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Ballistic, diffusive, and localized transport in surface-disordered systems: Two-mode waveguide
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This paper presents an analytical study of the coexistence of different transport regimes in quasi-one-
dimensional surface-disordered waveguides (or electron conductors). To elucidate main features of surface
scattering, the case of two open modes (channels) is considered in great detail. Main attention is paid to
the transmission in dependence on various parameters of the model with two types of rough-surface profiles
(symmetric and antisymmetric). It is shown that depending on the symmetry, basic mechanisms of scattering can
be either enhanced or suppressed. As a consequence, different transport regimes can be realized. Specifically, in
the two-mode waveguide with symmetric rough boundaries, there are ballistic, localized and coexistence transport
regimes. In the waveguide with antisymmetric roughness of lateral walls, another regime of the diffusive transport
can arise. Our study allows to reveal the interplay between all relevant scattering mechanisms, in particular, the
role of the so-called square-gradient scattering which is typically neglected in literature, however, can give a
strong impact to the transmission.
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I. INTRODUCTION

The transport of quantum quasiparticles through thin metal
films and semiconductor nano-structures, such as nanowires
and strips, supperlattices and quantum-well systems, has been
a hot topic since more than four decades [1–9]. Nowadays, it is
known that transport properties of conductors with extremely
small cross sections, are substantially controlled by the scatter-
ing of electrons at random inhomogeneities of the conductor
boundaries [10–38]. Such mesoscopic guiding systems can be
typically modeled as surface-disordered waveguides.

Recent numerical studies of quasi-one-dimensional (quasi-
1D) surface-disordered systems [21,23,24] have revealed a
key difference from the standard models with impurity bulk
disorder. Specifically, it was found that transport through
waveguides with surface scattering essentially depend on
multiple characteristic lengths, in contrast with the conductors
with bulk scattering for which the single-parameter scaling
occurs [39]. According to the single-parameter scaling, all
transport properties of finite conductors with impurity random
potentials are determined by a single parameter: the ratio of
the conductor size to the localization length found for the
corresponding systems of infinite size. However, the transport
properties of surface-disordered waveguides are determined by
a nonisotropic character of scattering in the “channel space.”

As was established in pioneering studies of surface-
corrugated waveguides with a large number of conducting
channels, Nd � 1, (see, e.g., Ref. [40] and references therein),
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the mode-attenuation length Ln of the nth propagating mode
(or mean free path of the nth conducting channel) displays a
rather strong dependence on the mode index n. Specifically,
the larger the number n the smaller the corresponding mode-
attenuation length and, as a consequence, the stronger is the
scattering of this mode into the others. As a result, there
emerges the hierarchy of mode-attenuation lengths [8]:

LNd
< LNd−1 < · · · < L2 < L1. (1.1)

The smallest length LNd
belongs to the highest (last) channel

with the mode index n = Nd � 1, while the largest length L1

corresponds to the lowest (first) channel with n = 1. Because
of this hierarchy of lengths, a very important phenomenon
can arise, that is the coexistence of ballistic, diffusive, and
localized transport [23,24]. For example, for a conductor of
length L which is inside the set of lengths Ln,

LNd
< · · · < L < · · · < L1, (1.2)

the lowest modes can be in ballistic regime, however, the
intermediate and highest modes can exhibit the diffusive and
localized behavior, respectively.

Accordingly, for surface-disordered waveguides one can
state the following: (1) The average mode-transmittances
〈TM〉 can be very different for different conducting channels.
(2) All propagating modes are mixed because of intermode
transitions, therefore, the transmittance 〈TM〉 of any given
nth mode depends on the scattering into all modes. (3) The
total average transmittance 〈T 〉 of the waveguide contains the
imprint of all the average mode-transmittances and, therefore,
can exhibit an coexistence transport in which the phenomenon
of coexistence of different mode-transport regimes takes place.
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FIG. 1. (Color online) One realization of symmetric (top) and
antisymmetric (bottom) surface-disordered waveguides.

In this paper the above statements are quantitatively
validated by means of two special quasi-one-dimensional
(quasi-1D) models of two-mode waveguides with lateral
symmetric rough boundaries (SRB) and antisymmetric rough
boundaries (ASRB); see Fig. 1. The two-mode geometry is
chosen in order to discriminate their transport properties in the
most transparent way. Indeed, in contrast to the multi-mode
situation, the two-mode SRB waveguide represents a system
in which the conducting channels are independent. Here,
the attenuation of propagating modes is associated with the
scattering within the same mode only (intramode scattering).
Comparatively, the attenuation in the ASRB waveguide arises
due to the intramode scattering and due to the scattering of
waves from one mode into the other (intermode scattering).

The above two types of rough-surface profiles are very
useful to elucidate the role of each scattering mechanism. In
particular, these models allow us to reveal the relevance of
the so-called square-gradient scattering, which is typically
neglected in literature. It should be mentioned that the
interwall interference effects in SRB and ASRB multimode
waveguides were discussed in Refs. [25,31] and in much more
detail in Ref. [35]. Specifically, it was shown explicitly how
the transport properties change when the wall configuration
evolves continuously from symmetric to antisymmetric setup.
However, if to ignore the square-gradient scattering one may
come to conclusion that the interwall interference completely
suppresses the scattering by random walls due to specific
symmetry of the correlations. Our point is that in this case
one has to consider higher order terms of the perturbation
theory directly related to the square-gradient scattering.

Although main attention is paid to the conduction of
electrons, the results are also applicable to the propagation of
classical waves. The latter problem has even a longer history,
it naturally arises in the analysis of spectral and transport
properties of optic fibers, acoustic and radio waveguides,
remote sensing, shallow water waves, multilayered systems,
photonic lattices and so forth [4,40–43].

This paper is structured as follows. In Sec. II the geometry
and general statistical properties of the surface-disordered
waveguides are described. Here the Green’s function of the
waveguides and standard linear response formula are outlined,
which are used to obtain the transmittance (or dimensionless
conductance). Also, the formulas for mode-attenuation lengths
of waveguides are discussed in detail. In Secs. III and IV the
transport properties of the SRB and ASRB waveguides with

two propagating modes are analyzed. Here the expressions
for the mode and total average transmittances are derived.
The transport regimes of the total average transmittance are
then analyzed; one being the coexistence regime, in which the
coexistence of different mode-transports emerges. Finally, the
conclusions are presented in Sec. V.

II. GENERAL STATEMENT OF THE PROBLEM

A. Surface-disordered waveguides

This study considers open surface-disordered waveguides
(or conducting wires) of length L and average width d,
stretched along the x and z axes, respectively; for quasi-1D
geometry, naturally, L � d. Two different configurations
of the opposite boundaries result in the symmetric and
antisymmetric rough boundaries waveguides; see Fig. 1. The
SRB waveguide has inhomogeneities that are symmetric with
respect to its straight central guiding axis (dot-dashed line in
Fig. 1). Thus, the inhomogeneities give rise to the varying
width of the SRB waveguide. In contrast, the width of the
ASRB waveguide stays constant along the waveguide despite
the rough boundaries. Here the inhomogeneities are physically
equivalent to a weak bending of waveguide.

The lower and upper surfaces of the waveguides are
described, respectively, by the rough boundaries z = σξ (x),
and z = d ∓ σξ (x). The upper surface of the SRB (ASRB)
waveguide is indicated by the minus (plus) sign of the symbol
“∓.” Here σ is the root-mean-square roughness height, which
is assumed to be identical for both boundaries. Hence, the
waveguides occupy the region,

−L/2 � x � L/2, (2.1a)

σξ (x) � z � d ∓ σξ (x), (2.1b)

of the (x,z) plane. The random function ξ (x) describes the
roughness of the boundaries and is assumed to be statistically
homogeneous and isotropic, with the statistical properties of
zero mean and unit variance,

〈ξ (x)〉 = 0, (2.2a)

〈ξ 2(x)〉 = 1, (2.2b)

〈ξ (x) ξ (x ′)〉 = W(|x − x ′|). (2.2c)

Here the angular brackets represent the statistical averaging
over different realizations of the surface profile ξ (x). The
binary correlator W(x) decreases on the scale R with the
normalizationW(0) = 1, where R is the roughness correlation
length. Since lower and upper boundaries have the same rough
profile, the binary correlator (2.2c) describes the correlations
within each boundary, as well as the cross-correlations
between them.

