2)n(2)

ν

pν(λ)

]

+ (1 − v(2))n(1)
ν ln

[
(1 − v(2))n(1)

ν

pν(λ)

]}
. (47)

With the above contributions, the free energy of the fraction-
ated phase coexistence is

ffrac = fsum + �fvol. red. + �fcomb.. (48)

Incompressibility and the global λ-defined sequence distri-
bution reduce the number of variables, given by the volume
fraction v(2) of the lamellar phase and the concentrations
n(P )

ν , ν = 1,2,3, P = 1,2: The homopolymer concentrations
n

(k)
1 can be eliminated by the constraints

3∑
ν=1

n(P )
ν = 1 for each phase P = 1,2. (49)

Likewise, the concentrations n(1)
ν in the homogeneous phases

can be explicitly expressed in terms of the volume fraction and
the concentrations in the lamellar phase via the constraint of
global λ-defined concentrations,

v(2)n(2)
ν + (1 − v(2))n(1)

ν = pν(λ), ν = 2,3. (50)

Thus left with three independent variables, we choose them as
v(2), n

(2)
2 , and n

(2)
3 for the purpose of studying fractionation

starting from two homogeneous phases.
Obviously, at a given block-type correlation λ and a

given incompatibility Lχ , the fractionation ansatz Eq. (48)
is reasonable only for values of the variables v(2), n

(2)
2 , n

(2)
3 for

which ffrac reaches lower values than the free-energy density
fh of the global state:

�ffrac
(
v(2),n

(2)
2 ,n

(2)
3

)
:= ffrac − fh

!
� 0. (51)

For each set (λ,χ ), the free-energy change �ffrac has to be
minimized with respect to v(2), n

(2)
2 , n

(2)
3 within the region

limited by Eq. (51). To avoid overloading the presentation, the
functional dependence on λ and Lχ is suppressed in ffrac, as
well as in the free-energy densities of the global homogeneous
and lamellar phases.

To obtain the free energy of the lamellar state with
fractionation, we compute the structure factor Eq. (24) and
the moments Eq. (21) with modified sequence concentrations
p2 → n

(2)
2 and p3 → n

(2)
3 (p1 = 1 − p2 − p3), which are then

the explicit arguments of f (2)
m . Similarly, the free-energy

density of the macroscopically phase-separated state with
fractionation is computed with modified concentrations n

(1)
2 ,

n
(1)
3 , such that, via Eq. (50), f

(1)
h becomes a function of

v(2), n
(2)
2 , and n

(2)
3 .

B. Fractionation from a global lamellar phase

The assumed boundary curve between the three-phase
coexistence region and one lamellar phase comprising the total
system, is in our approach restricted to the region λ < λc of
the λ−χ space. To access this region, a fractionation ansatz
has to start from lamellae in the λ distribution, which tend to
expel homopolymers on increasing χ , a mechanism which will
give rise to homogeneous A- and B-rich shadow phases. The
fractionation free energy is formulated in analogy to Eq. (48)
in terms of the free-energy densities of one effective homoge-
neous shadow phase, in a volume fraction v(1), and a lamellar
cloud phase, in a volume fraction 1 − v(1). For v(1) > 0,
both states attain sequence concentrations deviating from the
λ-defined ones. The first part of the fractionation free energy
corresponding to Eq. (45) is

fsum = v(1)f
(1)
h

(
n

(1)
2 ,n

(1)
3

) + (1 − v(1))f (2)
m

(
v(1),n

(1)
2 ,n

(1)
3

)
.

(52)
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Again, the constraints Eqs. (49) and (50) of incompressibility
and fixed global sequence distribution reduce the number of
independent variables to 3; in this case, they are chosen as
v(1), n

(1)
2 , n

(1)
3 . Entropic terms due to a loss of translational

entropy and due to combinatorial gains by three-phase coex-
istence are constructed in complete analogy to Eqs. (46) and
(47).

C. Fractionated three-phase equilibrium conditions

We minimize the fractionation free energy presented in
the last subsections with respect to the volume fraction
and sequence distribution of the emerging shadow phase(s).
Insertion of the free-energy densities of the different states with
fractionation into Eq. (48) and subsequent differentiation of
ffrac with respect to the variables v(2), n

(2)
2 , n

(2)
3 or v(1), n

(1)
2 , n

(1)
3

give equation systems

0 =
(

∂ffrac

∂v(P )
,
∂ffrac

∂n
(P )
2

,
∂ffrac

∂n
(P )
3

)
, P = 1,2, (53)

exemplified in Appendix D. Solutions are obtained numeri-
cally with a Newton-type procedure (cf. Appendix E).

D. Three-phase transition lines

Upon gradually decreasing or increasing the incompatibil-
ity Lχ at fixed λ in the three-phase state, boundaries of the
three-phase region, χ (1) at λ > λc, and χ (2) (at λ < λc with our
simplified lamellar free energy), are indicated by a zero of the
free energy Eq. (48) due to fractionation: Either the minority
phase’s volume fraction tends to zero (characteristic of a
shadow), its sequence concentrations approach the λ-defined
ones, or its order-parameter amplitude tends to zero. Analysis
of Eq. (53) shows that in our system the first alternative is
realized, which simplifies the set of equations for the transition
lines. In the case of Sec. IV A, an expansion of the entropic
contributions Eqs. (46), (47) to ffrac in the volume fraction v(2)

of the lamellar shadow phase yields

�fvol. red. + �fcomb. =
3∑

ν=1

n(2)
ν ln

(
n(2)

ν

pν(λ)

)
v(2) + 1

2

3∑
ν=1

n(2)
ν

×
(

n(2)
ν

pν(λ)
− 1

)
(v(2))2 + O[(v(2))3].

(54)

Similarly, one can expand the deviations from λ-defined
concentrations in the two-phase cloud state:

n(1)
ν − pν(λ) = [

pν(λ) − n(2)
ν

]
v(2)

+ [
pν(λ) − n(2)

ν

]
(v(2))2 + O[(v(2))3]. (55)

Hence the lowest-order term of ffrac is linear in v(2),

�ffrac
(
v(2),n

(2)
2 ,n

(2)
3

) = a
(
n

(2)
2 ,n

(2)
3

)
v(2) + O[(v(2))2], (56)

and the coefficient a must be minimized in order to determine
χ (1) and the sequence distribution of the shadow phase. The
phase transition line from the global lamellar to the fraction-
ated three-phase state can be treated in complete analogy
by taking the limit v(1) → 0.

V. PHASE DIAGRAMS

In the following, we present the lines of macroscopic and
lamellar phase separation and the boundary lines of three-
phase coexistence obtained from the minimization of the frac-
tionation free energy. The critical line of macroscopic phase
separations of the disordered melt is well known already from
approaches based on the multicomponent picture [7,8]. Also
the discussion of the pure microphase separation transition
within mean-field theory can be found elsewhere [3,24,29].
Our focus here is on the coexistence of homogeneous and
lamellar phases with fractionated sequence distributions. The
point (λc,Lχc) where the transition curves from the disordered
toward macroscopic, respectively lamellar, phase separation
meet will be mostly referred to as a multicritical point without
further classification. Partitioning of sequences will be shown
via distribution diagrams in Sec. VII, in comparison with SCFT
calculations.

