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Here, a scenario is proposed, according to which a generic self-organized critical (SOC) system can be looked
upon as a Witten-type topological field theory (W-TFT) with spontaneously broken Becchi-Rouet-Stora-Tyutin
(BRST) symmetry. One of the conditions for the SOC is the slow driving noise, which unambiguously suggests
Stratonovich interpretation of the corresponding stochastic differential equation (SDE). This, in turn, necessitates
the use of Parisi-Sourlas-Wu stochastic quantization procedure, which straightforwardly leads to a model with
BRST-exact action, i.e., to a W-TFT. In the parameter space of the SDE, there must exist full-dimensional
regions where the BRST symmetry is spontaneously broken by instantons, which in the context of SOC are
essentially avalanches. In these regions, the avalanche-type SOC dynamics is liberated from overwise a rightful
dynamics-less W-TFT, and a Goldstone mode of Fadeev-Popov ghosts exists. Goldstinos represent moduli of
instantons (avalanches) and being gapless are responsible for the critical avalanche distribution in the low-energy,
long-wavelength limit. The above arguments are robust against moderate variations of the SDE’s parameters
and the criticality is “self-tuned.” The proposition of this paper suggests that the machinery of W-TFTs may
find its applications in many different areas of modern science studying various physical realizations of SOC. It
also suggests that there may in principle exist a connection between some SOC ‘s and the concept of topological

quantum computing.
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I. INTRODUCTION

Self-organized criticality (SOC) [1] is rightfully considered
by many to be a very fundamental phenomenon. SOC found its
applications in geophysics [2], neuro- [3,4] and evolutionary
[5] biology, cosmology [6], and astrophysics, [7] collective
human (traffic flow [8], stock markets [9]) and animal [10]
behavior, cellular automation [11,12], and many other areas
of modern scientific research [13,14]. Previous investigations
have firmly established several distinct conditions for and
properties of SOC [14], which we discuss first.

In Ref. [14], SOC has been given another, yet more defini-
tive name of slowly driven, interaction dominated threshold
systems. Expanding on this definition, SOC is observed in
highly nonlinear systems, which possess large number of
metastable states and which are driven by slow external
stochastic noise. The noise pumps the energy into the system,
which thus must also be capable of damping the excess energy,
i.e., the system is dissipative. What has been just said can be
reformulated into the two following conditions for the SOCs
that are thus expected to appear in

(C1) stochastic nonlinear dissipative systems with large
number of metastable states, when

(C2) the external noise is ‘“slower” than the internal
processes (scale separation principle).

SOCs possess a unique set of properties. The most impor-
tant of them are the following three:

(P1) The time evolution is an infinite sequence of jumps
between metastable states, i.e., of avalanches,

(P2) with algebraic correlations (criticality),
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(P3) which persist on moderate variations of the system’s
parameters (self-tuning).

It is not known yet if there exists a mathematical construc-
tion that starts with conditions (C1) and (C2) and reproduces
properties (P1)—(P3). In this paper, it is proposed that such
construction does exist and is known under the name of
Witten-type topological field theories (W-TFT). A generic
SOC state must be identified as a W-TFT with spontaneously
broken Becchi-Rouet-Stora-Tyutin (BRST) symmetry.

The idea that a theory of SOCs must possess fermionic
symmetries is not new. One of the known members of the
SOC family is spin glasses. [15] The glass phase of spin
glasses, which is always critical, was identified [16] as the
supersymmetry (SUSY) broken state of an N =2 SUSY
theory, obtained from Parisi-Sourlas-Wu quantization of a
Langevin stochastic differential equation (SDE). Moreover,
the N =2 SUSY theory of self-organizing systems has also
been proposed [17], again based on the stochastic quantization
of Langevin SDEs. At the same time, it is understood that a
generic SOC system corresponds not to a Langevin SDE but
rather to a general form SDE. Here, the Parisi-Sourlas-Wu
method is applied to general form SDEs, which is seemingly
the only original part of the paper. For its most part, however,
the paper is merely a collection of already established results,
compiled into a physical picture, which we believe stands
behind all SOC phenomena.

We begin in Sec. II with the discussion of a physical
difference between Stratonovich and Ito interpretations of
SDEs. We show that the scale-separation principle of SOC un-
ambiguously suggests Stratonovich interpretation. In Sec. I1I,
we demonstrate that the corresponding Parisi-Sourlas-Wu
stochastic quantization leads to a (pseudo-Hermitian) model
with a BRST-exact action, i.e., to a W-TFT as discussed in
Sec. IV A. In Sec. IV B, we discuss the localization principle
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and the need for a mechanism that breaks the BRST-symmetry
and liberates SOC dynamics. In Sec. IVC, we show that
this mechanism is instantons that in the context of SOC
are essentially the avalanches. In Sec. IVD, we speculate
that BRST-symmetry breaking must occur in full-dimensional
regions of the SDE’s parameter space. In Sec. V, we switch to
higher-dimensional SDEs and bring up the standard argument
that the low-energy, long-wavelength part of the liberated SOC
dynamics is the Goldstone Fadeev-Popov ghosts, which are
gapless and thus are responsible for the critical distribution
of avalanches (instantons). We argue that the “self-tuning”
property is in the possibility to moderately vary the SDE
parameters without hindering all the above reasonings. In
Sec. VI, we make a few remarks on the proposed scenario.
We conclude in Sec. VII.

II. SOC AS SDE

A. Physical meaning of SDE

Condition (C1) in the Introduction is essentially the
statement that the natural starting point for the studies of
SOC’s are nonlinear dissipative SDEs. Consider an SDE for
N stochastic variables:

%' (1) + Al(p) = §'(1), (D

where i =1...N, A’ = Ai(¢) is the vector field, which
could be called the grift term, and £ is the stochastic noise.
Metastable states correspond to the critical points of the drift
term. Consequently, for SDEs representing SOC systems there
is a large number of critical points #{o|A’(¢y) = 0} > 1.
This is yet another way of saying that the system under
consideration is highly nonlinear.
The drift term can also be given as

A =Vit A, 2)

where the Langevin part can be defined via a potential, V,
V' =80V, V.,; =dV/d¢’ (the summation over the repeated
indices is assumed throughout the paper), and the nonpotential
(magnetic, Hamilton) part, A’, is such that A"/ = §/FAl, =
—AJ", For the arguments of this section it suffice to consider
the Euclidian target manifold. In the following sections, we
will generalize the discussion to Riemannian target spaces.

That the system is dissipative suggests that V' is nonzero.
The potential part of the drift term is responsible for the
tendency of the open SOC system to dissipate its energy
into a reservoir and minimize the potential V, while the noise
stochastically pumps the energy from (yet another) reservoir.
The dynamics represented by Eq. (1) has the physical meaning
of a stochastic energy flow through a (highly nonlinear) SOC
system from an energy source to a drain.