B. Transmittance and Green’s function

The transport properties of the disordered waveguide will
be characterized by its transmittance or, equally, by its di-
mensionless [in units of e2/πh̄]conductance T (L). Within the
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standard linear response theory, as indicated by R. Kubo [44],
this quantity is expressed as

T (L) = − 4

L2

∫ L/2

−L/2
dx dx ′

∫ d

0
dz dz′

× ∂G(x,x ′; z,z′)
∂x

∂G∗(x,x ′; z,z′)
∂x ′ , (2.3)

where the asterisk (∗) denotes complex conjugation. The
retarded Green’s function G(x,x ′; z,z′) obeys the following
boundary-value problem [36]:

(
∂2

∂x2
+ ∂2

∂z2
+ k2

)
G(x,x ′; z,z′)

− Û (x,z)G(x,x ′; z,z′) = δ(x − x ′)δ(z − z′), (2.4a)
G(x,x ′; z = 0,z′) = 0, (2.4b)

G(x,x ′; z = d,z′) = 0. (2.4c)

Here δ(x) and δ(z) are the Dirac delta-functions. The wave
number k is equal to the Fermi wave number for the electrons
within the isotropic Fermi-liquid model. For electromagnetic
waves with both frequency ω and TE polarization, propagating
through a waveguide with perfectly conducting walls, k =
ω/c.

The equations (2.4) specify a Dirichlet boundary-value
problem, however, with two remarkable features: the “bulk”
scattering potential Û (x,z), and the flat boundaries of the
waveguide at z = 0 and z = d. These features emerge after
the coordinate transformation of the initial Dirichlet boundary-
value problem, in which there is no “bulk” potential while the
scattering is only caused by the roughness of the boundaries.
The idea of this method was first discussed by Migdal [45], and
has since been frequently used in theories of wave or electron
surface- scattering (see, e.g., Refs. [10,12,13,16,17,19,22,26,
27,30,33,34,37,38,46–48]). Various methods of mapping of
systems with disordered boundaries onto an equivalent system
with flat walls and distorted bulk have been discussed in
Ref. [25] in historical context with some references to relevant
earlier publications. The details of the application of this
method for “flattening” the rough boundaries of the present
waveguides, can be found in Ref. [36]. The form of the
potentials Û (x,z) for the specific waveguides used in this
study can be extracted from the aforementioned reference.
It should be stressed that this potential can not be treated as
a completely random potential and modeled, for example, by
random matrices. A close inspection of this potential shows
that random function ξ (x) enters the potential in a rather
complicated way, however, by no means, strong correlations
between matrix elements can not be neglected.

For a further discussion we have to indicate that an
approximate expression of the potential for the SRB waveguide
contains several terms that can be joined together in three
groups. These groups depend on σξ (x)/d, σξ ′(x)/d, and
σ 2ξ ′2(x)/d2,

Û (x,z) ≈ Û

[
σξ (x)

d
,
σξ ′(x)

d
,
σ 2ξ ′2(x)

d2
,z

]
. (2.5)

An exact expression for the ASRB waveguide contains other
terms, which, however, can be arranged in the groups that
depend on σξ ′(x)/d and σ 2ξ ′2(x)/d2,

Û (x,z) = Û

[
σξ ′(x)

d
,
σ 2ξ ′2(x)

d2
,z

]
. (2.6)

Here the prime to the function ξ (x) denotes a derivative with
respect to x.

As is typical, after the application of the Green’s theorem,
the problem can be reformulated in the form of the Dyson
equation. In order to perform the averaging of the Green’s
function, one can apply one of the well-known perturbative
methods. For instance, the diagrammatic approach developed
for surface-disordered systems [40], or the technique devel-
oped in Ref. [11] may be equally utilized. Both methods take
adequately into account the multiple scattering from rough
boundaries and allow one to formulate a consistent pertur-
bative approach with respect to the scattering potential. After
straightforward but cumbersome calculations (see Ref. [34] for
details), the following average Green’s function is obtained:

〈G(|x − x ′|; z,z′)〉 =
Nd∑
n=1

sin
(πnz

d

)
sin

(
πnz′

d

)

× exp[(ikn − 1/2Ln)|x − x ′|]
iknd

. (2.7)

Here Nd = [[kd/π ]] is the total number of the propagating
normal modes in the flat waveguide, which is determined by
the integer part [[. . .]] of the mode parameter kd/π . Due to the
quantization of the transverse wavenumber kzn = πn/d, the
quantum value of the longitudinal wavenumber is given by

kxn = kn ≡
√

k2 − (πn/d)2, n = 1,2, . . . ,Nd. (2.8)

All other waveguide modes with n > Nd are evanescent with
imaginary values of kn, and do not contribute to the transport
properties. The average Green’s function (2.7) differs from the
unperturbed one, in the appearance of the mode-attenuation
length Ln.

C. Mode-attenuation length

The mode-attenuation length (or electron total mean free
path) Ln describes the scattering from the nth propagating
mode into the others. From general theory of quasi-1D scat-
tering systems it follows that the mode-attenuation length is
determined by the backward L(b)

n , and forward L
(f )
n scattering

lengths [40],

1

Ln

= 1

L
(b)
n

+ 1

L
(f )
n

. (2.9)

In accordance with Ref. [36], both backward and forward
scattering lengths consist of two fundamentally different
partial lengths. One of these partial lengths is related to
the amplitude and gradient mechanisms of surface scattering,
whereas the other partial length is associated with the square-
gradient mechanism [the connection between these partial
lengths and the scattering potential Û (x,z) is discussed below].
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Therefore, backward and forward scattering lengths are
given by

1

L
(b)
n

= 1

L
(A,G)(b)
n

+ 1

L
(SG)(b)
n

, (2.10a)

1

L
(f )
n

= 1

L
(A,G)(f )
n

+ 1

L
(SG)(f )
n

. (2.10b)

The partial lengths associated with the backscattering read

1

L
(A,G)(b)
n

= σ 2

d6

Nd∑
n′=1

Ann′

knkn′
W (kn + kn′), (2.11a)

1

L
(SG)(b)
n

= σ 4

d4

Nd∑
n′=1

Bnn′

knkn′
S(kn + kn′). (2.11b)

The partial lengths associated with the forward scattering are
similar to the backward ones but with the functions W and S

depending on the argument kn − kn′ , i.e.,

1

L
(A,G)(f )
n

= σ 2

d6

Nd∑
n′=1

Ann′

knkn′
W (kn − kn′), (2.12a)

1

L
(SG)(f )
n

= σ 4

d4

Nd∑
n′=1

Bnn′

knkn′
S(kn − kn′). (2.12b)

Factors Ann′ and Bnn′ depend upon the type of symmetry
exhibited by the opposite rough boundaries of the waveguide.
Below, they are discussed and, in Table I, their values
are explicitly shown for the SRB and ASRB two-mode
waveguide.

The equations (2.11) and (2.12) contain two different
spectral functions. First, the roughness-height power spectrum
is included in Eqs. (2.11a) and (2.12a). This function is
defined as the Fourier transform of the roughness-height binary
correlator W(x)[ see Eq. (2.2c)],

W (kx) =
∫ ∞

−∞
dx exp(−ikxx)W(x). (2.13)

Second, the formulas in Eqs. (2.11b) and (2.12b) contain the
so-called roughness-square-gradient power spectrum,

S(kx) =
∫ ∞

−∞
dx exp (−ikxx)W ′′2(x), (2.14)

where the double prime to the function W(x) denotes a second
derivative with respect to x. Since W(x) and W ′′2(x) are real
and even functions of x, their Fourier transforms are even and
real functions of the longitudinal wavenumber kx . It should be
also stressed that according to rigorous mathematical theorem,

TABLE I. Matrices of factors Ann′ and Bnn′ for the symmetric and
antisymmetric two-mode surface-disordered waveguides.

SRB ASRB(
A11 A12

A21 A22

)
=

(
4π 4 0

0 64π 4

) (
0 16π 4

16π 4 0

)
(

B11 B12

B21 B22

)
=

(
(3+π2)2

18 0

0 (3+4π2)2

18

) (
π 4/2 0

0 8π 4

)

the power spectra are nonnegative functions of kx for any real
random process ξ (x).

The spectra (2.13) and (2.14) arise when deriving the corre-
lator of the scattering potential Û (x,z) in the kx representation.
The correlator of Û (x,z) emerges when averaging the Green’s
function within the perturvative approach [34]. Specifically,
the terms in Û (x,z) that depend upon the roughness amplitude
ξ (x) and the roughness gradient ξ ′(x) give rise to the terms
in the correlator associated with W (kx); see the structure
of Û (x,z) in Eqs. (2.5) and (2.6). The terms that depend
upon the roughness square gradient ξ ′2(x) lead to the terms
in the correlator associated with the Fourier transform of
〈ξ ′(x)ξ ′(x ′)〉2 = W ′′2(x), which in fact is S(kx). It should
be stressed that through the integration by parts the power
spectrum of the roughness gradient ξ ′(x) can be reduced to
W (kx). However, it is not possible to do the same for the
power spectrum S(kx). This fact reflects a nontrivial role of the
terms in the scattering potential containing ξ ′2(x). Therefore
these terms are associated with a specific and independent
square-gradient surface-scattering mechanism.