A. Triblocks with small M

To exemplify the phase behavior of triblocks with M < 7
segments per block, we discuss the results for M = 3 shown
in Fig. 3. To explore the emergence and growth of the
various phases, we follow the path indicated by arrows in
the plot, starting at a block correlation λ > λc = −1/3: The
first instability of the disordered melt is toward homogeneous
phase separation, indicated by the peak at zero wave number
of the global, second-order structure factor (cf. the solid curve
in the bottom inset). Upon increasing incompatibility Lχ

(bottom vertical arrow), the dotted line (χ (1)) marks the onset
of three-phase coexistence via a fractionated lamellar shadow
phase with volume fraction v(2) = 0. (A fractionated lamellar
shadow was already predicted by Monte Carlo simulations
[18].) This fractionated phase sets in with finite amplitude,
and with finite wave number, since its copolymer-enriched
sequence distribution (see Fig. 16 below) causes the structure
factor to be different from the global one. On further increase
of the incompatibility (along the top vertical arrow), the
lamellar volume fraction grows. Now, keeping Lχ constant,
and proceeding toward smaller values of λ (following the
horizontal arrow), the volume fraction of the lamellae increases
further. Finally, at some λ < λc, one reaches the end of the
three-phase coexistence (indicated by the dot-dashed line),
and lamellae take over to be the cloud phase with volume
fraction v(2) = 1. Consistently, starting at λ < λc and small
incompatibilities, the disordered melt undergoes lamellar
phase separation (at the incompatibilities on the dashed line)
due to the peak of the λ-defined structure factor at a finite
wave number [cf. Eq. (39) and the dashed curve in the bottom
inset]. With our simplified free energy Eq. (26), via which
the instability toward a global lamellar phase rests solely on
the k dependence of this second-order structure factor, the
lamellar cloud boundary of three-phase coexistence is always
located in the half plane λ � λc. Upon crossing the dot-dashed
boundary line from this side, two additional homogeneous
phases with homopolymer-enriched sequence distributions
appear as shadows.

As visible in Fig. 3, three-phase coexistence prevails in
a large parameter region. However, since our lamellar free
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FIG. 3. (Color online) Phase diagram for triblock copolymers
with M = 3. Solid (red) line marks macroscopic (two homogeneous,
A- and B-rich phases), dashed (blue) line marks lamellar phase
separation (order-disorder-transition ODT) of the disordered state.
Dotted (orange) line: onset of three-phase coexistence, at which the
two homogeneous phases are the cloud and a fractionated lamellar
phase shadow emerges; dot-dashed (green) line is the lamellar cloud
boundary. A circle marks the multicritical point. Bottom inset:
second-order structure factor in the global λ distribution, at λ = 0
(solid), at the critical correlation λc = −1/3 (dotted), and at λ = −0.5
(dashed). In this and the following plots of this part, the length scale is
〈(n · Re)2〉1/2 = Re/

√
d. Top inset: sketch of three-phase coexistence.

energy is limited to small order-parameter amplitudes, the
results may be unreliable at very large values of the incompat-
ibility. An alternative scenario would be global lamellar phase
separation at higher Lχ (see Fig. 14 below).

At the critical correlation λc, the maximum at k0 = 0 of the
global structure factor broadens (see dotted curve in the bottom
inset in Fig. 3), announcing the continuous growth of the op-
timal wave number from zero when lowering λ. Qualitatively,
we observe this transition from global macroscopic to global
lamellar phase separation for all random triblock copoly-
mers with M < 7 [cf. the case discussed before Eq. (30)],
while the exact position of the Lifshitz point (λc,Lχc) depends
on M . This point of diverging lamellar wavelength limits the
three-phase region toward low incompatibilities.

The lamellar wave numbers on the boundary lines of
fractionated three-phase coexistence as a function of λ are
displayed in Fig. 4. Note that the simplified free energy for
microphases [see Eq. (39)], predicts that at a given λ, the wave
number of global lamellar phase separation (hatched region
in Fig. 3) does not change with increasing Lχ . The lamellar
wave number can be shifted only due to fractionation, i.e., by
an increased content of alternating sequences. We find that,
on increasing Lχ in the three-phase region, the fractionation
and thereby the wave number in the lamellae increase, i.e., the
lamellar spacing decreases. This is in agreement with findings
for global microphase separation in random copolymers within
mean-field theory [2].

The wave number of fractionated lamellae vanishes at the
Lifshitz point (λc,χc), as does the wave number of global
lamellar phase separation. The inset in Fig. 4 shows the
behavior of the fractionated wave number in the vicinity of
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FIG. 4. (Color online) Lamellar wave numbers for triblocks with
M = 3. Dot-dashed (blue) line: global lamellar phase at λ < λc,
between the order-disorder transition and the onset of three-phase
coexistence with v(2) = 1 (hatched region of Fig. 3). Dotted (orange)
line: fractionated lamellar shadow (v(2) = 0). Inset: enlarged around
the multicritical point.

the Lifshitz point. For λ � λc, the three-phase region can be
entered at two different incompatibilities, with different wave
numbers of the lamellar shadow. A closer look is cast onto
this remarkable feature of the phase diagram in the detail
of the boundary lines and a map of the lamellar phase’s
volume fraction around the Lifshitz point in Fig. 5. The line of
fractionated lamellar shadows displays a reentrant behavior,
especially it does not reach the Lifshitz point for λ ↘ λc,
but via a spiraling path invading the region λ < λc. Except
for a very small region of the parameter space, fractionation

(λc, Lχc) = (-1/3, 9.5294)
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FIG. 5. (Color online) Volume fraction of lamellar phase and
three-phase coexistence lines around the multicritical point (λc,Lχc)
for triblocks with M = 3. Line styles as in Fig. 3.
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FIG. 6. (Color online) Lamellar order-parameter amplitude along
the boundaries of three-phase coexistence for M = 3.

suppresses global lamellae with diverging wavelength in the
vicinity of the Lifshitz point, in favor of, first, macroscopic
phases and, at higher incompatibilities, fractionated lamellae
with finite wavelength.

The scaling of the order-parameter amplitude on approach
to the multicritical point along the transition lines to three-
phase coexistence (λ ↗ λc) is shown in Fig. 6. The amplitudes
of fractionated lamellar shadows (on the dotted line in Fig. 5,
in the range λ < λc) are marked by open diamonds, those of
global lamellar (cloud) phases (on the the dot-dashed line in
Fig. 5) by solid triangles, those of the coexisting homogeneous
shadows by open squares. According to the fit performed to the
latter case, the amplitudes vanish linearly in �λ := |λ − λc| at
the Lifshitz point (the same exponent is found for the lamellar
cloud amplitude).

In order to analytically extract the exponent of the order-
parameter amplitude in the vicinity of the multicritical point,
we solve the equation of the lamellar cloud line v(1) = 0 (see
Sec. IV D) for the deviations of the sequence concentrations in
the fractionated macroscopic shadow phases from the global
ones, �nν := n(1)

ν − pν(λ), with a power series ansatz

�nν(�λ) =
∑

j

cνj (�λ)j . (57)

The series’ coefficients of the equation system in �λ can
be calculated for M ∈ [3, . . . ,6], cases in which the wave
number k0 of global lamellae vanishes ∝ (�λ)1/2 at (λc,χc)
(as expected for a Lifshitz point [3]). For M = 3, consistent
expansion up to (�λ)4 yields, along the lamellar cloud
boundary line,

�nν = −144
√

6

55
(�λ)2 + O[(�λ)3], ν = 2,3. (58)

When inserting these dependencies into expansions of the
optimal wave number, the structure factor, etc. [cf. Eq. (38)],
we indeed find the critical exponent 1 for the amplitude σm in
the lamellar cloud phase,

τ̂m ∝ �λ, λ ↗ λc. (59)

Moreover, the slopes of the transition lines Lχ (λ) from the
disordered to the global lamellar state [χm(λ)] and from global

lamellae to fractionated three-phase coexistence [χ (2)(λ)] can
be shown to be equal at (λc,Lχc):

χ (2)(λ) − χm(λ) ∝ (�λ)2, λ ↗ λc. (60)

B. Continuous triblocks

Representative of triblocks with M � 7 segments per block,
the phase diagram for continuous random triblock melts is
shown in Fig. 7. Again, for λ > λc, the dotted line marks
the emergence of a lamellar shadow in addition to the two
homogeneous phases. The lamellar volume fraction grows
with increasing Lχ and with decreasing λ. On the dot-dashed
line, the lamellar phase takes over to be the cloud phase and
coexists with two fractionated homogeneous shadows.