The stochasticity comes into the system only from the
source. This assumes that we have already out-integrated the
drain’s degrees of freedom. A drain reservoir with a memory
canin factintroduce a temporal nonlocality into the SDE. In the
lowest order approximation this must have the following form:
Al [T Mi(t — ')Al (¢(1")), where M could be called a
memory kernel. The kernel has a certain characteristic time,
Ad,M;(t —t') > 0as (t —t')/Ly — o0. In our interpretation
of the scale separation principle, A, is (one of) the shortest
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time-scales of in the problem. Under this condition, one can
always work on a scale much larger than A,;, on which the
drain reservoir is memory-less and is rightfully represented as
the Langevin part of Eq. (2).

Note that, the source reservoir’s noise, £, may not necessar-
ily be temporarily local (white). In particular, our argument
toward Stratonovich interpretation of the SDE in the next
subsection does not rely on the assumption of the whiteness of
the source noise.

For many (if not all) systems identified as SOC, the
nonpotential part of the drift term is also nonvanishing.
Therefore, we are interested in cases when both V £ 0 and
A’ = 0. Throughout the paper we refer to this situation
as to a general form SDE as opposed for example to the
case of Langevin stochastic differential equation, A’ =0,
corresponding to Witten model [18], which is the (0+1)-
dimensional beginning of all the W-TFTs.

B. Stratonovich vs. Ito interpretations of SDE

SDE:s can be treated on field-theoretic grounds. At this, the
quantization procedure depends of the interpretation of the
stochastic noise. There are two major choices: Stratonovich
and Ito interpretations. They are related, respectively, to
the stochastic quantization procedures of Parisi-Sourlas-Wu
[19-21] and of Martin-Siggia-Rose [22]. The choice depends
on physical conditions. In this section we show that the
scale separation principle [condition (C2) in the Introduction]
unambiguously suggests the Stratonovich picture.

Consider the discrete version of Eq. (1) [23]:

(Plee —0) /e +[1 DAL +EA] =8, B

where time now takes on discrete values separated by €, the
noise on the right-hand side (rhs) should be thought of as that
acting during time interval [#,¢ + €], and ¢ is the parameter that
essentially represents the speed of noise in comparison with
that of internal processes, e.g., of equilibration. Indeed, when
the system is slower than the noise, it does not have enough
time to adjust its variables to the noise before noise changes
considerably. Therefore, the infinitesimal change in ¢, within
each time step [, + €] must be determined by the earliest
value of A’, i.e., by Al. Consequently, fast noises correspond
to the Ito case with ¢ = 1.

In the opposite case of fast system, the Stratonovich
choice of ¢ = 1/2 is natural. The infinitesimal change in ¢ is
determined by Al “averaged” over the time-interval [, + €],
or rather by its value in the middle of [f,7 + €], i.e., by
(Al + Al)/2 [24]. This essentially means that the system
has enough time to adjust its variables to the noise, before the
slow noise changes considerably.

The only statistical partition function in the model is that
of the noise:

Z=/wamm @)

where P is the noise distribution function. If we impose
periodic boundary conditions on ¢, however, the numbers of
¢,’s and &,’s will be the same. In this case the partition function
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can be rewritten as a path-integral over ¢’s instead of £’s by
the appropriate variable transformation:

z5¢ / [d1J(©)PIE@)], 5)

where & (¢) is the left-hand side (lhs) of Eq. (3) and the Jacobian
of the variable transformation, J(¢) = |0&,/0¢y|, is

Do 0 0 ... 0 Nyp
No Do 0 ... 0 0
0 N. Dy ... 0 0
J@) =\, . . . e
0 0 0 Dr_e 0
0 0 0 Nr_« Dr

with D, = €187 + (1 — O)Al; and N, = —e 78" + ¢ Al

Note that noise is typically assumed Gaussian and physics
contained in Eq. (4) is trivial. On the other hand, Eq. (5)
has appeared from Eq. (4) by the formal redefinition of the
variables. Therefore, if the physics of Eq. (5) is not trivial this
can only be blamed on the nontrivial topology (e.g., not one-to-
one) of the highly nonlinear and nonlocal map', ¢ : £(t) —
@' (¢). This is the first indication on the topological nature of
the Parisi-Sourlas-Wu stochastic quantization procedure, the
core of which as compared to Martin-Siggia-Rose procedure is
in “not forgetting” the Jacobian of the variable transformation.
The physical justification for this appreciation of the Jacobian
follows.

On taking the continuous limit one obtains (up to a e-
dependent constant)

— T i T f
J(@) S -0 504, _ gt L0, (6)

For Ito interpretation, when ¢ = 1, the first term in rhs of
Eq. (6) is a constant. Furthermore, one can assume that due
to the tendency of the system to minimize the potential, it

spends most of its time in the region(s) where A}, = V'/; > 0.
T—oo

Therefore, f[T:O Afi — +00, the second term is negligible,
and one sets J(1) . Consequently, if the noise is fast
one can neglect the Jacobian.

The scale separation principle, however, suggests that for
SOCs, the Stratonovich interpretation of stochasticity is more
appropriate. Recall that in the sand-pile model, before one adds
yet another grain to a random site, he has to time-propagate
the system until it finds a new metastable state. Among the
physical examples are the earthquakes which are instantaneous
when compared to the slow process of the tension build-
up in the earth crust due to the plate tectonics, while the
relatively long periods of (quasi)equilibrium in the punctuation
theory of the biological evolution are followed by sudden
reconfiguration. Therefore, for the studies of SOC we must
use Stratonovich interpretation of SDEs and keep the Jacobian
with ¢ = 1/2.

'In the high-energy physics nomenclature, such variables’ transfor-
mations are known as Nicolai maps.
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One may expect, however, that for realistic situations ¢ is
not exactly 1/2. To see how ¢ > 1/2 can change our story it
is convenient to rewrite the Jacobian as

@) = eIy, )

where Jp = 2sinh[(1/2) ftT:() Afi] can (and will be) repre-
sented as a path integral over additional fermions (ghosts) with
periodic boundary conditions (see below). ¢ > 1/2 explicitly
breaks BRST symmetry of the model.” The ghosts become en-
ergetically more costly due to the additional term (¢ — 1/2)A,
in the Lagrangian. This may lead to considerable changes
in the low-energy dynamics even for small { —1/2 < 1.
Therefore, the Stratonovich interpretation of SDE is of cause
an approximation. It describes a hypothetical SOC system,
for example a numerical model, for which the noise can be
assumed infinitely slow. Having said that, we always assume
¢ = 1/2 in the rest of the paper.