Accordingly, the inverse scattering lengths given in (2.10)
are expressed as a sum of two terms that describe scattering
governed by different surface scattering mechanisms. Thus,
the amplitude-scattering and gradient-scattering mechanisms
are associated with the terms 1/L(A,G)(b)

n and 1/L
(A,G)(f )
n

given in Eqs. (2.11a) and (2.12a), while the square-gradient-
scattering mechanism is associated with the terms 1/L(SG)(b)

n

and 1/L
(SG)(f )
n given by Eqs. (2.11b) and (2.12b).

It should be also stressed that, as functions of the correlation
length R, the mode-attenuation lengths L(A,G)(b)

n and L
(A,G)(f )
n

can behave very different from L(SG)(b)
n and L

(SG)(f )
n because

of their dependence upon the different power spectra W (kx)
and S(kx). Owing to those peculiar behaviors, the competition
between surface-scattering mechanisms emerges and, for some
range of values of R, the product σ 4S(kx) can greatly increase
its value in comparison with the quantity σ 2W (kx), even
for small σ . Thus, the lengths L(SG)(b)

n and L
(SG)(f )
n can be

compared, and even can be smaller than the lengths L(A,G)(b)
n

and L
(A,G)(f )
n . A detailed discussion about this competition be-

tween surface-scattering mechanisms is presented in Sec. III,
for the SRB waveguide, and in Sec. IV, for ASRB waveguide,
with the specific power spectra (2.12), which are associated
with the Gaussian correlator.

The approximation by which one arrives to Eqs. (2.7) and
(2.9)–(2.12) and the resulting domain of applicability of those
equations were discussed in Ref. [34]. Specifically, it was
shown that the validity of the results is restricted by two
independent criteria of weak surface scattering,

�n � 2Ln, (2.15a)

R � 2Ln. (2.15b)

Here the cycle length, �n, is the distance between two
successive reflections of the nth mode from the rough
boundaries,

�n = knd/(πn/d). (2.16)

The criteria expressed in Eq. (2.15) imply that the waves are
weakly attenuated over both the correlation length R and cycle
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length �n. Additionally, they restrict the corrugations to be
small in height, σ � d. It should be also noted that statistical
averaging is reasonable if the correlation length is much less
than the waveguide length, R � L. Therefore, the length L

must obey requirements similar to Eqs. (2.15) formulated with
respect to Ln. All these limitations are common in surface
scattering theories that are based on an appropriate perturbative
approach; see, for example, Ref. [40].

D. Reduction to two-mode waveguides

In what follows, this study is restricted to waveguides with
two propagating modes,

Nd = [[kd/π ]] = 2. (2.17)

In this case the mode parameter is confined within the interval,

2 < kd/π < 3, (2.18)

and the longitudinal wavenumbers are given by

k1 =
√

k2 − (π/d)2, k2 =
√

k2 − (2π/d)2. (2.19)

Then, the factors Ann′ and Bnn′ , in Eqs. (2.11) and (2.12), which
are drawn from Ref. [36], are displayed in Table I. The diagonal
and off-diagonal elements are associated, respectively, with
intramode scattering (scattering within the same mode) and
intermode scattering (scattering from one mode into the other).
Also, one can realize that the diagonal and off-diagonal
elements of the matrices Ann′ are related to the amplitude-
scattering and gradient-scattering mechanisms, respectively.

Bearing in mind this physical meaning of the entries Ann′

and Bnn′ , the structure of matrices in Table I reveals remarkable
differences between the SRB and ASRB waveguides:

(i) The attenuation in the SRB waveguide is determined by
the competition between the amplitude-scattering and square-
gradient-scattering mechanisms, which are both associated
with the intramode scattering (in two-mode waveguide).
Therefore, the propagating modes in the SRB model should
be regarded as independent, and, consequently, the SRB
two-mode waveguide represents two independent 1D-surface-
disordered channels. As is known, the transport properties
of 1D disordered systems are described by the theory of
Anderson localization (see, e.g., Ref. [8] and references
therein). This theory has been already employed for the
analysis of SRB single-mode waveguide [30]. Now, the theory
of 1D Anderson localization should be adapted for describing
the transmittance of two-mode waveguide. According to this
theory, the transport in each channel is completely specified
by the scaling parameter that is the ratio between the sample
length and corresponding backscattering length. Remarkably,
the transmittance of any 1D disordered structure does not
depend on the forward scattering. This approach is presented
in Sec. III, where it is showed that L/L(b)

n becomes the scaling
parameter of the transport through the nth channel.

(ii) Otherwise, the attenuation in the ASRB waveguide is
determined by the interplay between the gradient-scattering
and square-gradient-scattering mechanisms. Since the former
is related to the intermode scattering, the channels can become
mixed and the theory that accounts for the transport properties
of the ASRB waveguide should differ from that used in
SRB waveguide. A general theory for the transmittance of

waveguides that considers the interplay between both mecha-
nisms is not presented here. However, the theoretical approach
developed in Refs. [34,36] allows one to predict many of
important characteristics of transport in different regimes.
Here this approach is applied to the ASRB waveguide with
two channels. As a result, it becomes possible to predict the
interval of parameters in which only one of these mechanisms
prevails. On the one hand, when the intramode scattering
governs the attenuation, one deals with the same situation
that was found in the SRB waveguide and, therefore, the
transport properties may be specified by the scaling parameter
that is the ratio between the sample length and corresponding
backscattering length. On the other hand, when the intermode
scattering determines the attenuation the transmittance of the
nth propagating mode is specified by the scaling parameter
L/Ln, which involves both backward L(b)

n and forward L
(f )
n

scattering lengths. The approach that considers intramode and
intermode scattering in the ASRB waveguide is developed in
Sec. IV.

The explicit expressions for the mode backward and
forward scattering lengths, of our two-mode waveguides, are
useful for continuous reference. From Eqs. (2.10)–(2.11), with
the factors Ann′ and Bnn′ from the column SRB in Table I, the
necessary backscattering lengths are given by

1

L
(b)
1

≈ 4π4 σ 2

d6

W (2k1)

k2
1

+ 9.2
σ 4

d4

S(2k1)

k2
1

, (2.20a)

1

L
(b)
2

≈ 64π4 σ 2

d6

W (2k2)

k2
2

+ 100.2
σ 4

d4

S(2k2)

k2
2

. (2.20b)

Also from Eqs. (2.10)–(2.12), but with the factors Ann′

and Bnn′ corresponding to the ASRB waveguide, the explicit
expressions of the lengths read

1

L
(b)
1

= 16π4 σ 2

d6

W (k1 + k2)

k1k2
+ π4

2

σ 4

d4

S(2k1)

k2
1

, (2.21a)

1

L
(f )
1

= 16π4 σ 2

d6

W (k1 − k2)

k1k2
+ π4

2

σ 4

d4

S(0)

k2
1

, (2.21b)

1

L
(b)
2

= 16π4 σ 2

d6

W (k1 + k2)

k1k2
+ 8π4 σ 4

d4

S(2k2)

k2
2

, (2.21c)

1

L
(f )
2

= 16π4 σ 2

d6

W (k1 − k2)

k1k2
+ 8π4 σ 4

d4

S(0)

k2
2

. (2.21d)

In this paper we consider the situation for which the
correlator W(x) can be approximated by the Gaussian form,
W(x) = exp (−x2/2R2). After the substitution of this cor-
relator into formulas (2.13) and (2.14), for any degree of
roughness, the power spectra appearing in Eqs. (2.20) and
(2.21) are given by

W (kx) =
√

2πR exp[−(kxR)2/2], (2.22a)

S(kx) =
√

π

16R3
[(kxR)4 − 4(kxR)2 + 12] exp[−(kxR)2/4].

(2.22b)

These spectra have their maximum at kx = 0, but with
W (0) ∼ R and S(0) ∼ R−3.
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III. TWO-MODE SRB WAVEGUIDE

A. SRB: Competition between surface-scattering mechanisms

In order to discuss the competition between various mecha-
nisms of surface scattering, we should distinguish between two
regions for the correlation length R. These regions are denoted
as the region of small-scale roughness (kR � 1) and the region
of large-scale roughness (kR � 1). Both regions correspond
to weak correlations between successive reflections of the
wave from rough boundaries (R � �n). Note that due to the
last requirement the second of the weak-scattering conditions
(2.15) is satisfied automatically when the first one is met,
R � �n � 2Ln,L.