In comparison to the case M < 7 (see Fig. 3), the
three-phase coexistence region seems to be larger. (Still,
the predictions are restricted to incompatibilities that do not
exceed considerably those of the order-disorder transition.)
The multicritical point is not only located at a smaller critical
block correlation λc and a higher incompatibility, but is
also qualitatively different: As discussed in Sec. III B, the
wave number of the first global, ordered structure (when
starting at low incompatibilities in the disordered state) is
discontinuous at λc for M � 7. Thus when reaching λc

from above, the morphology of the ordered phase changes
from two homogeneous phases (zero wave number k0 = 0)
to one lamellar phase with finite wave number k0,c. This
feature is revealed in more detail in the plot of lamellar wave
numbers in Fig. 8. At the multicritical point, the lamellar
wave numbers in the fractionated state also tend to the finite
value k0,c = 0.326π . The wave number in the fractionated
lamellar shadow attains a slightly smaller, minimal value at a
correlation λ > λc (cf. the top inset in Fig. 8). Due to the two
peaks of the global structure factor around multicriticality (see
the inset in Fig. 8), metastable global lamellae occur in a small
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FIG. 7. (Color online) Phase diagram for continuous triblocks.
Line styles as in Fig. 3. Crosses indicate the end points of the lines of
metastable, global phase separations, macroscopic for λ < λc (×) and
lamellar for λ > λc (+). Bottom inset: global second-order structure
factor at λ = −0.45 (solid), at the critical correlation λc = −0.464 00
(dotted), and at λ = −0.47 (dashed). Length scale as in Fig. 3.
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FIG. 8. (Color online) Lamellar wave number for continuous
triblocks. Dot-dashed (blue) line: global lamellar (cloud) phase at
λ < λc; dotted (orange) line: fractionated lamellar shadow (v(2) = 0);
solid (cyan) line: metastable global lamellae due to a second peak of
the structure factor s(k2), shown at λ = −0.4625 (triangle) in the
bottom inset. Circles mark the wave numbers of the coexisting states
at the multicritical point, crosses mark the end points of metastable
global lamellar/macroscopic phase separation lines.

range of block correlations, −0.461 23 � λ > λc, where
the free-energy functional’s absolute minimum indicates
global macroscopic phase separation. Inversely, global
macroscopic phase separation persists as a metastable state for
−0.5 < λ < λc [at λ = −0.5, the curvature of s(k2) at k = 0
changes according to Eq. (30)]. These metastable transition
lines, whose end points are hardly resolvable in Fig. 7, are
displayed in Fig. 9, together with the actual transition lines and
a map of the lamellar volume fraction around the multicritical
point (note the zoom to an even smaller region than in Fig. 5).
On increasing incompatibility from the fractionation onset,
the lamellar volume fraction grows (for λ > λc) or decreases
(for λ < λc) rapidly to level out at a value of about 0.6. At
multicriticality, the transition lines from the disordered to the
global lamellar state and from global lamellae to fractionated
three-phase coexistence differ in their slopes, in contrast to
the behavior at the Lifshitz point.

Despite the discontinuity of the wave number at the
critical correlation λc for M � 7, the boundary lines of
fractionated three-phase coexistence are single-valued around
the multicritical point. Hence, in this case, we can determine
numerically the critical exponent for the decay of the lamellar
order-parameter amplitude along both boundary lines (see
Fig. 10). The exponent 0.5, found along both lines, is
reminiscent of mean-field behavior. Note that for triblocks
with M < 7, we derived a different critical exponent, viz. 1
[cf. Eq. (59)].

C. Fractionation with restored wave number dependence

In this section, we aim at testing the fractionation scenario
with the complete fourth-order expansion of the Landau-type
free energy for structured phases, instead of the simplified
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FIG. 9. (Color online) Volume fraction of the lamellar phase
around the multicritical point (λc,Lχc) for continuous triblocks.
Boundary lines of three-phase coexistence as in Fig. 7. Additional
thin lines mark metastable, global phase separations: solid (cyan) for
λ > λc, with end point marked by a cross: lamellar phase; dashed
(red) for λ < λc: homogeneous phases.

version Eq. (26). To this end, we accounted for the wave
number dependence of the fourth-order terms of the functional
Eq. (23) in Eq. (40) in Sec. III C 2. The effects of the
wave number variation within our fractionation scheme can
be observed in Fig. 11, for random continuous triblocks.
The boundary between global macroscopic phase separation
and the three-phase region at λ > λc is located at lower
incompatibilities than that obtained with the simplified free
energy (cf. Fig. 7). Global lamellar phase separation is found
to be stable in a larger parameter region and to extend into
the half plane λ > λc. However, upon further increasing χ in
the system with global lamellar phase separation at λ > λc, we
find a reentrance into the fractionated three-phase coexistence.
Note that the amplitude of the lamellar shadow at the onset of
fractionation attains a reasonably small value also at a block
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FIG. 10. (Color online) Scaling of the lamellar order-parameter
amplitude along three-phase boundaries for continuous triblocks.
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correlation distant from the critical one (cf. the sinusoidal
profile in Fig. 11).

The main advantage of the lamellar free energy Eq. (40) is
the principal possibility of global lamellae also at λ > λc, since
the optimal wave number changes with increasing χ even in a
fixed sequence distribution (similar to the mechanism of global
microphase separation invoked in Ref. [24], which, however,
considered one-component diblock copolymers only). Global
lamellar phase separation is found to follow the three-phase
coexistence at high incompatibilities also within SCFT (see
Fig. 14 below).

The scaling of the order-parameter amplitude on approach
to the multicritical point is exctracted from the regularly shaped
lamellar shadow line in Fig. 12.

Both the lamellar shadow and the macroscopic cloud
amplitudes vanish with an exponent of 0.5, corroborating the
findings with the simplified lamellar free energy.
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FIG. 12. (Color online) Order-parameter amplitude of homoge-
neous clouds and lamellar shadow at the onset of fractionation for
continuous triblocks, with k-dependent fourth order.

VI. ALTERNATIVE APPROACH: SCFT

A. Method

An alternative method to determine the phase behavior
of random triblocks employs self-consistent field theory
(SCFT) [30,31]. In order to analyze the phase coexistence of
homogeneous and lamellar phases with finite volume fractions,
it starts out from the grand-canonical partition function,

ZG =
∑
{Nν }

∏
ν

1

Nν!

(

0ζν

LQo

)Nν

×
∫

D[r(s)] exp{−Hχ − Hκ − HW }, (61)

with ln ζν being the excess chemical potential of species ν,
ν = 1, . . . ,6.Qo denotes the configurational partition function
(without translation) of a single, noninteracting Gaussian
chain. Via the incompressibility demand (see below), the sum
over the sets {Nν} of species numbers is restricted by the
constraint,

∑6
ν=1 Nν = N . Therefore not all the fugacities

ζν are independent, and we set ζABA ≡ 1. By virtue of the
symmetry A�B of the λ distribution and the coexisting
phases, ζAAA = ζBBB , ζAAB = ζBBA, and ζABA = ζBAB .