So far we did not yet specify the noise weighting
function, P. From previous discussion, a reasonable approxi-
mation for P of a slow noise would be a temporarily non-local
Gaussian with considerably large noise-noise correlation time,
As. At the same time, in the following sections we will use
white noise as a driving force (A; — 0). This may seem a
contradiction with the scale-separation principle. There is no
contradiction though. One can straightforwardly generalize
the developments in the following sections to the temporarily
nonlocal noises, which, however, will turn out later to be an
unnecessary complication. The point is that we can always
rescale time t — Af so that A, — A;/A — 0 [25]. From this
perspective, the scale separation principle is solely in the
choice of the appropriate stochastic quantization procedure.

III. PARISI-SOURLAS-WU QUANTIZATION OF SDE
A. Path-integral approach

Let us now proceed with the case of Gaussian white noise
and with the Parisi-Sourlas-Wu quantization [26] of Eq. (1),
applicability of which is based on the appreciation of the
importance of the Jacobian corresponding to the Stratonovich
interpretation of SDE in the previous section. The partition
function is

Zz = /[ng]JPe_sz:on/KiK//z, ®)

where K' = 8,¢' + A" and G = (G;;)" is the noise-noise
correlator,

(E®E ) =GVt — 1), ©)
which for now is assumed to be independent of ¢ (see below
for the covariant generalization). One can always think of G;;
as of the metric of the target manifold as long as A’ is arbitrary.
In other words, there is no Riemannian structure on the target
manifold yet, and Eq. (9) could as well play the role of the
metric. It will be seen later that it actually does play this role.

The Jacobian can be represented as the path integral over
the fermionic Fadeev-Popov ghosts according to det M =

The explicit breaking of supersymmetry is also known in high-
energy physics as soft supersymmetry breaking.
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f [dx1ldx] exp(XiM; x7). Furthermore, one can employ the
Legandre multiplier, B;, which is the dynamical conjugate to
¢. The partition function now is

Z = /[d@]e’s, (10)

where ® represents all the fields, and the action S = ftho L is
defined by the Lagrangian

L=iBj(K'—iG"B;/2)— % (d:x' + Al,x’). (1)

The periodic boundary conditions are imposed on all the fields.
In case of ghosts, these conditions are needed if the fermion
determinant is to represent the Jacobian.

The model enjoys the global nilpotent fermionic BRST
symmetry (Q symmetry) [27] given by the infinitesimal
operator

o= Y, [dwsisdor+isaspnm. a2
t
so that @S = {Q, S} = 0. Importantly, the action is Q exact:
S ={Q,V},

(13a)
where

T
xp:/ Xi(K' —iG"B;/2), (13b)
=0

is known as the gauge fermion. Q-exact action is a unique
feature of W-TFTs. It looks like the whole action is nothing
else but the BRST gauge-fixing term. In Ref. [28], this was
identified as the “quantizing zero” situation.

From the field-theoretic point of view, a more appealing
derivation of Eq. (13) is based on the philosophy that the SDE
itself can be looked upon as the gauge choice for the two
“independent” stochastic variables—¢ and &:

Z= / [dol[dE1[dx1[dx]e fmo Oos'E' /20 (14)

where dots denote the gauge-fixing Q-exact term,
{Q, ftlo #%i(K' — &)} [here Q has the form (12) with i B; —
G;;&’]. By noticing that G;;§°67 /2 = {Q, x;£'/2} is also Q
exact and by formal redefinition, & i 5 iGYB j, ONE IeCOVers
Eq. (13).

Moreover, the above Parisi-Sourlas-Wu quantization can
be generalized to the cases when the noise-noise correlator
(the metric of the target manifold) is dependent of ¢, G/ —
G'(p). The Batalin-Vilkovisky procedure must be used to
come up with the same Q-exact action (13) [27,28]. At this,
however, the Q operator (17) will acquire a more intricate
form, which accounts for the curvature of the target manifold.
The detailed explanation of the corresponding quantization
procedure and the appropriate form of the Q operator can be
found in Appendix A.2 of Ref. [28], where the only adjustment
to our case needed to be done is GV V,; — A'.

After the covariant generalization, Eq. (13) represents a
very general (0+1) SDE, which is quantized stochastically
by the Parisi-Sourlas-Wu method in accordance with the
Stratonovich interpretation of the slow noise.

PHYSICAL REVIEW E 83, 051129 (2011)

B. Schrodinger picture

Let us turn now to the Schrodinger picture. The statistical
(Euclidian) partition function (14) can be given through the
Hamiltonian function as

z— /[d©]eﬁio(inwiﬂ,w‘+inx,-‘r),x"—H)’ (15)

where 7’s are the canonical momenta, which on passing to
the Schrodinger picture 7, — —id, and 7w, — —id,:. From
Eqgs. (15) and (11) we identify 7, = —B; and ,i =i, so
that in flat coordinates

H=—NA/2—[A3,1:/2+ Alj[8,:.x71-/2.  (16)

where A = 8,:G"9,, is the Laplacian. The choice of the
operator ordering in the second term of Eq. (16) is standard.
The operator ordering in the last term has direct connection
to the Stratonovich interpretation of the noise of the SDE.
Have we been considering “faster”” noises, we would have to
use ¢ Al x/ — (1 — ¢)A!; x70,: instead of the last term in
Eq. (16), that is we would have to add ({ — 1/2)A!; to the
Hamiltonian. [c.f., Eq. (7)]
The Noether charge associated with the Q symmetry is

Q=—iBix' — x'd,., (17)

which is nothing else but the exterior derivative on the target
manifold. This is so far the second explicit revealing of the
topological nature of the model. As it should, the charge is
nilpotent, Q2 = 0, and commutative with H.

The Hamiltonian can also be given as

H ={0,0}/2, (18)
where
0= 5G(GYB; +2A") — 8,,(—=GYd,; —24"). (19)

In nonflat coordinates, the Hamiltonian is again an anticom-
mutator (18), while explicitly

H=-A2—Lu, (20)

where the Laplacian is given by the Weitzenbock formula
that includes four-fermion coupling through the Riemann
curvature tensor, L4 is the Lie derivative along A’, and
0 = *Q » —2i(A") with % and i(A’) denoting the Hedge
operation and interior multiplication by A‘.

The Hamiltonian Eq. (20) has a very clear physical
meaning. The first term is the quantum mechanical “smearing”
(dispersion) of wave functions, which are p forms from the
(complexified) exterior algebra of the target manifold. The
intensity of the dispersion is determined quantitatively by
the “magnitude” of noise-noise correlator, ||G¥/|| ~ temp,
which thus has the meaning of noise temperature. This is
the essence of the stochastic quantization, the stochasticity
takes the form of the quantum mechanical fluctuations. In
the classical “low-temperature” limit [29], one is left with
a nondispersive classical flow of p forms along the drift
term, A‘.