1. Small-scale roughness

In this region the surface roughness can be regarded as
a delta-correlated random process of the white-noise type.
Taking into account the evident relationship 1 � k�n and the
weak-scattering conditions (2.15), one can get the following
inequalities to specify this region together with requirements
of applicability of the theory:

kR � 1 � k�n � 2kLn. (3.1)

Under the condition (3.1), the argument of the power spectra
(2.22) is much less than the scale of their decrease, kx � R−1.
Therefore, one can write

W (kx) ≈ W (0) =
√

2πR, (3.2a)

S(kx) ≈ S(0) = 3
√

π/4R3. (3.2b)

In this case, when R decreases, the spectrum S(kx) increases
as fast as R−3, whereas W (kx) decreases as R. As one can
see from Eqs. (2.20), in spite of the fact that the first term
is proportional to σ 2 while the second is proportional to σ 4,
for any value of the roughness height σ , there is a region
of small values of R, where the square-gradient-scattering
mechanism predominates [provided the condition (3.1) is
fulfilled]. Specifically, if the correlation length R is smaller
than some crossing point Rcn, the first term in Eqs. (2.20a) and
(2.20b) can be neglected, and the mode-backscattering lengths
are approximated to

1

L
(b)
1

≈ 12.2 k1
(σ/d)4

(k1R)3
for kR � kRc1 � 1, (3.3a)

1

L
(b)
2

≈ 133.3 k2
(σ/d)4

(k2R)3
for kR � kRc2 � 1. (3.3b)

Otherwise, when R is larger than Rcn, the square-gradient
(second) term in Eqs. (2.20a) and (2.20b) can now be
neglected, and the mode-backscattering lengths are approx-
imated to

1

L
(b)
1

≈ 10.0 k1
(σ/d)2 (k1R)

(k1d/π )4
for kRc1 � kR � 1,

(3.4a)
1

L
(b)
2

≈ 160.4 k2
(σ/d)2 (k2R)

(k2d/π )4
for kRc2 � kR � 1.

(3.4b)

The dimensionless crossing point kRcn of the nth backscat-
tering length can be located either on the border between the
regions of small- and large-scale-roughness, or inside the first
region. In the former case, kRcn ∼ 1, and within whole region
(3.1), the mode-backscattering lengths are contributed mainly
by square-gradient-scattering, i.e., by Eq. (3.1). In the latter
case, kRc1 and kRc2 are found by searching for the intersection
of the asymptote (3.3a) with (3.4a), and (3.3b) with (3.4b).
Thus, the crossing points read

kRc1 ≈ kRc2 ≈ 0.3 kd
√

σ/d . (3.5)

2. Large-scale roughness

This region arises when the correlation length R becomes
much larger than the wave length 2π/k, but still remains much
less that the cycle length �n,

1 � kR � k�n � 2kLn. (3.6)

Here the square-gradient term in Eqs. (2.20a) and (2.20b)
can be neglected, and the mode-backscattering lengths are
approximated to

1

L
(b)
1

≈ 10.0 k1
(σ/d)2 (k1R)

(k1d/π )4
exp[−2(k1R)2]

for 1 � kR � k�1, (3.7a)

1

L
(b)
2

≈ 160.4 k2
(σ/d)2 (k2R)

(k2d/π )4
exp[−2(k2R)2]

for 1 � kR � k�2. (3.7b)

B. SRB: Total and mode transmittances

Based on the diagonal form of matrices Ann′ and Bnn′ of
the SRB waveguide, this study argues that the attenuation
of waves arises due to the intramode scattering only (see
Table I). Consequently, the two-mode waveguide can be treated
as two independent 1D-surface-disordered wires with their
corresponding backscattering lengths L

(b)
1 and L

(b)
2 . Thus, the

known theory of 1D localization becomes pertinent here.
In adapting this theory to the present situation, it should
be realized that the scaling parameters L/L

(b)
1 and L/L

(b)
2

determine, respectively, the average transmittance of the first
and second mode. Specifically, the transmittance of the nth
mode (n = 1,2) can be taken, for example, from Ref. [8]. It
reads

〈
TM

(
L/L(b)

n

)〉 = 1

2
√

π

(
L

4L
(b)
n

)−3/2

exp

(
− L

4L
(b)
n

)

×
∫ ∞

0

z2 dz

cosh z
exp

(
−z2 L(b)

n

L

)
. (3.8)

The total transmittance is given by,

〈T (L)〉 =
2∑

n=1

〈
TM

(
L/L(b)

n

)〉
. (3.9)

Equations (3.8) and (3.9) can be directly found from the
general expression (2.3) with the use of well developed meth-
ods, such as, e.g., the perturbative diagrammatic technique
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FIG. 2. (Color online) SRB waveguide: the mode transmittance
(3.8) (solid line) and its asymptotes (3.10) and (3.11) for ballistic and
localized regimes, respectively (dashed lines).

of Berezinski [2,49], the invariant imbedding method [50,51]
or the two-scale approach [7,22,30]. Here it should be
stressed that the ratio L/L(b)

n includes the contribution of both
the amplitude-scattering mechanism and the square-gradient-
scattering mechanism through the first and second terms in
Eqs. (2.20a) and (2.20b).

The mode transmittance (3.8) exhibits the ballistic behavior
for large backscattering length,〈

TM

(
L/L(b)

n

)〉 ≈ 1 − L/L(b)
n for L � L(b)

n . (3.10)

In this case the nth conducting channel is practically trans-
parent. On the contrary, the mode transmittance displays
exponential decrease as the waveguide length L exceeds 4L(b)

n ,

〈
TM

(
L/L(b)

n

)〉 ≈ π5/2

16

(
L

4L
(b)
n

)−3/2

exp

(
− L

4L
(b)
n

)

for L(b)
n � L. (3.11)

The dependence of the function (3.8) and its asymptotes (3.10)
and (3.11) on the scaling parameter L/L(b)

n are shown in
Fig. 2.

In accordance with two mode-transport regimes (3.10),
(3.11) and due to the hierarchy of the mode-backscattering
lengths, L

(b)
2 < L

(b)
1 (this hierarchy can be seen when com-

paring Eq. (2.20a) with (2.20b), or more directly through the
couples of Eqs. (3.3), (3.4), and (3.7), the total transmittance
(3.9) has the following three transport regimes:

(1) In the regime of localization when the largest mode-
backscattering length L

(b)
1 is smaller than the waveguide

length L,

1 < L/L
(b)
1 < L/L

(b)
2 , (3.12)

both propagating modes are strongly localized, and their
transmittances are exponentially small. The total transmittance
(3.9) is approximately equal to the transmittance of the first
mode obeying the asymptote (3.11),

〈T (L)〉 ≈ 〈TM (L/L
(b)
1 )〉 ≈ π5/2

16

(
L

4L
(b)
1

)−3/2

exp

(
− L

4L
(b)
1

)
.

(3.13)

The waveguide is nontransparent in this regime.
(2) The coexistence regime arises when the smallest

backscattering length L
(b)
2 is smaller, while the largest

backscattering length L
(b)
1 is larger than the waveguide length

L,

L/L
(b)
1 < 1 < L/L

(b)
2 . (3.14)

In this case, the first mode manifests the ballistic behavior
(3.10), while the second mode is still localized in line with
Eq. (3.11). Therefore, as before, the total transmittance (3.9)
is determined by the transmittance of the first mode, however
governed by the ballistic asymptote (3.10),

〈T (L)〉 ≈ 〈
TM

(
L/L

(b)
1

)〉 ≈ 1. (3.15)

(3) The ballistic regime emerges under the conditions

L/L
(b)
1 < L/L

(b)
2 < 1, (3.16)

when the smallest mode-backscattering length L
(b)
2 is larger

than L. As a consequence, both conducting channels are
open having almost unit transmittances (3.10). The waveguide
is almost perfectly transparent. Its total transmittance (3.9)
approximately equals to the total number of the propagating
modes,

〈T (L)〉 ≈ 2. (3.17)

C. SRB: Transmittance versus correlation length

Here we discuss the dependence of the mode-backscattering
lengths and transmittances on the dimensionless correlation
parameter kR. For this, we plot the ratio L

(b)
1 /L

(b)
2 , as well as

the scaling parameters L/L
(b)
1 and L/L

(b)
2 ; see Figs. 3(a) and

3(b). These plots are computed from the expressions for L(b)
n
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FIG. 3. (Color online) SRB waveguide: Mode-backscattering
lengths, L(b)

n , and transmittances, 〈TMn〉 = 〈TM (L/L(b)
n )〉, 〈T (L)〉, vs.

dimensionless correlation length, kR, for σ/d = 0.0025, kd/π =
2.54, (kσ ≈ 0.02), and L/d = 1600. The crossing points kRc1 ≈
0.13 and kRc2 ≈ 0.12 are indicated on the top of the upper plot. The
boundary between the localization and the coexistence regime is at
kR ≈ 0.02 and with further increment of kR the propagation regime
becomes ballistic after the point kR ≈ 0.06.
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given in Eqs. (2.20a) and (2.20b) with power spectra (2.22).
If R decreases, the lengths Ln decreases as R3 whereas �n

remains fixed, thus, the smallest value of R is restricted by
the criterion (2.15a); this criterion is fulfilled since �1/2L1 ≈
0.01 � 1 and �2/2L2 ≈ 0.04 � 1 at the left boundary of
the plots, kR = 0.01. Because the plots illustrate the case of
weak correlations (R � �n), the condition (2.15b) is satisfied
automatically if (2.15a) is met.