Similarly to the formalism in the previous sections, A- and
B-density fields with their respective auxiliary fields wA and
wB are introduced to decouple the interacting chains. The
incompressibility constraint is accounted for by an additional
Lagrange field ξ and automatically imposes the constraint on
the species numbers. Within the saddle point approximation,
we obtain the excess grand-canonical potential, g ≡ G/N + 1,
per molecule:

g = 1

V

∫
d3r {χLφAφB − wAφA − wBφB}, (62)

where the saddle point values of the fields and densities are
determined by the self-consistent set of equations

φA + φB = 1, (63a)

wA = χLφB + ξ, (63b)

wB = χLφA + ξ, (63c)

φA(r) = −
6∑

ν=1

ζνV
δQν

δwA(r)
, (63d)

φB(r) = −
6∑

ν=1

ζνV
δQν

δwB(r)
. (63e)

The global concentration pν of species ν is given by

pν = 1

V

∫
d3r φν(r) = ζνQν . (64)

The saddle point equations involve the partition functions Qν

of single copolymer chains of species ν in the external fields
wA and wB :

Qν =
〈

exp

{
−
∫ L

0
ds wν(r(s),s)

}〉
,

with wν(r(s),s) : = 1 + qν(s)

2
wA(r(s)) + 1 − qν(s)

2
wB(r(s))

(65)
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with the conformational average defined in Eq. (15). In the
following, only the continuum limit of Gaussian chains is
considered. For a structured phase, the Qν and density profiles
are expressed in terms of statistical weight propagators qν(r,s),
q†

ν (r,s) along a Gaussian chain,

qν(r,s) =
〈

exp

{
−
∫ s

0
ds ′ wν(r(s ′),s ′)

}〉
H

(s) [r(s)=r]
W

, (66a)

q†
ν (r,s) =

〈
exp

{
−
∫ L

s

ds ′ wν(r(s ′),s ′)
}〉

H
(L−s)
W [r(s)=r]

, (66b)

where H
(s) [r(s)=r]
W and H

(L−s)
W [r(s)=r] are the conformation statis-

tical weights for a chain of length s having its end point at
r and for a chain of length L − s having its start point at
r , respectively. The single-chain partition functions Qν are
calculated according to

Qν = 1

V

∫
d3r qν(r,s)q†

ν (r,s), ∀s ∈ [0,L]. (67)

The propagators obey the modified diffusion equations:(
∂

∂s
− �r + wν

)
qν(r,s) = 0, (68a)(

∂

∂s
+ �r − wν

)
q†

ν (r,s) = 0. (68b)

These partial differential equations are solved via a spectral
method [32]. As a result, we obtain the equilibrium spacing
and the free energy of the lamellar phase, as well as detailed
composition (concentration) profiles of the different species
in a lamellar domain. An example of a composition profile
is shown in Fig. 13 for λ = 0 at the lamellar cloud point,
Lχ = 9.389 19.

The canonical free energy can be obtained via a Legendre
transformation:

F = G +
6∑

ν=1

Nν ln ζν + N ln

o

LQo

(69)

Thus the excess Helmholtz free energy f per molecule takes
the form

f ≡ F

N
− ln


o

LQo

= g − 1 +
6∑

ν=1

pν ln ζν

=
∑

ν

pν(ln pν − 1) + χL

V

∫
d3r φAφB

−
∑

ν

pν lnQν − 1

V

∫
d3r (wAφA + wBφB). (70)

The first term corresponds to the entropy of mixing of the
different species, the second term corresponds to the free
energy due to the repulsion of unlike monomer types, and the
last two terms correspond to the loss of conformational entropy
of the polymers in a spatially inhomogeneous environment.

B. Three-phase coexistence lines and fractionation

1. Homogeneous cloud phases

If we approach three-phase coexistence by increasing the
incompatibility Lχ from a low value at fixed λ, the lamellar
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FIG. 13. (Color online) Local composition (A-segment density)
profiles of the lamellar cloud phase at λ = 0. Solid line: total density,
symbols (key in the plot): due to one copolymer species. The spatial
coordinate x is normalized by the lamellar spacing, � = 4.148Re,
where Re denotes the rms end-to-end distance of a noninteracting
triblock copolymer.

phase (shadow) will emerge from the homogeneous, A-rich
and B-rich phases (clouds) with an infinitesimal volume
fraction. At the onset of three-phase coexistence, the sequence
distribution of the two homogeneous cloud phases is a λ-
defined one. In the grand-canonical ensemble, we determine
the two independent excess chemical potentials, ζAAA and
ζAAB , of the cloud phases as to reproduce the composition
of the λ distribution. Since the incipient lamellar phase can
exchange polymers with the cloud phases, its properties are
calculated in the grand-canonical ensemble. To this end, we
minimize the grand-canonical potential g at given ζAAA and
ζAAB with respect to the lamellar period or spacing �. The
onset of three-phase coexistence occurs at the incompatibility,
at which the so-minimized grand-canonical potential of the
lamellae equals the grand-canonical potential of the cloud
phases. The points (λ,χ ), at which the homogeneous, A-rich
and B-rich phases are the cloud phases, are shown as a
dotted curve in the phase diagram Fig. 14. In the range
−0.17 < λ < 0.43, the data were calculated with a spatial
resolution of 32 Fourier components, in the remaining range
with 12 components.

2. Lamellar cloud phase

As we progress into the three-phase coexistence toward
larger incompatibilities Lχ , the volume fraction of the lamellar
phase grows, while that of the homogeneous, A-rich and
B-rich phases decreases. At the end of three-phase coexistence,
the lamellar phase occupies the entire volume, and the
homogeneous phases continuously disappear with a vanishing
volume fraction. In order to determine this cloud point of the
lamellar phase, we calculate the properties of the latter in the
canonical ensemble, where its sequence distribution is fixed to
λ distribution. The canonical free energy f is minimized with
respect to the lamellar spacing �. Then, the two independent
excess chemical potentials for this optimal lamellar structure
are measured, and the properties of the incipient homogeneous
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FIG. 14. (Color online) Phase diagram for continuous triblocks
within SCFT. Line styles as in Fig. 3. Symbols highlight data:
triangles (green) lamellar cloud points, squares (blue) order-disorder
transitions. The inset shows a detail, with the three-phase boundaries
from the analytical method (A) added (cf. Fig. 11), in dashed (orange)
homogeneous, in dot-dashed (green) lamellar cloud points. Thin dots
(green) extrapolate the SCFT lamellar cloud points to the multicritical
point.

phases are calculated in the grand-canonical ensemble at the
so-determined chemical potentials. Finally, Lχ is adjusted
such that the lamellar cloud and the incipient homogeneous
shadow phases have the same grand-canonical potential at
identical excess chemical potentials. The resulting boundary
points of three-phase coexistence toward large Lχ are marked
in Fig. 14 by triangles on a dot-dashed line. Twelve Fourier
components were considered in this calculation.