Hamiltonian (20) is not Hermitian with respect to the
conventional metric in the Hilbert space [28,30]:

(@lf) = / (xa) A B, @
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where A is wedge product of p forms and the integration
is over the target manifold. All entries in the Hamiltonian,
however, are real. Therefore, the Hamiltonian can be looked
upon as an infinite-dimensional real matrix. The spectrum of
such Hamiltonian consists of real energies or pairs of complex-
conjugate energies. This means that the Hamiltonian is pseudo-
Hermitian [31] and there must exist such Hermitian, invertible
n that

HY'=nHn . (22)

Model (13) is a pseudo-Hermitian quantum mechanics [31,32]
with 1 being the metric of the Hilbert space

((ol¥)) = (@ln). (@ = (In. 1Y) = [¥),  (23)

preserved by the Schrédinger evolution:

i9:((pl¥)) = ((p|H —n~"Hnly)) = 0. (24)

For Witten model, ny = e*V. In fact, Witten model is a
quasi-Hermitian quantum mechanics. The eigenvalues of
its Hamitonian are all real, since n‘%zH n;[,]/ ? is Hermitian
(such transformation brings Eq. (20) to its conventional form
appearing in the literature). For a general form SDE, 7 is very
non-trivial and highly non-local, and the energies are complex.
The anticommutator form of the Hamiltonian (18) is that
of the N =2 pseudo-supersymmetric (P-SUSY) quantum
mechanics [33], with the following operator algebra:

Ho = {Q0,0§}/2,03 = [Hy, Qo] = 0,

(Q5)? = [Ho, 051 =0,

and Qg = n_ngn is the pseudo-Hermitian conjugate to
Qp. In order for the P-SUSY to be unbroken, the operator
algebra (25) must be complemented with the ground state(s)
such that

(25a)

(25b)

0010)) = Q§10)) = 0. (26)

N =2 P-SUSY is twice larger than the Q symmetry. It
is a combination of Q symmetry and yet another fermionic
pseudo-anti-Q symmetry related to Q by the pseudo-time-
reversal conjugation (n7 conjugation).

In the general case, however, model (13) does not possess
the pseudo-anti-Q symmetry. Indeed, O, which is supposed
to play the role of Qg, is neither nilpotent nor commutes with
H. With O for Qé, the operator algebra Eq. (25b) fails. For
example, in flat coordinates

(0) = 2F{GY8,:8,; #0, 27)

where F]’f = (Afj — A,’;)/Z is the “field tensor” of the nonpo-
tential (magnetic) part of the drift term.
If for FJ’ # 0 the N = 2 P-SUSY is present, it means that

(0)*,[H,Qllphys)) =0 (28)

are satisfied for all the (physical) states of the model. For
these situations, one can find such 7 that 9 = n~' Q5. These
situation may appear, for example, if A’ is a Killing or a
symplectic vector field [34,35]. There is no reason, however,
to believe that this is true in general. Below we will argue
that in the SDE’s parameter space there must exist region(s)
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with explicitly broken N =2 P-SUSY (together with the
spontaneously broken Q symmetry).

In the rest of the paper we use the path-integral represen-
tation of the pseudo-Hermitian quantum mechanics. This is
advantageous for the reason that finding the exact form of
the metric, 7, is a complicated task and one should avoid 7
whenever possible. Fortunately, the metric is automatically
incorporated into the path integrals and one must not worry
about its explicit form [36].

IV. SDE AS W-TFT

A. Conditions for W-TFT

To identify a theory as a W-TFT, one needs [28]:

(i) a Z,-graded nilpotent fermionic Q,

(ii) a Q-exact action,

(iii) a Q-invariant path-integral measure, and

(iv) a Q-closed ground state(s) [37], which assures that the
Q symmetry is not spontaneously broken.

These conditions suffice to establish a unique set of proper-
ties of W-TFTs [28]. In particular, one can introduce a “metric”
for time: dt — e(t)dt, and in case of higher-dimensional
theories the metric for spatial dimensions, g (our case is lacking
Lorentz invariance and e and ¢ should not be combined into
a space-time metric). In result, the gauge fermion acquires
explicit dependence on e and g: ¥ — W(e,2). The topological
nature of W-TFTs is seen through the (e,g) independence
of (now we consider 7 — oo limit corresponding to the
field-theoretic interpretation of the path-integral):

((0]TAB...|0)) = /[d@]e‘[Q’W]AB..., (29)

where A,B... are Q closed, i.e., {Q,A},{Q,B}... =0, and
T denotes chronological ordering. Indeed, the functional
variation with respect to, e.g., e():

5
Se(1)

where y,(t) = —8W/8e(t). The last equality can be proven by
partial integration (Q is a differentiation operator) and holds
only if the ground state(s) obey (in the Schodinger picture)

010)) = Q|0)) =0, &1V

with O = n~' Q. We see that this condition [and/or con-
dition (iv) above] is actually that for the unbroken N =2
P-SUSY (26).

We cannot speak with certainty that the breakdown of
N = 2 P-SUSY always tailors the spontaneous breaking of Q
symmetry. There may exist situations when Q10)) = 0, while
0F|0)) = 0. Such situations are at least exotic. We omit these
exotic situations in this paper and think of the two symmetry
breakdowns as of equivalent.

In fact, the proof of that the Q symmetry is unbroken is
a subtle and complicated part of W-TFTs [30,38]. Therefore,
we find ourselves now in a fortunate position that the O-
symmetry breaking is actually what we are looking for. To
demonstrate the breakdown of the Q symmetry of Eq. (13)
it suffices to establish, for example, the T dependence of the
partition function. Indeed, the partition function is one of the
topological invariants (29) with AB... being a unity operator

((OITAB...|0)) = ((0IT{Q,y.(t)}AB...|0)) =0, (30)
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that is obviously Q closed. This suggests that Z of a true
W-TFT is time-deformation invariant and thus 7" independent.
On the other hand, model (13) definitely satisfies conditions
(1)—(iii) above so that the spontaneous Q-symmetry breaking
is the only possible source for the 7 dependence of Z of
otherwise rightful W-TFT with T-independent Z.

B. Localization principle

Let us turn now to the (lowest-order) one-loop study of
partition function. Consider the case of low temperatures
(IG7|] < 1) so that A’ is very “pronounced.” The major
contribution into the partition function comes from the lowest
energy states that cluster around critical points of A (the
metastable states of the SOC). This can be seen by out-
integrating the Legandre multiplier, B:

Z= /[qu]e_ftio K'Gij K/ /2+fermions (32)

The contribution is that from the fluctuations around the
stationary paths, ¢[,(t) = ¢,,, so that

Zlter = 3"z, (33)

Z, can be calculated in the locally Euclidian coordinates, 8¢',
in which the Gaussian part of the action is

T P
SO — / o' D_DLY 597 )2+ 3 DU xD),  (34)
=0

where D = 8, +a,D_ = —9, + a” with a” being Afj((pa)
in the 8¢ coordinates. The Gaussian integration leads to the
bosonic and fermionic determinants:

Z, = Dy |/ID_Dy |V (35)

Introducing temporal Furrier components, e.g., §¢' =
Yoo 89 (e’ w, = 27n/T, one gets

n=—00
-~ A A~T 1/2
Zy = Bylal/1aa"|"?,

=Tt

pot (|02 + a2||w2 + (@7)?