Figure 3(a) exhibits the crossover from the square-gradient
to amplitude scattering. Specifically, with an increase of kR

the ratio L
(b)
1 /L

(b)
2 starts with the value

L
(b)
1

L
(b)
2

≈ 10.9

(
k1

k2

)2

for kR � kRc2 (3.18)

and grows in accordance with the relation

L
(b)
1

L
(b)
2

≈ 16

(
k1

k2

)2

exp[6π2(R/d)2]

for kRc1 � kR � k�2. (3.19)

The asymptotic behaviors (3.18) and (3.19) are obtained,
respectively, from Eqs. (3.3) and (3.7). Note that the hierarchy
L

(b)
1 > L

(b)
2 remains for any value of the parameters. With the

curves in Fig. 3(b), the different transport regimes defined in
Eqs. (3.12)–(3.17) can be identified.

The mode transmittances (3.8) and total transmittance
(3.9) are plotted in Fig. 3(c). Because of the parameters
used in the plots, the boundary between the localization
and the coexistence regime is at kR ≈ 0.02. With further
increment of kR the propagation regime becomes ballistic after
the point kR ≈ 0.06. Figure 3(c) clearly demonstrates that,
due to the hierarchy of backscattering lengths, L(b)

2 < L
(b)
1 , the

transmittance of the second mode is always smaller than the
transmittance of the first one,〈

TM

(
L/L

(b)
2

)〉
<

〈
TM

(
L/L

(b)
1

)〉
. (3.20)

Therefore, within the localization (3.12) and coexistence
(3.14) regions the total transmittance (3.9) is mainly con-
tributed by the first term, i.e., by the first-mode transmittance,

〈T (L)〉 ≈ 〈
TM

(
L/L

(b)
1

)〉
. (3.21)

Within the localization regime, 〈T (L)〉 behaves as indicated
in Eq. (3.13). Within the coexistence regime the total trans-
mittance is described by Eq. (3.15). For the ballistic regime
(3.16), the approximation given by Eq. (3.10) describes well
the behavior of the mode transmittances. Correspondingly,
the value of the total transmittance tends to the total number
Nd = 2 of the propagating modes; see Eq. (3.17).

Thus, with the variation of roughness correlations one
can realize all three regimes, which is inherent for
the transport through the two-mode SRB waveguide. Note
one more that coexistence regime (3.14), (3.15) arises only
due to the fact that in the SRB waveguide the hierarchy of the
mode-backscattering lengths is always present.

D. SRB: Transmittance versus mode parameter

From the experimental viewpoint, it could be more feasible
to study the transport properties of a waveguide by fixing its

geometrical parameters such as length, width, etc., whereas
the wavenumber k is varied within some interval. In Fig. 4
we present three pairs of frames formed by plots of mode-
backscattering lengths and transmittances as functions of the
mode parameter kd/π (dimensionless wavenumber) within the
range of first two modes. The pairs (a)–(b), (c)–(d), and (e)–(f)
mainly illustrate, respectively, the localized (3.12), coexistence
(3.14), and ballistic (3.16) transport regimes. Here the different
regimes are illustrated by selecting three specific values of the
correlation length R whereas the length of the waveguide L

stays constant; when kd/π = 2.54, the mode-backscattering
lengths and transmittances corresponds to those presented in
Fig. 3 at the points kR = 0.014, kR = 0.04, and kR = 0.3.
In this way, inside each regime, the relative influence of
the scattering mechanisms is different. Another possibility to
arrive to different transport regimes, which is not shown here,
would consist in selecting only one value for kR and three
different values of the length L.

Figure 4(a), 4(c), and 4(e) shows the plots of L(b)
n /L com-

puted from Eqs. (2.20a) and (2.20b), as well as L(A,G)(b)
n /L,

which also comes from these equations but when the square-
gradient term is neglected. If kd/π increases, the nth atten-
uation length also increases from its value equal to zero at
kd/π = n, where the nth normal mode opens (n = 1,2). Note
that our results, which are obtained within the second-order
approximation in the perturbation potential, can indicate only
the position of these zeros and cannot correctly describe
their line shape in the narrow vicinity of integer values
of kd/π . The reason is that at these resonance points the
longitudinal wavenumber kn vanishes, and, as a consequence,
the corresponding inverse attenuation length diverges. Con-
ventionally, this problem is solved within the self-consistent
approach providing finite resonance values for 1/L(b)

n (see, e.g.,
Ref. [40]). It should be mentioned that the curves associated
with the first propagating mode do not manifest any resonance
at kd/π = 2, even with the opening of the second propagat-
ing mode. This occurs since both mechanisms that govern
the scattering in two-mode SRB waveguide are associated
with intramode transitions only. Remarkably, in (a) and (c)
the dimensionless lengths L

(A,G)(b)
1 /L and L

(A,G)(b)
2 /L are

much larger than the total lengths, L
(b)
1 /L and L

(b)
2 /L. This

is because the main contribution is due to the square-gradient-
scattering lengths, L

(SG)(b)
1 /L and L

(SG)(b)
2 /L. Therefore, for

values of the mode parameter far from the resonances, the ap-
proximate behavior of L(b)

n /L is given by Eqs. (3.3) (not plotted
in figure). Otherwise, in (e), in which the main contribution is
due to the amplitude-gradient-scattering lengths, L

(A,G)(b)
1 /L

and L
(A,G)(b)
2 /L, the approximate behavior of L(b)

n /L is given
by Eqs. (3.4).

The mode transmittances (3.8), and total transmittance (3.9)
are plotted in Fig. 4(b), 4(d), and 4(f). In 4(b) the first and
second propagating modes are in localized transport regime;
this fact is indicated by the small mode transmittances given
by Eq. (3.11). The total transmittance is approximately equal
to the transmittance of the first mode; thus, it is given by
Eq. (3.13). As one can see in Fig. 3, with the increment of
kR the mode-attenuation lengths also increase, resulting in the
condition (3.14) that is illustrated in (d). Here the first and
second propagating modes are, respectively, in ballistic and
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FIG. 4. (Color online) SRB waveguide: Mode-backscattering
lengths and transmittances versus mode parameter for σ/d = 0.0025,
L/d = 1600, with R/d ≈ 0.0018 for (a)–(b), R/d ≈ 0.005 for
(c)–(d), and R/d ≈ 0.038 for (e)–(f). Note that for fixed values
of the roughness height σ and the mode parameter within the
interval 2 < kd/π < 3, kσ ranges the interval 0.016 � kσ � 0.024;
similarly, for fixed values of the correlation length R and the mode
parameter within the interval 2 < kd/π < 3, the dimensionless cor-
relation length kR ranges the interval 0.011 � kR � 0.017 in (a)–(b),
0.031 � kR � 0.047 in (c)-(d) and 0.23 � kR � 0.35 in (e)–(f).

localized transport regimes. The coexistence situation for the
total transmittance is graphically indicated by a very small

deviation of 〈T (L)〉 from 〈TM (L/L
(b)
1 )〉, when kd/π ap-

proaches 3. This behavior is marked by the ballistic asymptote
(3.10) for 〈TM (L/L

(b)
1 )〉 and by increasing rate of the curve

〈TM (L/L
(b)
2 )〉 with the localization asymptote (3.11). The

predominating contribution of the square-gradient-scattering
mechanism can be noted visually in (b) and (d) by comparing
the curve of 〈T (L)〉 with the curve 〈T (A,G)(L)〉,

〈T (A,G)(L)〉 =
2∑

n=1

〈
TM

(
L/L(A,G)(b)

n

)〉
, (3.22)

that ignores this contribution. In Fig. 4(f) the first and second
propagating modes are in ballistic transport regime. When
increasing kd/π , this is portrayed by the sharp increase of
the transmittance and, then, by the ballistic behavior given
by the asymptote (3.10). This step-like behavior indicates
the openness of the channels with almost unit transmittance
and, consequently, the total transmittance given by Eq. (3.17),
as the total number of propagating modes. Since in frame
(f) the main contribution is due to the amplitude-scattering
mechanism, the behavior of the total transmittance follows the
approximation (3.22) [see the overlapping of curves related
to Eqs. (3.9) and (3.22)].