C. Phase coexistence with finite volume fractions

The properties of a general fractionated state of three coex-
isting phases are computed in the grand-canonical ensemble.
As in Sec. VI B 2, we consider a lamellar phase [marked by the
superscript (2)] with volume fraction v(2), coexisting with two
homogeneous, A-rich and B-rich phases, with joint volume
fraction 1 − v(2). A fractionated state with given volume
fractions is located by simultaneously adjusting the two
independent excess chemical potentials ζAAA and ζAAB and the
incompatibility Lχ such that the weighted sum of the sequence
concentration p

(2)
1 , respectively p

(2)
2 , in the lamellar phase and

p
(1)
1 , respectively p

(1)
2 , in the two homogeneous phases gives

the global concentration of a λ distribution [cf. Eqs. (29) and
(50)], and such that the grand-canonical potentials of all three
phases are equal [33], g(1) = g(2). In the limit v(2) → 0, we
recover the cloud points of the homogeneous phases, in the
limit v(2) → 1 we recover the cloud points of the lamellar
phase. In contrast to the phases at their cloud points, none of
the coexisting phases with finite volume fractions displays a λ

distribution (cf. Sec. VII below).
The gradual change of the volume fraction of the lamellar

phase upon increasing the incompatibility Lχ at λ = 0 is
shown in Fig. 15. The inset presents the composition (A-
segment density) profiles of the lamellar phase at its shadow
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FIG. 15. (Color online) Incompatibility Lχ against volume frac-
tion v(2) of the fractionated lamellar phase at λ = 0. The end points
of the curve mark the limits of three-phase coexistence, at which
the lamellar phase is the incipient shadow, v(2) = 0, respectively the
cloud, v(2) = 1. The top inset shows the lamellar A density profiles
in these limits. The bottom inset shows the spacing � of lamellae
in the three-phase coexistence region and that of global lamellae for
Lχ > 9.389 19.

point Lχ = 8.820 43 (dashed line), and at its cloud point
Lχ = 9.389 19 (solid line). We observe that the lamellar
shadow’s profile, though it is not confined to a single harmonic,
matches quite well the profile obtained from the analytical
method (see the inset in Fig. 11), especially in the amplitude.
In contrast to results for one-component diblock copolymer
melts [24], but in agreement with predictions of random phase
approximation, the lamellar spacing decreases upon increasing
Lχ .

VII. FRACTIONATED SEQUENCE DISTRIBUTIONS

In this section, we invoke both the analytical and the
SCFT method to obtain detailed sequence distributions, which
show the fractionation or sequence partitioning according
to the coexisting phases’ structures in random continuous
triblocks. In Figs. 16 and 17, the sequence distributions
of the coexisting phases are presented by means of composition
triangles: Each corner represents one of the sequence classes
defined in Eq. (28), a point within the triangle one sequence
distribution. Due to the A�B exchange symmetry of species
combined into one sequence class, the distributions of the
two homogeneous phases within a macroscopically phase-
separated state coincide in this triangle.

In Fig. 16, we present the fractionated distributions obtained
by the analytical method with the restored k dependence of
the lamellar free energy. The sets for three supercritical values
of the block correlation, λ > λc, λ = 0.2 (diamonds), λ = 0
(circles), and λ = −0.2 (up triangles), visualize the following
fractionation mechanism: On the curve of λ distributions,
the solid symbol indicates the sequence distribution of the
homogeneous cloud phase(s) at the onset of fractionated
three-phase coexistence. The solid symbol of the same shape
and color to the bottom right of the curve marks the
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λ-distribution

ABB + BAABAB + ABA

AAA + BBB

λ = 0.2
λ = 0
λ = -0.2
λ = -0.4
λ = λc
λ = -0.5

fractionation:

FIG. 16. (Color online) Sequence distribution triangle for random
continuous triblocks at various block correlations, with the extended
analytical method, cf. the phase diagram in Fig. 11. The diagram’s
center (+) corresponds to equal concentrations of all sequences (pν =
1/3, ν = 1,2,3). One sequence distribution is represented as a linear
combination of the vectors pointing from the center to the corners,
each vector scaled with the concentration deviation 3(pν − 1/3)/2.
Distributions defined by λ lie on the (red) curve, with λ ranging from
−1 at the triangle’s bottom left corner to +1 at its top. Solid symbols
on this curve mark the sequence distribution of the cloud phase(s)
at the boundary line(s) of three-phase coexistence. Off-curve solid
symbols mark the distributions of the coexisting shadow phases. Open
symbols display the distributions of the coexisting states at equal
volume fractions (v(2) = 0.5).

distribution of the coexisting lamellar shadow phase (with
zero volume fraction). The finite deviation of the lamellar
shadow’s sequence distribution from the λ distribution shows
that the transition to three-phase coexistence is discontinuous.
Upon increasing incompatibility, the lamellar phase’s volume
fraction increases (cf. Fig. 9), and its sequence distribution

λ-distribution

ABB + BAABAB + ABA

AAA + BBB

λ = 0
λ = 0.25
λ = 0.5

fractionation:

FIG. 17. (Color online) Sequence distribution triangle for random
continuous triblocks within SCFT, with the distributions of the
coexisting phases at the beginning and at the end of three-phase
coexistence for λ = 0 (blue circles), 0.25 (magenta squares), and 0.5
(red stars), respectively. For λ = 0, open circles mark the distributions
of the coexisting phases at Lχ = 9.017 23, where the lamellar phase
comprises half of the volume. The solid line represents λ distributions.

departs ever more from the λ distribution (the open symbols
to the bottom right of the λ curve display lamellae at 0.5
volume fraction). Sequence class 2 (AAB/BBA) substantially
accumulates in the lamellar phase, also class 3 (ABA/BAB).
Moreover, since the ratio of these two sequence concentrations
differs from the λ-defined ratio p2(λ)/p3(λ), the fractionated
sequence distribution in the lamellar phase does not ensue
from merely expelling homopolymers into the coexisting
homogeneous phases at a constant ratio of the other two
sequence classes. As the volume fraction of the homogeneous,
initial cloud phase(s) decreases, their distribution (at volume
fraction 0.5 marked by open symbols to the top left) deviates
increasingly from the λ curve, showing in turn a particular
depletion in AAB/BBA sequences.

For λ = −0.4, the reentrant behavior of the three-phase
boundary line, cf. Fig. 11, gives rise to various coexisting
distributions (down triangles). Upon increasing χ in the two
homogeneous phases, the three-phase region appears with
a lamellar shadow (nearly on the curve of λ distributions,
shift to the bottom hardly visible), which grows with χ in
volume fraction until it becomes a lamellar cloud (now the
symbol on the curve of λ distributions) coexisting with two
homogeneous shadows (triangle shifted slightly to the top).
The homogeneous shadows are homopolymer enriched and
depleted in alternating sequences. At an even higher χ , the
global lamellar phase gives way to a three-phase coexistence
again. The topmost triangle represents the distribution of the
homogeneous shadows at this reentrance. For λ � λc, this
lamellar cloud line is the only three-phase boundary. The
topmost symbols for the critical and subcritical correlations
λ = λc and λ = −0.5 show the distributions of the coexisting
homogeneous shadows, which deviate markedly from the λ

distributions.
In the distribution triangle of Fig. 17, we present the SCFT

results for the sequence distributions of the coexisting phases
for λ = 0, 0.25, and 0.5. Again, the distributions of the cloud
phases are represented by solid symbols on the solid curve of
λ distributions. For each value of λ, the distributions at the
beginning and the end of three-phase coexistence are shown.
At the lower incompatibility, the homogeneous phases are the
clouds, and the coexisting lamellar shadow corresponds to
the respective solid symbol shifted to the lower right corner,
with its distribution enriched in AAB/BBA sequences. At the
higher incompatibility, the lamellar phase occupies the total
volume, v(2) = 1, and its distribution is represented by the
cloud symbol on the λ curve. The distribution of the coexisting
homogeneous shadows corresponds to the symbol shifted to
the upper left side of the triangle. Two open circles mark the
distributions for equal volume fractions of the macroscopic
and the lamellar phase-separated state, v(2) = 0.5, at λ = 0. In
this situation, none of the coexisting phases is characterized
by a λ distribution; the homogeneous phases are rich in
homopolymers, while alternating sequences segregate into
the lamellar phase. In comparison to the analytical results
for the distributions at λ = 0, apart from the qualitatively
different feature of a lamellar cloud at higher incompatibilities,
the sequence fractionation is found to be weaker. Note,
however, the smaller transition incompatibilities to three-phase
coexistence within SCFT, which also result in smaller order-
parameter amplitudes.
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 0

 0.25
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(λ = 0)
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v(2) = 0
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v(2) = 0.5

Lχ = 9.57 Lχ = 11.1
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AAA

BBA
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FIG. 18. (Color online) Detailed sequence distributions of the
coexisting phases at λ = 0 from analytical method (Sec. V C), cf.
Fig. 16. Leftmost chart: λ distribution of the disordered melt. Pairs
of charts: distributions of the A-rich, homogeneous and the lamellar
phase; left: at the onset of three-phase coexistence; right: at a lamellar
volume fraction of 0.5.