[x]

I

To simplify further this expression one notices that since a
is real, its eigenvalues, a;,i = 1... N, are either real or come
in complex conjugate pairs, and that the set of eigenvalues of
al =alis a’,i =1...N. Therefore, the sets of eigenvalues
and consequently the determinants of ? + a2 and w? + (a7)?
are the same. Hence, E, = 1 and

Zy = (=1,

where A, is the number of real negative e,’s. (—1)%« =
sign|A’j(gpo,)| = ind,, is known as the index of the critical point,
and

Z(1-loop) _ Zindo,, (36)

o

is the Euler characteristic of the target manifold according to
the Poincaré-Hoft theorem. Hence, on the one-loop level, the
fluctuations leave the Q symmetry intact as is seen from the 7
independence of Eq. (36).
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The reason for bringing the reader’s attention to the one-
loop calculation that does not break the Q symmetry is twofold.
Firstly, Eq. (36) is yet another explicit demonstration of the
topological nature of the model. Secondary, it reveals the
tendency of ghosts to compensate for bosonic fluctuations.
Up to one-loop, the ghosts completely cancel fluctuations in
the bosonic fields which means that so far the model has no
dynamics. This compensation is known in the literature as the
localization principle. As the name suggests, the path integral
is “localized” to classical solutions of the SDE. Stationary
solutions at critical points is one class of classical solutions.
The other class is instantons (see next subsection).

From the physical point of view, the meaning of the
localization principle is that the slow noise does not provide
the system with “frequencies”. In result, the dissipative SOC
system does not fluctuate.

For Witten model, the one-loop approximation is known to
be exact from the perturbative point of view. For a general
form SDE, however, higher-order fluctuational corrections
may in principle break the Q symmetry (anomalously in that
sense that perturbatively provided corrections possess lower
symmetry than the original action).® However, even if the
fluctuations leave the symmetry intact, it can still be broken
by instantons [28,30,38,39]. In fact, instantons is the primarily
source of the @-symmetry breakdown as we discuss in the next
subsection. In particular, instantons break the QO symmetry
even of Witten model itself, when the Euler characteristic of
the target manifold is zero [28]. It is the instanton-induced
Q-symmetry breakdown which we identify as an SOC and
which we are interested in.

C. Meaning of instantons and their role in Q-symmetry
breaking

The SOC dynamics can be described as follows. The
system spends most of its time in its metastable states, while
the time evolution is an infinite sequence of sudden jumps
(avalanches) between the metastable states. In our terms, the
metastable states are nothing else but the perturbative ground
states (PGS), |a)), around critical points of A’. The “jumps”
between different PGS’s are the processes of the quantum
mechanical tunneling, which are called instantons. Therefore,
in the application to the SOC systems, instantons are nothing
else but the mathematical term for the avalanches.*

Instantons, in a sense, are the opposite of the fluctua-
tions. The processes of quantum mechanical tunneling are

3There is a reason to believe, however, that this is unlikely. Indeed,
perturbative corrections can be calculated by Taylor expanding the
exponent in the path integral with respect the non-linear part of the
action, which is Q-exact, and averaging over the Gaussian part of the
action. This corresponds to averaging over the one-loop ground state,
which does not break Q-symmetry due to the localization principle.
Such averages must vanish (c.f., Eq. (30)), so that Z, is still T-
independent and thus Q-symmetry is pertubatively stable.

“To be more specific, an avalanche is actually an instanton-
antiinstanton (antiinstanton-instanton) pair, during which the system
jumps between two PGS’s of the same index, i.e., with the sane
number of ghosts. On passing, the system visits a PGS with an index
differing by one.
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exponentially weak as compared with the fluctuations. That
instantons are of low-energy means that they do not happen
often. The fluctuations are localized around critical points
unlike instantons which connect them. Hence, instantons are of
ultimate nonlinear character. In linear situations they simply
do not exist. This is yet another sense in which instantons
are qualitatively different from fluctuations. Furthermore, as
will be clear later from the discussion of higher-dimensional
models, avalanches are the only low-energy, long-wavelength
dynamics in the system. This is especially appealing for the
physical picture of SOCs.

The above picture of SOC makes sense only when the
critical points possess distinct PGS’s. In other words, when
the PGS’s do not overlap much. The overlap can be provided
by a sufficient “smearing” of the PGS’s due to large kinetic
energy. In the model under consideration, the kinetic energy in
Eq. (20) is determined by the noise temperature (the magnitude
of the metric G/). Therefore, for an SOC to occur (at least in
its recognizable form) the noise must not only be slow but also
weak.

The low-energy instanton dynamics can be defined by the
projection onto the reduced Hilbert space spanned by |a))’s
[28,30]:

Hep = {Q,Qlap/2,
Qus = ((@]01B)), Qup = ((«|QIB)),

where Q and Q are matrix elements of instantons and anti-
instantons. In the path-integral language,

o)) = / [dble I L, (37a)

where the functional integration is over the paths starting at
t = 0 at the argument of |«)) and ending at = +00 at ¢,.
The (pseudo)bra is accordingly

(al = [1aore ont, (37b)
where the integration is over the paths starting at t = —oo at
¢!, and ending at t = 0 at the argument of ({c|.

From Egs. (37), the instanton and anti-instanton matrix
elements can be given as

Qup = / [d®]QO)e™ =1, (382)

Qup = / [d®]Q(0)e™ b=~ T, (38b)
where the integration is along the paths connecting the two
critical points, ¢ (—00) = ¢/, and ¢'(4-00) = @j.

In the one-loop approximation, the matrix elements of
instantons can be found by Gaussian integration around
a qlassical solution connecting the two critical points,
0 @y(t) + A'lgpa(?)] = 0,¢5(—00) = ¢, ¢,(+00) = @5. As
in Sec.(IV B), the Gaussian integration can be done in the
locally Euclidian coordinates for ¢, so that

Qup = / [d®]Q(0)e ™", (39)
with S@ from Eq. (34). This time, however, operators D.

have explicit time dependence, e.g., ﬁ+ = 0; + a(pq(1)). If
the classical solution connects critical points with indices

PHYSICAL REVIEW E 83, 051129 (2011)

differing by one, inde = indf + 1, operator D, has one
zero mode. Indeed, due to the time-translation invariance, the
classical solution can be shifted in time (pél(t) — (pi,](t + 6t)
and still remain the classical solution. Differentiation of SDE
with respect to 8¢ results in 15+8,(pé,(1) = 0. This mode
corresponds to the infinitesimal shift of the center of the
instanton, which is called instanton modulus. Furthermore,
there is the corresponding ghost mode which decouples from
the fermionic action. Therefore, the path-integral contains an
integration over an unmatched Grassmann number. Such path
integral must be zero unless the matrix element is that of an
operator of ghost number 1. Q is such an operator and its
matrix element is nonzero.