IV. TWO-MODE ASRB WAVEGUIDE

In contrast with the SRB waveguide, the theory for the
ASRB waveguide can not describe the whole transition from
ballistic to localized transport, which is expected for large
enough L (numerical evidence of this transition can be found,
for instance, in Refs. [20,23]). However, the analysis of the
mode-attenuation lengths that is performed here for two mode
waveguides, predicts many of important characteristics of
transport. Thus, as is remarked in Sec. I, the attenuation in
the ASRB waveguide is determined by the interplay between
the gradient-scattering and square-gradient-scattering mecha-
nisms, i.e., it is determined by the interplay between intermode
and intramode scattering. Below, first, a more detailed analysis
of mode-attenuation lengths allow us to compute the interval of
parameters in which only one of these mechanisms prevails,
as well as their behavior inside that interval. Secondly, the
theory already developed for the SRB waveguide, in which
the transport properties of the nth channel are specified by the
scaling parameter L/L(b)

n , is applied when only the intramode
scattering governs the attenuation and the channels can be con-
sidered as independent. Thirdly, the theory that accounts for the
transport properties of the ASRB waveguide, when the inter-
mode scattering determines the attenuation (when the channels
become mixed), is developed. Finally, a small region of
transition, where no analytical results exist, is only indicated.

A. ASRB: Competition between surface-scattering mechanisms

The competition between surface-scattering mechanisms is
again discussed within the two intervals of correlation length
R, which are denoted as the region of small-scale roughness
(kR � 1) and the region of large-scale roughness (kR �
1). Both regions correspond to weak correlations between
successive reflections of the wave from rough boundaries
(R � �n). See details about the definition of the regions of
correlation length in Sec. III A.
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1. Small-scale-roughness region

In this region [see Eq. (3.1)], if the correlation length R is
smaller than the crossing point Rcn, the first term in Eqs. (2.21)
can be neglected. Then, after the substitution of Eq. (3.2b) into
the second term of Eqs. (2.21) one arrives to 1/L(b)

n ≈ 1/L
(f )
n ,

and the following asymptotic formulas for the backscattering
lengths are obtained:

1

L
(b)
1

≈ 64.7 k1
(σ/d)4

(k1R)3
for kR � kRc1 � 1, (4.1a)

1

L
(b)
2

≈ 1035.9 k2
(σ/d)4

(k2R)3
for kR � kRc2 � 1. (4.1b)

It is necessary to be aware that the present analysis of the
competition is valid for the values of mode parameter kd/π

not very close to the resonances kd/π = 1,2. Note particularly
that the approximations (4.1) do not work at kd/π = 2, since
this resonance is included in the neglected terms 1/L(A,G)(b)

n

and 1/L
(A,G)(f )
n .

If R is larger than Rcn, the square-gradient term in
Eqs. (2.21) can be neglected. Then, after the substitution of
(3.2a) into the first term, the mode-attenuation lengths (2.9)
are approximated to

1

L1
≈ 80.2 k2

(σ/d)2(k1R)

(k1d/π )2(k2d/π )2
for kRc1 � kR � 1,

(4.2a)
1

L2
≈ 1

L1
for kRc2 � kR � 1. (4.2b)

The dimensionless crossing point kRcn of the nth length
can be located either on the border between the regions of
small- and large-scale roughness, or inside the first region.
In the former case, kRcn ∼ 1, and within the whole small-
scale roughness region the mode-attenuation lengths are de-
scribed only by square-gradient-scattering contribution, i.e., by
Eq. (4.1). In the latter case, kRc1 and kRc2 are computed by
searching for the intersection of the asymptotes (4.1) with
(4.2). Thus, the crossing points read

kRc1 ≈ 0.36 4

√
k2

k1

√
σ

d
kd, (4.3a)

kRc2 ≈ 0.72 4

√
k1

k2

√
σ

d
kd. (4.3b)

2. Large-scale-roughness region

In this region [see Eq. (3.6)] the square-gradient terms in
Eqs. (2.21) can be neglected and the mode-attenuation lengths
(2.9) are approximated to

1

L1
≈ 40.1 k2

(σ/d)2(k1R)

(k1d/π )2(k2d/π )2

{
exp

[
− (k1 + k2)2R2

2

]

+ exp

[
− (k1 − k2)2R2

2

]}
, for 1 � kR � k�1,

(4.4a)
1

L2
≈ 1

L1
, for 1 � kR � k�2. (4.4b)

B. ASRB: Total and mode transmittances

The preceding analysis of mode-attenuation lengths states
that values of correlation length smaller than the first crossing
point, R < Rc1, result in both mode-attenuation lengths gov-
erned by intramode scattering only; see Eqs. (4.1). Therefore,
mode and total transmittances are given by Eqs. (3.8) and (3.9),
however, with mode-backscattering lengths L

(b)
1 and L

(b)
2 given

by Eqs. (2.21a) and (2.21c) that are well described by their
asymptotes (4.1a) and (4.1b).

Also the preceding analysis says that values of correlation
length larger than the second crossing point, Rc2 < R, result in
mode-attenuation lengths associated with intermode scattering
only; see Eqs. (4.2) and (4.4). In this case the theory that
accounts for the transport properties should differ from that
used in SRB waveguide. Within the approach presented here,
the average two-particle Green’s function entering in Eq. (2.3),
for the transmittance, is assumed to be equal to the product of
two average one-particle ones. Therefore, to obtain the total
transmittance 〈T (L)〉, we can substitute Eq. (2.7) into Eq. (2.3).
After evaluation of the integrals, the following result becomes
apparent:

〈T (L)〉 =
Nd∑
n=1

〈TM (L/Ln)〉, for Rc2 < R. (4.5)

Here the total transmittance 〈T (L)〉 reads as a sum of average
mode transmittances 〈TM (L/Ln)〉, describing the transparency
of every nth propagating mode. Within the assumption
necessary for the averaging procedure to be reasonable, they
are determined by the following expression:

〈TM (L/Ln)〉 = 2
Ln

L

{
1 − Ln

L

[
1 − exp

(
− L

Ln

)]}
. (4.6)

One can see that the mode transmittance is described by a
function that depends on the parameter L/Ln only. Note that
in accordance with Eq. (2.9), the above parameter depends on
both backward and forward scattering lengths explicitly given
in Eqs. (2.21) and obeying the asymptotic expressions (4.4).

The mode transmittance (4.6) exhibits the ballistic behavior
for large mode attenuation length,

〈TM (L/Ln)〉 ≈ 1 − L/3Ln for L � Ln. (4.7)

In this case the nth conducting channel is practically transpar-
ent. On the contrary, the mode transmittance is small when Ln

turns out to be much less than the length of the waveguide,

〈TM (L/Ln)〉 ≈ 2Ln/L for Ln � L. (4.8)

The inverse proportional dependence of Eq. (4.8) on the
waveguide length L implies the diffusive regime of wave
transport at a given nth mode. Figure 5 shows the behavior
of Eq. (4.6) and its asymptotes (4.7) and (4.8) versus the
parameter L/Ln.

It is necessary now to consolidate both aforementioned
complementary approaches. First, when R < Rc1, the in-
tramode scattering gives rise to the hierarchy of mode-
backscattering lengths, L(b)

2 < L
(b)
1 ; see Eqs. (4.1a) and (4.1b).