Detailed sequence distribution diagrams for lamellar and
macroscopic phases at λ = 0 are displayed in Fig. 18 for the
analytical method, and in Fig. 19 for SCFT. The representation
of all six species’ concentrations additionally visualizes the
segregation within a sequence class into A- and B-rich sub-
species between the two homogeneous phases, which allows
for an estimate of the macroscopic A excess amplitude at
different stages of fractionated three-phase coexistence. Due to
the homogeneous phases’ A�B exchange symmetry, only the
distribution of the A-rich, homogeneous phase is shown. (The
chart for the B-rich phase looks the same as the one depicted
for the A-rich phase, only with letters A and B exchanged in the
key.) The distributions obtained by both methods agree well.
While both diagrams reveal the preference of the fractionated
lamellar phase for AAB/BBA sequences, the accumulation is
more distinctive in the analytical results, already at the onset
of fractionation (cf. the central charts). Corresponding to the
higher onset incompatibility, the macroscopic segregation into
A- and B-rich subspecies also is at a more advanced stage.

 0

 0.25

 0.5

 0.75

 1

λ-distrib.
(λ = 0)

macr.
A-rich

lam.,
v(2) = 0

macr.
A-rich

lam.,
v(2) = 1

Lχ = 8.82 Lχ = 9.39

BBB
AAA

BBA
AAB

BAB
ABA

FIG. 19. (Color online) Detailed sequence distributions of the
coexisting phases at λ = 0 obtained with SCFT. Pairs of charts:
distributions of the A-rich, homogeneous and the lamellar phase;
left: at the onset; right: at the end of three-phase coexistence.

VIII. DISCUSSION

A. Analytical mean-field approach

The analytical mean-field theory is restricted in its validity,
whenever a lamellar phase is addressed, to small lamellar
order-parameter amplitudes or to the proximity of a continuous
microphase transition. In any case, it is able to analyze
accurately and in detail the vicinity of the multicritical point
(λc,χc), whose quality is found to depend sensitively on the
number M of segments per block. For a small number of
segments per block (M < 7), the wave number of the global
ordered state grows continuously from zero, when decreasing
λ from λc. A reentrance into the fractionated three-phase
coexistence is observed for λ � λc. The critical exponent
for the lamellar order-parameter amplitudes on approach to
(λc,χc) is 1, along both three-phase coexistence boundaries.
For more segments per block (M � 7), the structure factor of
the λ distribution develops a second peak at finite k, such that
the wave number of the global ordered state is discontinuous
at λc. Contrasting with the case M < 7, we find a critical
exponent of 0.5 for the amplitudes of both lamellar and
homogeneous phases, along both three-phase boundaries. This
behavior might be due to the intersection of transition lines to
metastable, global ordered phases at multicriticality.

With the simplest version of the free-energy functional,
Eq. (26), a (global) lamellar cloud phase with λ-defined
concentrations can occur only at λ < λc (for our system, a
result qualitatively different from the SCFT predictions; see
Sec. VIII B below). An enhanced version of our theory aban-
dons this restriction by restoring the wave-number dependence
of the quartic vertices in the lamellar free-energy function,
Eq. (40); see the location of the lamellar cloud boundary for
random continuous triblock copolymers in Fig. 11. The critical
exponent of 0.5, found for the order-parameter amplitudes
along three-phase coexistence lines with the simplified theory,
is corroborated by the enhanced analytical theory.

With the complete wave-vector dependence of Eq. (23), at
fixed λ, a global lamellar phase can attain a lower free energy
than global macroscopic phase separation at an incompatibility
χL > χh—a mechanism of microphase separation proposed
by Leibler and co-workers [3,24]. Via our parametrization of
a fractionated three-phase coexistence, we take into account
more degrees of freedom and find, instead of this mechanism,
a refined competition to be effective: A structured phase first
becomes stable in a subsystem with vanishing volume fraction
and with a sequence distribution different from the global
one. This onset of three-phase coexistence indeed occurs
at a smaller incompatibility χ < χL than that of the global
microphase separation conjectured by Leibler.

B. Numerical SCFT

The SCFT method invokes the mean-field approximation,
too, but avoids the assumption of small order-parameter ampli-
tudes and the single-harmonic approximation for the lamellar
phase. Thus it provides appropriate mean-field predictions for
large regions of the phase diagram, but due to numerical
problems fails as the multicritical point is approached and
both wave numbers and free-energy differences decrease.
Moreover, numerical SCFT is restricted to a small number of
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different components, and consequently allows us to address
random copolymers with a small number of blocks Q only,
which led to the choice Q = 3 in this study. The SCFT
calculation for random continuous block copolymers with
Q = 3 locates the entire three-phase region in the half plane
λ > λc of the λ−χ diagram.

C. Combining the results

Beyond the mean-field approximation, the analytical ap-
proach and SCFT have different additional limitations, such
that their results for the location of three-phase boundaries are
complementary: The analytical approach assumes the lamellar
order-parameter amplitudes to be small, which is accurate in
the vicinity of the multicritical point. In this region, however,
also the free-energy differences between competing states
(global lamellae, three-phase coexistence, two homogeneous
phases) become minuscule (cf. the inset of Fig. 7), which
poses numerical difficulties for the SCFT calculations. Hence
there is no regime where both approaches are simultaneously
reliable, and a direct comparison is difficult.

In the inset of Fig. 14, we try to combine their results for the
phase diagram of random continuous triblocks to one picture.
The predictions for the cloud points of the homogeneous
phases obtained by SCFT (dotted) and by the analytical method
(dashed) match quite well, whereas the agreement for the
cloud points of the lamellae is less satisfactory. Numerical
SCFT results for these points (solid triangles) do not extend
below λ = −0.025 due to the mentioned subtle free-energy
differences in this region, which control the phase behavior.
The thin dotted line has not been computed, but marks our
tentative extrapolation of SCFT data toward the multicritical
point, based on the slope of the lamellar cloud line determined
with the analytical theory (dot-dashed) in the part that is in
qualitative accordance (thick). The analytical prediction for
this line (cf. Fig. 11) is enhanced relative to the rougher
description presented in Fig. 7; cf. Sec. V C. Still, owing to
the delicate free-energy balance, the shape of this boundary
line is bound to be more sensitive to the approximation of
small lamellar amplitudes in the theory than that of the other
three-phase boundary, at which the lamellar phase is the
shadow and all amplitudes are smaller.

IX. CONCLUSIONS AND OUTLOOK

The analytical method and the numerical SCFT constitute
complementary approaches, which both have their virtues and
together provide a comprehensive mean-field picture of the
complex phase behavior of random triblock copolymers. With
both methods, we consistently reveal an extended three-phase
coexistence region of macroscopic and microscopic phase
separation in random triblock copolymers, as suggested by
simulations [18]. Also, we discover the coexisting phases to
select sequences that match their morphology. Upon entering
the three-phase region, the incipient shadow phase emerges
with vanishingly small volume fraction and with a sequence
distribution that already differs from the λ distribution of
the cloud phase. Fractionation demixes the initial random
(here Markovian) distribution into sequence classes (following

the analytical approach, progressively), a separation
mechanism which might prove useful to isolate wanted
species in polymer blends.