Consider now a classical solution which connects critical
points with indices differing by more than one, e.g., ind(e) =
ind(B) + 2, represented by thin lines in Fig. 1(a). Such solution
can be though of as an instanton followed by yet another
instanton. Each instanton comes with its own modulus and
with the corresponding zero ghost mode. The path integral has
two unmatched Grassmann numbers. The matrix element of
the ghost number 1 operator Q is zero. Hence,

Qup # 0,ind(e) = ind(B) + 1. (40)

Similar reasonings apply to anti-instantons, which corre-
spond to the backward propagation in time. The Gaussian in-
tegration must be performed around a classical solution of the
“time-reversed” differential equation, a,gbél(t) — Al[@a()] =
O,q")él(—oo) = (pé,([)él(+oo) = cpjj. The anti-instanton analog of
Eq. (39) is

Qa,s — p2AVep=2 [ A'Gijdg} /[ddD]Q(O)e‘Sm, (41)

where AV,g = V(pg) — V(¢y) > 0 and A is the nonpotential
part of A [see Eq. (2)]. Now, it is D_ which has a zero mode
and the corresponding ¥ must be matched, which Q(0) actually
does so that

Qup # 0,ind(x) + 1 = ind(B). (42)

As compared to Eq. (39), Eq. (41) has two additional
elements. The first one is AVyg, which has the meaning of
the potential difference at two critical points. It provides an
anti-instanton with the exponentially weak tunneling factor.
The factor can be absorbed into the pseudo-Hermitian metric
of the reduced Hilbert space by the appropriate rescaling
of PGS’s: |a)) — V@), ((a] — ({(a]e”V®). In Witten
model, this will result in that Qs = @,ga. The other part,
[ A'G,;d@),, has the meaning of the (imaginary) phase
factor acquired by a particle moving in a vector potential,
A?, of a magnetic field. Due to this part, the matrix ele-
ments of instantons are different from those of the corre-
sponding anti-instantons even if we try to rescale |u))’s.
This imbalances instantons and anti-instantons. The hop-
ping (instanton—anti-instanton) evolution along A’ becomes
preferable.

Importantly, the integrant in Eq. (39) is Q exact: Q(0) =
—iB;(0)x'(0) = —{Q, x:(0)x'(0)}. An nonzero average of a
Q-exact operator, Eq. (40), is a direct indication on the
O-symmetry breakdown. Therefore, the Q symmetry is prone
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FIG. 1. (Color online) (a) Schematics representing an SDE’s drift
vector field, A?, and its critical points (circles) with their indices
given explicitly. Thick double-arrowed curves represent instantons
(classical solutions of SDE connecting two critical points). They
are complemented by the axillary thin vector lines which connect
critical points with indices differing by 2. The thick “reversed”
double-arrowed curves (given for only one closed path) represent
anti-instantons, which, as is explained in the text, have different
matrix elements from those of the corresponding instantons due to
the nonpotential (magnetic) part of A’. This imbalances instantons
and anti-instantons on time-reversed loops, e.g., the inner and outer
loops shown. Under certain conditions, this imbalance must lead
to instanton-induced spontaneous BRST-symmetry breaking. The
argument is similar to that of Anderson localization of a particle on a
random lattice. In the presence of a magnetic field, the constructive
interference of time-reversed hopping closed paths, which are respon-
sible for the localization, fails. (b) In the semiclassical approximation,
each instanton is a Gaussian path-integral around classical solution
of the SDE (thick center curve) connecting two critical points (¢,
and ¢g) at t = too. This solution has the so-called modulus—its
center. The variation in the modulus, e.g., ¢.(t) = @a(t £ 6t), does
not change the action of the instanton. This leads to the existence
of a zero-fluctuational mode, 8¢y(f) = 9,¢.(t). The corresponding
zero ghost mode decouples from the action and the path-integral is
zero unless this zero mode is matched. The matrix element of the Q
operator is nonzero because it also has an additional ghost operator
matching the zero ghost mode. By similar arguments, instantons
can only connect critical points with indices differing by 1 (in
case of anti-instantons, —1) as is seen from (a). (c) The qualitative
difference between excitation spectra of higher-dimensional theories
with unbroken (left) and spontaneously broken (right) Q symmetry.
The double curve on the left represents dispersions of supersymmetric
partners. The cone on the right represents goldstinos. The negative
energy states (shaded) are occupied and form a (gapless) Dirac sea.
The Dirac-sea ground state represents a quantum liquid of solitons
(textures, patterns) as explained in the text.

to be broken by instantons [39]. Thus, instantons (anti-
instantons) is the primarily candidate for the Q-symmetry
breaking. In fact, this effect is so pronounced that even
balanced instantons and anti-instantons of Witten model break
Q symmetry if the Euler characteristic of the target manifold
is zero [28].

The identification of A’ as a vector potential of a magnetic
field brings about the analogy with the problem of Anderson
localization (see Fig. 1). Originally, Anderson [40] considered
aquantum particle which lives on arandom lattice (the “lattice”
of the PGS in our case). The particle hops between the lattice
sites (instantons and anti-instantons in our case). Due to the
constructive interference between time-reversed paths, the
probability to stay at the same site is always greater than that
of traveling and if the conditions are right this leads to the
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localization (preservation of Q symmetry in our case). Once,
however, one introduces the magnetic field into the system,
the time-revered paths get imbalanced and the constructive
interference argument fails thus leading to the delocalization
(Q-symmetry breakdown in our case).

The conclusion of this subsection is as follows. If in the
low-temperature limit the @ symmetry is broken, it is most
likely due to the instanton—anti-instanton imbalance induced
by the nonpotential part of the drift term. The low-energy
part of the liberated dynamics is of instanton (avalanche) type
and from the mathematical point of view is described by the
low-energy ghost modes, which in turn represent moduli of
instantons (avalanches).

From the quantum-mechanical treatment, however, it is not
clear why the distribution of avalanches must be a power-law.
To see this one must turn to higher-dimensional theories as
we do in Sec. V. Before that, however, a few words on the
conditions for the Q-symmetry breakdown are in order.