Due to this hierarchy and in accordance with two mode-
transport regimes (3.10) and (3.11), the total transmittance
(3.9) can exhibit the ballistic, coexistence and localized
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FIG. 5. (Color online) ASRB waveguide: Mode transmittance
described by Eq. (4.6) (solid line) and its asymptotes, given by (4.7)
and (4.8) for ballistic and diffusive regimes (dashed lines). The region
where the diffusion terminates due to the influence of localization, is
shown schematically.

transport regimes. Second, when Rc2 < R, in accordance
with two mode-transport regimes (4.7) and (4.8), the total
transmittance (4.5) can exhibit the ballistic and diffusive
regimes. Here the coexistence transport regime can not emerge
because the intermode scattering results in mode-attenuation
lengths that approximate each other, L1 ≈ L2; see Eqs. (4.2b)
and (4.4b). Specifically, the transport regimes of the total
transmittance are defined as follows:

(1) In the regime of localization, when the largest mode-
backscattering length L

(b)
1 is smaller than the waveguide length

L, and the correlation length R is smaller than the first crossing
point Rc1,

1 < L/L
(b)
1 < L/L

(b)
2 , R < Rc1, (4.9)

both propagating modes are strongly localized and their
transmittances are exponentially small. The total transmittance
is approximately equal to the transmittance of the first mode
obeying the asymptote (3.11),

〈T (L)〉 ≈ 〈
TM

(
L/L

(b)
1

)〉 ≈ π5/2

16

(
L

4L
(b)
1

)−3/2

× exp

(
− L

4L
(b)
1

)
, (4.10)

with L
(b)
1 given by Eq. (4.1a). The waveguide is nontransparent

in this regime.
(2) The coexistence regime arises when the smallest

backscattering length L
(b)
2 is smaller, while the largest

backscattering length L
(b)
1 is larger than the waveguide length

L, with the correlation length R smaller than the first crossing
point Rc1,

L/L
(b)
1 < 1 < L/L

(b)
2 , R < Rc1. (4.11)

In this case, the first mode manifests the ballistic behavior
(3.10), while the second mode is still localized in line with
Eq. (3.11). Therefore, as before, the total transmittance (3.9)
is determined by the transmittance of the first mode, however,
governed by the ballistic asymptote (3.10),

〈T (L)〉 ≈ 〈
TM

(
L/L

(b)
1

)〉 ≈ 1. (4.12)

The coexistence of the ballistic and diffusive regimes is
possible when the hierarchy of the mode-attenuation lengths,
L

(b)
2 < L

(b)
1 , occurs.

(3) The diffusive regime emerges when both mode transmit-
tances have the diffusive behavior and when the correlation
length R is larger than the second crossing point Rc2,

1 < L/L1 ≈ L/L2, Rc2 < R. (4.13)

This regime arises if the attenuation is caused by the
gradient-scattering mechanism. The mode transmittances have
approximately the same behavior that is described by Eq. (4.8),
and, as a consequence, the total transmittance can be expressed
as a double value of one of them,

〈TM (L/L1)〉 ≈ 〈TM (L/L2)〉, (4.14a)

〈T (L)〉 ≈ 2〈TM (L/L1)〉 ≈ 4L1/L. (4.14b)

Here the approximate expression for L1 is given either by
Eq. (4.2) if kRc2 � kR < 1, or by Eq. (4.4) if 1 � kR � k�n.

(4) The ballistic regime emerges under either the conditions

L/L
(b)
1 < L/L

(b)
2 < 1 for R < Rc1, or (4.15a)

L/L1 ≈ L/L2 < 1 for Rc2 < R, (4.15b)

when the smallest mode-attenuation length, L
(b)
2 or L2, is

larger than L. Both conducting channels are open having
approximately unit transmittances, (3.10) or (4.7). The total
transmittance approaches the total number of propagating
modes,

〈T (L)〉 ≈ 2. (4.16)

Here the waveguide has almost perfect transparency.
Note that our model is no able to describe the transmittances

for a transition region that emerges within the interval Rc1 <

R < Rc2, when both intramode and intermode scattering have
a comparable weight. However, this region is actually small in
comparison with the large range of values of R for which the
analytical approach has been developed.

C. ASRB: Transmittance versus correlation length

In order to discuss the dependence of the transmittances
and their scaling parameters upon the dimensionless corre-
lation length kR, Fig. 6 is presented. In the region kR <

kRc1, where intramode scattering prevails, the transmittances
〈TM (L/L

(b)
1 )〉, 〈TM (L/L

(b)
2 )〉, 〈T (L)〉, the scaling parameters

L/L
(b)
1 , L/L

(b)
2 , and the ratio of these parameters L

(b)
1 /L

(b)
2 ,

are depicted. Otherwise, in the region kRc2 < kR, where
intermode scattering prevails, the transmittances 〈TM (L/L1)〉,
〈TM (L/L2)〉, 〈T (L)〉, the scaling parameters L/L1, L/L2,
and the ratio L1/L2, are depicted. In the first region the
transmittances are computed from Eqs. (3.9) and (3.8),
whereas in the second region, from Eqs. (4.5), (4.6). In both
ranges, however, the scattering lengths are computed from
Eqs. (2.21).

If R decreases, the lengths Ln and L(b)
n decreases as R3

whereas the cycle length �n has a fixed value; thus, the
smallest value of R is restricted by the criterion (2.15a);
here this criterion is fulfilled since �1/2L

(b)
1 ≈ 0.03 � 1

and �2/2L
(b)
2 ≈ 0.33 � 1 at the left boundary of the plots,
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M. RENDÓN, N. M. MAKAROV, AND F. M. IZRAILEV PHYSICAL REVIEW E 83, 051124 (2011)

0.01 0.05 0.1 0.5 1 5 10
0

10

20

30

40
kRc2kRc1 k 2

k R

L1

L2

L
oc

al
iz

ed

C
oe

xi
st

en
ce

Ballistic

0.01
0.1

1
10

100
L

L1
L

L2

L
oc

al
iz

ed

C
oe

xi
st

en
ce

Ballistic

0.01 0.05 0.1 0.5 1 5 10
0.001

0.01

0.1

1

k R

T
TM1
TM2

Localized

C
oe

xi
st

en
ce Diffusive

B
al

li
st

ic

0.01
0.1

1
10

100
L

L1

L
L2

Localized

C
oe

xi
st

en
ce

Diffusive

B
al

li
st

ic

0.01 0.05 0.1 0.5 1 5 10
0.001

0.01

0.1

1

k R

T
TM1
TM2

a

b

c

d

e

FIG. 6. (Color online) ASRB waveguide: Mode-backscattering
lengths, mode-attenuation lengths, L(·)

n , and transmittances, 〈TMn〉 =
〈TM (L/L(·)

n )〉, 〈T (L)〉, versus dimensionless correlation length kR

(here L(·)
n = L(b)

n for kR < kRc1 and L(·)
n = Ln for kRc2 < kR). The

crossing points kRc1 ≈ 0.13 and kRc2 ≈ 0.32 are indicated on the
top of the upper plot. Note that there is no analytical results within
the transition region kRc1 < kR < kRc2, in which the curves shown
are obtained by simple interpolation. The global parameters are
σ/d = 0.0025 and kd/π = 2.54, (kσ = 0.02). In (a) the ratio L1/L2

is depicted; the asymptotes, L1/L2 ≈ 35.78 and L1/L2 ≈ 1 can be
noted. In (b)-(c) the normalized waveguide length is L/d = 160;
the boundary between the localized and coexistence regimes is at
kR ≈ 0.016, then, the boundary between the coexistence and ballistic
regimes is at kR ≈ 0.05. In (d)-(e) L/d = 16 000: the boundary
between the localized and coexistence regimes is at kR ≈ 0.075,
then, the boundary between the diffusive and ballistic regimes is at
kR ≈ 7.0.

kR = 0.01. Because the plots illustrate the case of weak
correlations (R � �n), the condition (2.15b) is satisfied
automatically if (2.15a) is met.

The ratio of the lengths L
(b)
1 /L

(b)
2 , which is equal to

the ratio L1/L2 for kR < kRc1, is in Fig. 6(a). It exhibits
the crossover from square-gradient scattering to gradient

scattering. Therefore, with the increase of kR, the ratio
decreases from the large value

L
(b)
1

L
(b)
2

≈ L1

L2
≈ 16

(
k1

k2

)2

for kR � kRc1, (4.17)

to the unity,

L1

L2
≈ 1 for kRc2 � kR � k�2. (4.18)

The asymptotes (4.17) and (4.18) are obtained, respectively,
through Eqs. (4.1) and (4.4). In contrast with the SRB
waveguide, here the equality of mode-attenuation lengths,
L1 ≈ L2, emerges as a result of a strong intermode mixing,
which is governed by the gradient-scattering mechanism. This
nontrivial fact is in a strong contrast with a nonisotropic
character of surface scattering in the channel space [23,28].