Our analysis has been restricted to mean-field theory. For
the macroscopic phase separation of the disordered state
at λ > λc, the critical region (χ − χh), within which the
mean-field approximation fails, has been estimated with the
help of a Ginzburg criterion [17]. The latter yields a Ginzburg
number Gi ∝ Q2/M , i.e., the critical region does not shrink
simply with chain length QM , in contrast to naive expectation.
For fixed Q, such as considered here, the mean-field
predictions are correct in the limit of large M . The transition
from the disordered to a global microphase-separated state
(λ < λc) is expected to be weakly first order due to fluctuations
[12,13]. For the transition lines to three-phase coexistence and
the multicritical point at λ = λc, the effects of fluctuations
remain to be explored. Whereas for simpler phase diagrams, it
has been shown that the Lifshitz point at λ = λc is destroyed
by fluctuations, the situation here is more complicated due to
the fact that four phase states meet in the multicritical point.

Phase coexistence enabled by component selection might
be of interest for various other multicomponent systems, cf.,
e.g., Refs. [25,34]. Specifically for polydisperse copolymers,
sequence fractionation can be generalized starting from the
case considered here: A straightforward extension is to study
random block copolymers asymmetric in global A-/B content,
which, apart from the lamellar state, display other structured
ordered morphologies, such as spheres on a bcc lattice or
hexagonally arranged cylinders [24,35]. Other generalizations
would include copolymers either with an arbitrary number
of blocks or built from more than two segment types. Frac-
tionation may also give rise to structured phases beyond the
ordered microphases. Particularly promising in this context are
random copolymers with many blocks, which might display
frozen, random structures in coexistence with macroscopically
phase-separated states.
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APPENDIX A: GAUSSIAN-CHAIN AVERAGES

Equation (22) and vertices of the expansion Eq. (23) contain
n-point correlations of the Gaussian-chain measure:

〈
exp

{
−i

n∑
r=1

kr · r(sr )

}〉

= δ∑
r kr ,0 exp

{∑
r<r ′

|sr − sr ′ |kr · kr′

}
(A1)

(derived for continuous chains in [36], Appendix B).
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APPENDIX B: VERTEX FUNCTIONS AND MOMENTS

In Eqs. (22) and (23), we also introduced the following
functions: The discrete Debye function,

D(L,k2) : =
L∑

s1,s2=1

〈
e−i[k1·r(s1)+k2·r(s2)]

〉

=
L∑

s1,s2=1

e|s2−s1|k1·k2 δ−k2,k1=:k

= L(1 + e−k2
)

1 − e−k2 − 2e−k2
(1 − e−Lk2

)

(1 − e−k2 )2
, (B1)

and the structure factors, for individual sequences:

Sν(k2) : =
L∑

s1,s2=1

qν(s1)qν(s2)
〈
e−i[k·r(s1)+k2·r(s2)]

〉

=
L∑

s1,s2=1

qν(s1)qν(s2)e−k2|s2−s1|, (B2)

S(α)
ν (k1,k2) := qν(s1)qν(s2)

〈
e−i

∑3
r=1 kr ·r(sr )

〉
, (B3)

S(β)
ν (k1,k2,k3)

: =
L∑

s1,s2,s3,s4=1

qν(s1)qν(s2)qν(s3)qν(s4)
〈
e−i

∑4
r=1 kr ·r(sr )

〉
, (B4)

S(γ )
ν

(
k2

1,k
2
2

)
: =

L∑
s1,s2,s3,s4=1

qν(s1)qν(s2)qν(s3)qν(s4)e−k2
1 |s2−s1|−k2

2 |s4−s3|.

(B5)

Again, the length scale is the effective segment length b, k2 :=
b2k̃2/(2d), with k̃ the physical wave number.

For the global λ distribution, the type correlation of two
segments on the same chain, whose block numbers differ by
�β(s1,s2) ∈ {0, . . . ,Q − 1}, can be calculated directly via the
transition matrix M̂ , Eq. (3):

[q(s1)q(s2)]λ :=
∑

ν

pν(λ)qν(s1)qν(s2) = λ|�β(s1,s2)|. (B6)

Summing over all segment pairs gives the second-order
moment [cf. Eq. (21)] for a λ distribution:

m2(λ): = 1

L2

L∑
s1,s2=1

[q(s1)q(s2)]λ

Q=3= 1

3
+ 2λ

9

(2 − 3λ + λ3)

(1 − λ)2
. (B7)

Inserting Eq. (B6) into Eq. (24) and performing the sum
over all pairs yields the expression Eq. (27) for the second-
order structure factor S(k2) in a λ distribution. We abstain
from presenting within this paper our computations of the
structure factors, Eqs. (B2)–(B5), of a λ distribution for
general Q [the expression Eq. (27) had been given earlier
in [37], and of individual sequences for Q = 3. Obtaining

the lengthy expressions for the fourth-order structure factors
requires extended sorting of the multiple sums’ terms due to
combinatorics.

APPENDIX C: MACROSCOPIC PHASE SEPARATION

Within the “crushed polymer picture” we derive for the free
energy of coexisting homogeneous phases a closed expression
that is not limited to small order-parameter amplitudes. Here,
each chain reduces to one structureless particle with an A

excess q̃j equal to the average over all segments on that
chain. Again with a field-based approach, the calculation of
the free-energy functional is analogous to that in Sec. III A, but
simpler, since conformational averages are obsolete for only
one position rj per chain. (For a replica-based derivation see
[37]; the results prove to agree with Flory-Huggins theory [6].)

For Q-block copolymers, it is sufficient to distinguish
(Q + 1) components according to their A excess:

q̃l := 2l − Q

Q
= −q̃Q−l , l ∈ {0,1, . . . ,Q}. (C1)

In the case of symmetric triblock copolymers, the four compo-
nent probabilities p̃l are related to the sequence probabilities
defined in Eq. (29) via

p̃0 = p̃3 = p1

2
, p̃1 = p̃2 = p2 + p3

2
= 1 − p1

2
. (C2)

With the coarse-grained component densities


l(r) = L

N∑
j=1

δq̃j ,q̃l
δ(r − rj ), l ∈ {0,1, . . . ,Q}, (C3)

the total and A excess densities are


(r) =
∑

l


l(r) and σ (r) =
∑

l

q̃l
l(r), (C4)

and the partition function to calculate is

Z =
N∏

j=1

(∫
ddrj

V

)

exp

{
1

4
0

∫
ddr

[
χ (σ (r))2 − 2κ(
(r))2

]}
. (C5)

Introduction of additional fields, similarly as in Eq. (13), and
elimination of the original fields at the saddle point, yields the
effective Hamiltonian per chain

h̃ = 1

4N
0

∫
ddx

[
χ (τ̂ (x))2 − 2

κ
(ω̂(x))2

]
−
∑

l

p̃l ln z̃l ,

(C6)

with the single-component partition functions

z̃l := 1

V

∫
ddx exp

{
L

2
0

(
χq̃l τ̂ (x) − 2ω̂(x)

)
}

. (C7)

The general ansatz of K � (Q + 1) homogeneous phases,

ω̂(x) = ω̂(k) = ∑
l ω̂

(k)
l ,

τ̂ (x) = τ̂ (k) = 1
κ

∑
l q̃l ω̂

(k)
l ,

}
x ∈ V

(k)
h , k ∈ {1, . . . ,K} ,
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with volume fractions v(k) := |V (k)
h |/V gives

h̃ = L

4
2
0

∑
k

v(k)