D. BRST-symmetry breaking

An important question is when the spontaneous breakdown
of Q symmetry occurs. We do not have a satisfactory
answer to this question. We believe, however, that the answer
may have a lot to do with the interesting observation of
Ref. [41]. There, it was suggested and demonstrated with a few
examples that in P7 -symmetric pseudo-Hermitian quantum
mechanics the explicit breakdown of N = 2 P-SUSY is always
accompanied by a spontaneous breakdown of P7 symmetry.
The breakdown(s) occurs when the parameters of a model
reach some critical values and the pairs of complex-conjugate
energies appear. P7 -symmetric models [32] are a subclass
of pseudo-Hermitian 7 -symmetric quantum mechanics [31].
Therefore, it is reasonable to expect that the proposition of
Ref. [41] can be generalized to other n7 -symmetric models
such as the one under consideration.

That the n7 -symmetry breaking is needed in our case can
be seen again from the analogy with the Anderson localization
problem. In order to delocalize an Anderson particle one needs
to break the 7 symmetry (to imbalance 7 -reversed paths) by
the introduction of a magnetic field, whereas in our case one
needs to break the n7 symmetry by the introduction of the
magnetic (nonpotential) part of the drift term.

There is also a seeming indication on the necessity of
the appearance of complex energies for the existence of the
liberated dynamics. The point is that the Parisi-Sourlas-Wu
stochastic quantization leads to a “statistical” (Euclidian) par-
tition function. The operator of the quantum mechanical time-
evolution has the form of the propagation in imaginary time:

Uy=) e m){nl. (43)

where n numerates the levels and E, are their energies.
Imaginary time usually has the meaning of temperature.
On the other hand, we know that the time in the evolution
operator is the original time of the SDE and not a temperature
of any kind (temperature in our case is the metric of the target
manifold). Therefore, the time-evolution does not make a
conventional quantum-mechanical sense. Presumably, this
can be attributed to the absence of the propagating modes
and/or to the unbroken Q symmetry.
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When a pseudo-Hermitian Hamiltonian, however, pos-
sesses complex energies, E, — E, + i E,, the evolution op-
erator becomes

O =7 "5+ im)inl, (44)

which is now more of the taste of a conventional quantum
mechanical evolution. One can hypothesize that this is the
result of the liberated dynamics and/or of the spontaneous
breakdown of the Q symmetry.

The emerging picture is as follows. If we take a Witten
model with unbroken Q symmetry and start changing the
SDE’s parameters, we will eventually reach some critical
values at which @ and n7 symmetries will spontaneously
breakdown. This will be signified by the appearance of
complex energies of the Hamiltonian.

Disregard of whether the speculations in this subsection
are correct or not, it is natural to expect that SOC dynamics
is liberated from otherwise a rightful W-TFT in some low-
temperature full-dimensional regions of the SDE’s parameter
space. At least for N = 2 SUSY models of spin-glasses this
statement seems to be correct [16], and there is no reason for
the situation to be dramatically different in the more general
case of N = 2 P-SUSY.

V. HIGHER DIMENSIONS AND GOLDSTONE
CRITICALITY

The fact that the Q symmetry is spontaneously broken
suffice to establish the criticality of the avalanche dynamics.
All what is said for (0+1) theories can be generalized to higher
dimensions [42]. The generalization can be viewed as a limit
of an infinite-dimensional target manifold. Literally, the index
i is split into the spatial coordinates, x, and the coordinates of
the target manifold: ¢’ — ¢ (x).

The higher-dimensional counterpart of Eq. (1) is

%' (x1) + A'(p) = &' (x1), (45)

where A’(¢) is some functional of ¢’s and the Gaussian noise
correlates on the metric of the target manifold:

ExDE L)) = g7 ()8t — )8 (x —x).  (46)

After the Parisi-Sourlas-Wu quantization, the action is Q exact
and defined by the gauge fermion (13b) with the additional
integration over the spatial coordinates, x.

In situations when the Q symmetry is spontaneously broken
there must exist a local operator p(xt) such that

(({Q.p(x0)})) # 0. (47)

By the standard argument, there is a gapless Goldstone ghost
mode [38,43]. Consider the following average:

{(p(x1))) = /[dCD]p(xt)e*S- (48)

Under the path-integral we can make the space-time depen-
dent infinitesimal transformation of the fields 8. ®(x't’) =
e(x't"h{Q,d(x't")}. The average is not to be changed since
the transformation is merely the change in the integration
variables: §.(p(xt)) = 0 or

e(xn)(({Q,p(xn)})) = ((p(x1)8cS)). (49)
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By the Q exactness of the action:

8eS = [ ((ue)J")t), (50)

x't’

where index p combines space-time coordinates and J# is the
Noether current associated with Q. € can be chosen constant
within some arbitrarily large space-time volume, €2, such that
(xt) € 2, and € = 0 outside the volume. From Egs. (50), (49),
and (47) we get the integral form of the failed Ward-Takahashi
identity:

jg ((pxt)J*(x't")))n(x't"),, = const 0,  (51)
aQ't’)

where the integration is over the boundary of €2 and
n, is the unit vector normal to the boundary. As long
as 2 can be chosen arbitrarily large, the above equation
shows that ({p(xt)J*(x't'))) falls off algebraically as a
function of x’ —x and 7 —¢’. This happened due to the
existence of the gapless Goldstone ghosts (goldstinos), which
are “struggling” to restore the broken symmetry of the
vacuum.

The spectrum of excitations must look like the one given
in Fig. 1(c). Goldstinos must form a gapless Dirac sea
with negative energy states being occupied. Furthermore, the
would-be bosonic superpartners of goldstinos [upper curve of
Fig. 1(c)] must also be liberated from the fermionic symmetry
and in many cases of interest they must be gapped. Thus,
goldstinos (representing avalanches, see below) is the only
dynamics the system has in the low-energy, long-wavelength
limit.

In fact, p(xt) in Eq. (47) is the spatial density of ghosts
and due to the existence of the Dirac sea, ((p(xt))) # 0. In
Ref. [17], ({p(xt))) was identified with the entropy density. In
this manner, the spontaneous Q-symmetry breaking and the
appearance of the corresponding Dirac sea is related to the
concept of “entropy production”.

As in case of supersymmetric quantum mechanics [30], the
ghosts of PGS’s (which in the higher dimensional cases could
be called perturbative vacua) represent unstable directions of
A’ in the functional space of ¢(x). To find the ghosts of a
particular pertrubative vacuum, one must diagonalize the linear
operator [§A’ /8¢ (x")] at the static field configuration, ¢, (x),
of this perturbative vacuum. Those modes which have negative
real parts of their eigenvalues are occupied by the ghosts.

In cases of interest, the drift term functional A’ does not
explicitly depend on the spatial position x. Therefore, the fact
that a vacuum has ghosts most certainly implies that ¢, (x) is
spatially inhomogeneous. Such vacua could be looked upon as
textures, patterns, etc. They can also be called configurations
of solitons such as domain walls, vortices, etc. The actual
“Dirac sea” vacuum is a quantum mechanical superposition
of the perturbative vacua corresponding to various solitonic
configurations. In other words, the ground state(s) of an SOC
is a quantum liquid of solitons (textures, patterns).
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As compared to the case of quantum mechanics discussed
previously, higher-dimensional theories must have an impor-
tant new element. Critical points of the functional A’ are not
isolated [44]. Solitons could be thought of as instantons in
space (not time). Therefore, they also have moduli at least
due to the symmetries of the space. For example, if the
model is invariant with respect to translations in space, field
configurations obtained from a given ﬁ"ét (x),A (¢y) = O by all
the spatial translations, ¢ y(x) = ¢} (x + X), are also critical
field configurations for A’,A’(¢yx) = 0, and thus are also
candidates for a perturbative vacua. In this case, Bott-Morse
theory applies, [32] which states that the perturbative vacua
are from the cohomology of the modulii space of solitonic
configurations. For the soliton modulii of spatial translations,
this corresponds to the zero-momentum vacuum.

As we discussed before, the low-energy, long-wavelength
part of the liberated modes, which as we saw are the goldstinos,
must represent moduli of instantons (avalanches) connecting
different pertubrative vacua. Therefore, the algebraic corre-
lator of the gapless ghosts assumes critical distribution of
avalanches. We believe this is the essence of the criticality
of SOCs.

From discussion in Sec. IVD we know that in the
parameter-space of the SDE, the model has Q symmetry
spontaneously broken in regions of the same dimensionality
as the parameter space itself. Therefore, for any SOC we have
a freedom to moderately vary the SDE parameters leaving
the system at the Goldstone criticality. We believe this is the
essence of the self-tuning property of SOCs.

VI. DISCUSSION

In this section we would like to make a few remarks which
seem interesting:

(1) Previous studies of SOC used Ito interpretation of SDEs.
This approach led to the conclusion that SOCs are members of
the family of nonequilibrium phase transitions such as directed
percolation [45] captured by the Reggeon field theory [46].

Such approach certainly fails to explain the self-tuning
property of SOCs. The point is that on the phase-diagram,
i.e., the SDE’s parameter space, a conventional critical state
separates phases of different qualities and thus occupies
manifolds of lower dimensionality than the phase-space itself.
In other words, there is always at least one direction in the
phase space which leads the system off its criticality. The
picture proposed in this paper seems to resolve this issue by
explaining the criticality of SOC by the Goldstone theorem.
Note, that the Goldstone explanation of the “self-tuning”
property of spin-glasses is known for both the N =2 SUSY
approach [15,16] and replica trick approach [47].

(2) Viewing SOCs through the prism of conventional
critical states has yet another flaw—its relies significantly
on the renormalization group methods, which are essentially
perturbative. On the other hand, perturbative methods can
not be straightforwardly applied to avalanches (instantons),
which are inherently of ultimate nonperturbative nature. The
perturbation theory, however, can be meaningfully applied to
some collective variables [48—50]. In our case, such collective
variables are the instanton moduli or rather the corresponding
ghosts. The low-energy effective theory for the ghosts would
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provide instantons with a sort of dual fermionic description,
which admits perturbative treatment. This may be an advantage
of the W-TFT picture of SOCs.

(3) Soon after the introduction of the concept of SOC,
it was proposed that SOCs may only occur in the so-
called conservative models [14,51]. Whether the conservative-
nonconservative classification is accurate is still under debate
[52,53]. The proposed W-TFT picture of SOCs did not rely
on a specific form of the SDE. Hence, it may turn out that
the SOC family is bigger that it is believed now. Some other
order-out-of-chaos-type systems [54] (e.g., pattern formations)
may as well belong to the SOC family.

(4) The origin of the self-tuning property of the SOC rests on
the necessity to use the topological completion of the stochastic
quantization (Parisi-Sourlas-Wu quantization) due to the slow
noise. This can be paraphrased in an informal yet seemingly
accurate form: the criticality of SOC is “topologically”
protected.

(5) An important ingredient of all the W-TFTs is a set of
O-closed operators, from which one can construct topological
invariants (29). Typically, these operators are cycles of various
dimensionality in the base manifold and their explicit form
depends on the field content of a theory and/or on topology of
the target space.

The fact that the Q-symmetry is broken may lead to the
conclusion that these operators are not topological invariants
anymore and thus are useless. This is not quite so. The point
is that due to the localization principle, perturbative vacua are
still Q-closed (at least up to one-loop). Therefore, one can
use these operators for the topological classification of the
perturbative vacua. Having constructed such a classification,
one may introduce a refined SOC time-evolution of the system
as a sequence of jumps, at which the topology of the quantum
state of the system suddenly changes. In general, however, not
every physical avalanche connects states from topologically
different classes.

(6) In our opinion, one of the most interesting directions of
future investigations could as well be the search for a possibly
existing connection between SOC’s and the concept of fault-
tolerant topological quantum computations [55]. If it exists,
this connection would be exciting news not only for physicists
but also for neuroscientists.

(7) We find it very unorthodox, though adequate to think of
earthquakes as of fermions.

VII. CONCLUSION

In conclusion, let us sketch again the discussed scenario,
which we believe is a likely candidate for a theory of a generic
SOC behavior, and explicitly reveal the connections between
the conditions for and properties of SOCs outlined in the
Introduction. The condition of the slow external driving (C2)
leads to the necessity of using the Stratonovich interpretation
of noise in the stochastic differential equation representing
an SOC (C1). This necessitates the topological “completion”
of the stochastic quantization procedure (Parisi-Sourlas-Wu
procedure) and leads to a model with BRST-exact action—to
a Witten-type topological field theory. In the SDE’s parameter
space, there are full-dimensional regions, in which the BRST
symmetry is spontaneously broken and the SOC dynamics
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is liberated. The low-energy, long-wavelength part of the
liberated SOC dynamics represent avalanches (instantons)
(P1). The liberated SOC dynamics can also be viewed as
the Goldstone ghosts, which have no gap and thus are
responsible for the critical avalanche distribution (P2). The
BRST symmetry of the model and its breakdown, which
are the essence of the criticality, cannot be lifted by a moderate
variation of the parameters of the model. This is the essence
of the self-tuning property (P3).

To the best of our knowledge, so far Witten-type topological
field theories have only been of “internal” mathematical use
as a tool for the studies of the topologies of lower-dimensional
manifolds. The proposal of this paper suggests that
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Witten-type topological field theories may find their appli-
cations in many other areas of science that study various
realizations of self-organized criticality, e.g., in geophysics,
astrophysics, neuroscience, evolutionary biology, etc.
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