(
χ (τ̂ (k))2 − 2

κ
(ω̂(k))2

)
−
∑

l

p̃l ln z̃l ,

z̃l =
∑

k

v(k) exp

{
L(χq̃l τ̂

(k) − 2ω̂(k))

2
0

}
. (C8)

We optimize h̃ with respect to the {v(k),ω̂(k),τ̂ (k)}, with
Lagrange multipliers �1, �2, �3 for the constraints of number
conservation,

∑
k v(k) = 1, constant global density, κ
0 =∑

k v(k)ω̂(k), and A excess, here
∑

k v(k)τ̂ (k) = 0. Solving
the equilibrium conditions for nearly incompressible density
conjugates,

ω̂(k)

κ
0
= 1 + Ckκ−1 + O(κ−2), (C9)

we find expressions for the density-conjugate differences

lim
κ→∞

ω̂(k) − ω̂(k′)


0
= χ

4

(τ̂ (k))2 − (τ̂ (k′))2


2
0

, (C10)

quadratic in the A-excess conjugates, such as in Eq. (22).
Finally, we arrive at a self-consistent set of equations for
the volume fractions and the field values, consisting of the
constraints and

τ̂ (k)


0
=
∑

l

q̃l

p̃l

zl

exp

{
Lχ

4

[
2q̃l

τ̂ (k)


0
−
(

τ̂ (k)


0

)2
]}

,

with the component partition functions

zl =
∑
k′

vk′
exp

⎧⎨
⎩Lχ

4

⎡
⎣2q̃l

τ̂ (k′)


0
−
(

τ̂ (k′)


0

)2
⎤
⎦
⎫⎬
⎭

(C11)

and the {ω̂(k)
l } determined implicitly.

For symmetric random triblock copolymers, the ansatz from
Eq. (41) of two homogeneous phases yields the amplitude τ̂h

given in Eq. (44) and, choosing �1 = −1, the free-energy
density fh from Eq. (43).

APPENDIX D: EQUILIBRIUM CONDITIONS AT λ > λc

The parameter vector [v(2),n2,n3] of the fractionated lamel-
lar phase at λ > λc must be determined as a zero of the gradient
vector ∇(v(2), n2, n3)ffrac with components

f (2)
m − f

(1)
h + n2 − p2 + n3 − p3

v(2)

∂f
(1)
h

∂n2

+
3∑

ν=2

nν ln
nν[1 − p2 − p3 − v(2)(1 − n2 − n3)]

(pν − v(2)nν)(1 − n2 − n3)

+ ln
(1 − n2 − n3)(1 − v(2))

1 − p2 − p3 − v(2)(1 − n2 − n3)
,

∂f (2)
m

∂n2
+ 1 − v(2)

v(2)

∂f
(1)
h

∂n2

+ ln
n2[1 − p2 − p3 − v(2)(1 − n2 − n3)]

(p2 − v(2)n2)(1 − n2 − n3)
,

∂f (2)
m

∂n3
+ 1 − v(2)

v(2)

∂f
(1)
h

∂n2

+ ln
n3[1 − p2 − p3 − v(2)(1 − n2 − n3)]

(p3 − v(2)n3)(1 − n2 − n3)
. (D1)

Here, pν denote the constant λ-defined concentrations pν(λ),
whereas nν are the variable concentrations in the fractionated
state. The following relations between the partial derivatives
of f

(1)
h (v(2),n2,n3) were inserted:

∂f
(1)
h

∂n3
= ∂f

(1)
h

∂n2
(D2a)

and
∂f

(1)
h

∂v(2)
= n2 − p2 + n3 − p3

v(2)(1 − v(2))

∂f
(1)
h

∂n2
. (D2b)

The fact that f
(1)
h depends on the concentration (n2 + n3)

only simplifies the Eq. system (D1) for v(2) = const (e.g., in
computing the three-phase boundaries; cf. Sec. IV D). From
Eqs. (24), (39), (43), and (50) one reads off the derivatives of
f

(1)
h and f (2)

m as functions of v(2), n2, n3:

∂f (2)
m

∂nν

=
{

2χ
[
Sν

(
k2

opt

) − D
(
3M,k2

opt

)]
χS

(
k2

opt

) − 2L

+ 16

81

9m
(2)
2 + 5(

m
(2)
2

)2 + m
(2)
4

}
f (2)

m , ν = 2,3, (D3)

where k2
opt, m

(2)
2 , and m

(2)
4 are functions of n2, n3, and

∂f
(1)
h

∂n2
= − v(2)

1 − v(2)
ln

⎧⎨
⎩4

(
cosh

Lχτ̂
(1)
h

6
0

)2

− 3

⎫⎬
⎭ , (D4)

with the amplitude τ̂
(1)
h /
0 [Eq. (44) with p1 = n

(1)
1 ] expressed

as a function of v(2), n2, n3 via Eq. (50).
At a given point (λ,Lχ ) of the phase space, the allowed

domain V for the variables v(2), n2, n3 is

V : =
{{

v(2) ∈ [0,1], n2 ∈
[
0, min

(
1,

p2

v(2)

)]
,

n3 ∈
[
0, min

(
1 − n2,

p3

v(2)

)]}
: kopt(n2,n3) > 0

and Lχm(n2,n3) � Lχ

}
. (D5)

APPENDIX E: NUMERICAL SOLUTION OF THE
EQUILIBRIUM CONDITIONS FOR THE

FRACTIONATION FREE ENERGY

In order to locate the zeros of the system (D1), which
correspond to a minimum of the fractionation free energy,
we employ a Newton-type algorithm using the following steps
(exemplified for the fractionated lamellar phase):
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(1) At a given (λ,χ ), guess start parameter vector x0 :=
[v(2)

0 ,n2,0,n3,0]T (λ-χ ). The sensitivity regarding the start
vector impedes completely automatized scans in the λ-χ plane.

(2) Iteratively, apply Newton scheme

x1 = x0 − H−1(x0).∇ffrac(x0) (E1)

with H the Hessian of the system (D1).
(3) Stop if either the desired relative precision ε := |x1−x0|

|x0|
or a given maximal number of iterations has been reached.
In the latter case, and if H gets singular during the iteration,
restart from step (1).

(4) To ensure that ffrac(x1) is a minimum, check H for
positive definiteness, i.e., calculate its eigenvalues.

(5) From the minimum concentrations n2, n3, calculate
kopt(n2,n3) and Lχm(n2,n3) (the continuous microphase transi-
tion in a global sequence distribution equal to the fractionated
one) and ensure the result vector to comply with Eq. (D5).

Convergence, especially while approaching the multicrit-
ical point (λc,Lχc), can be achieved only for start vectors
very close to the actual solution. Therefore, proceeding on a
three-phase boundary line (see Sec. IV D) toward (λc,Lχc),
we use the solution at one value of λ as the start vector for the
adjacent λ. The resolution for λ is chosen between 5 × 10−4

far from λc and 10−5 near λc, and between 10−3 and 10−4 for
Lχ . In the vicinity of (λc,Lχc), entries of the start vector have
to be even closer to the actual solution and are obtained by
extrapolating solutions on the boundary line. Finally, the result
vector is calculated with a relative precision ε = 10−12 of its
modulus. Uniqueness of solutions of the nonlinear equation
systems mentioned in Secs. IV B–IV D cannot be proven
rigorously. However, we are sure not to miss transition lines to
three-phase coexistence at lower Lχ , since at each λ, we start
to scan the domain of definition Eq. (D5) with the λ-defined
concentrations.
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