In Fig. 6(b)–6(c) and 6(d)–6(e) two cases are illustrated in
which, depending upon the roughness correlation length kR,
different transport regimes can arise. The first case corresponds
to a moderately large waveguide that can present the localized,
coexistence or ballistic transport regime; see frames (b) and
(c). In comparison, the second case corresponds to a larger
waveguide that can present the diffusive transport regime in
addition to the aforementioned ones; see frames (d) and (e).
Note that different transport regimes, defined in Eqs. (4.9),
(4.11), (4.13), and (4.15), can be graphically identified with
the use of frames (b) and (d) for the scaling parameters.

The total and mode transmittances are plotted in Figs. 6(c)
and 6(e). These plots demonstrate that, due to the hierarchy
of mode-backscattering lengths, L(b)

2 < L
(b)
1 , the transmittance

of the second mode is always smaller than the transmittance of
the first one, 〈

TM

(
L/L

(b)
2

)〉
<

〈
TM

(
L/L

(b)
1

)〉
. (4.19)

Therefore, within the localization (4.9) and coexistence (4.11)
regions, the total transmittance (3.9) is mainly contributed by
the first term, i.e., by the first-mode transmittance,

〈T (L)〉 ≈ 〈
TM

(
L/L

(b)
1

)〉
. (4.20)

Within the localization regime, 〈T (L)〉 behaves as indicated
in Eq. (4.10). Within the coexistence regime the total trans-
mittance is described by Eq. (4.12). In the diffusive regime
the mode transmittances are equal, and behave as indicated in
Eq. (4.8). The total transmittance has twice their value; see
Fig. 6(e) and Eqs. (4.14). For the ballistic regime (4.15b), both
conducting channels are open:〈

TM

(
L/L

(b)
1

)〉 ≈ 〈
TM

(
L/L

(b)
2

)〉 ≈ 1. (4.21)

Here the approximation given by Eq. (4.7) describes well
the behavior of the mode transmittances. Correspondingly,
the value of the total transmittance tends to the total number
Nd = 2 of the propagating modes; see Eq. (4.16).

Note that the coexistence transport regime arises if the
length L is such that L

(b)
2 < L < L

(b)
1 , meanwhile the implied

hierarchy L
(b)
2 < L

(b)
1 emerges if the correlation length is

smaller than the crossing point, kR � kRc1. Therefore, in
the ASRB waveguide the scattering governed by the square-
gradient-scattering mechanism is a necessary condition for the
coexistence transport regime to occur. In comparison, if the
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gradient-scattering mechanism prevails, the mode-attenuation
lengths are almost equal, L1 ≈ L2. Then, with a continuous
increment of L, the system passes directly from the ballistic
to the diffusive regime.

D. ASRB: Transmittance versus mode parameter

The mode-attenuation lengths and transmittances as func-
tions of the mode parameter kd/π are presented in Fig. 7 within
the range of first two modes. The value of the parameters are
selected in order to illustrate, within the range 2 < kd/π < 3,
the coexistence transport regime of the ASRB waveguide,
which is defined by Eq. (4.11).

Figure 7(a) shows the plots of L(b)
n /L and L(A,G)(b)

n /L.
Here L(b)

n is computed from Eqs. (2.21a) and (2.21c),
whereas L(A,G)(b)

n is given by the first term of the above
equations, i.e.,

1

L
(A,G)(b)
1

= 1

L
(A,G)(b)
2

= 40.1
(σ/d)2(k1R) k2

(k1d/π )2(k2d/π )2

× exp

[−(k1 + k2)2R2

2

]
.

If kd/π increases, all the attenuation lengths also increase
but exhibit characteristic dips at kd/π = 1,2 where a new
normal mode opens. As we already noted, we can only indicate
the position of these dips and do not describe their line
shape in the narrow vicinity of integer values kd/π (see short
discussion of these resonances in connection with Fig. 4). In
contrast with the SRB waveguide, the curves depicting the
first propagating mode of the ASRB waveguide show a dip
at kd/π = 2. This dip is caused by the intermode scattering
from the first propagating mode into the second, and this
scattering is governed by the gradient-scattering mechanism.
Remarkably, far from the resonances at kd/π = 1,2, the
lengths L

(A,G)(b)
1 /L and L

(A,G)(b)
2 /L are larger than the mode-
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FIG. 7. (Color online) ASRB waveguide: Mode-backscattering
lengths and transmittances versus the mode parameter for σ/d =
0.0025, R/d ≈ 0.005, and L/d = 160. Note that for fixed value of
the correlation length R, and mode parameter within the interval
2 < kd/π < 3, the dimensionless correlation length kR ranges
0.031 � kR � 0.047; therefore, the data correspond to the small-
scale roughness (3.1) and the coexistence regime (4.11).

backscattering lengths, L
(b)
1 /L and L

(b)
2 /L. This is because

of the main contribution of the square-gradient-scattering
lengths, L(SG)(b)

1 /L and L
(SG)(b)
2 /L. Therefore, the approximate

behavior of L(b)
n /L is given by Eqs. (4.1a) and (4.1b) (not

plotted in the figure).
The total transmittance (3.9) and mode transmittances (3.8)

are plotted in Fig. 7(b). Note that the dips pertaining to the
curves of L1 and L2 become evident in the curves for mode
transmittances 〈TM (L/L

(b)
1 )〉 and 〈TM (L/L

(b)
2 )〉. Certainly, the

curve for the total transmittance 〈T (L)〉 incorporates all
the dips of the mode transmittances. Remarkably, without
the weight of the square-gradient scattering mechanism, both
mode transmittances would have the same value and the total
transmittance would have ballistic behavior. This fact can
be graphically observed with the help of the curve related
to the total transmittance given in Eq. (3.22), in which the
square-gradient-scattering mechanism has been ignored.

V. CONCLUSIONS

In this paper we report new results for transport properties
of quasi-1D surface-disordered waveguides (or electronic
conductors). Two models with symmetric and antisymmetric
rough boundaries were studied in great detail. By examining
these models, one passes from a system in which the
attenuation of the propagating modes is associated with solely
intramode scattering (the SRB waveguide), to a system in
which both intra- and intermode scattering determine its
attenuation (the ASRB waveguide). The comparison between
the two models allows us to elucidate the role of all surface-
scattering mechanisms.

As was shown in our previous analytical studies [33,34,36–
38], one of mechanisms of scattering (the so-called square-
gradient mechanism) is typically neglected in the literature
since it emerges in the second order of perturbation theory.
Specifically, the corresponding term in the expression for
the inverse attenuation length is proportional to the squared
variance of disorder σ 4, and for this reason the square-gradient
terms seem to be much smaller than the others describing
conventional mechanisms of scattering (giving rise to the σ 2

dependence). However, apart from the dependence on the
disorder strength, one has to take into account the correlation
properties of scattering profiles. It was found that the square-
gradient mechanism essentially depends on the correlations of
different nature as compared with the σ 2 terms in the total
expression for the inverse attenuation length.

In particular, it was argued that in some regions of
parameters, the square-gradient terms can prevail the σ 2

terms and, therefore, have to be considered as well, in spite of
their apparent smallness. These predictions have been carefully
analyzed in this paper, within two models with symmetric and
antisymmetric scattering profiles. Due to a principal difference
between the two models, we analyze them separately.

For the SRB waveguide the transmission occurs along two
modes independently, due to the underlying symmetry of the
model. Therefore, the transport through each of two modes
can be described in terms of standard theories of localization
in one-dimensional models with random potentials. Thus,
the total transmission is the sum of partial transmissions
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M. RENDÓN, N. M. MAKAROV, AND F. M. IZRAILEV PHYSICAL REVIEW E 83, 051124 (2011)

with the corresponding quantized transverse momentum.
Our results demonstrate that in this case a typical situation
occurs for which the transmission along two channels can
be very different due to different values of corresponding
backscattering lengths.

For the ASRB waveguide there exist a competition of
two surface-scattering mechanisms, which in contrast with
the SRB waveguide, induce the interplay between intramode
and intermode scattering. This is a challenging situation that
persists with open questions. Nevertheless, the theoretical
approach developed in Refs. [34,36,38] allows one to deter-
mine intervals of parameters in which only one of the above
mechanisms plays the main role, i.e., it is possible to know
when the channels can be considered as two independent
one-dimensional conductors and when they exhibit a strong
interaction. Moreover, that theoretical approach indicates a
rather small region of transition between the above possi-
bilities, where analytical results does not exist. The whole
problem thus split off can be addressed by two complemen-
tary approaches. When the intramode scattering prevails the
transport through the waveguide can be described by the
theory proposed for the SRB waveguide but with the proper

scaling parameters. When the intermode scattering prevails,
it is necessary to apply the special approach developed here.
Our results show different transport regimes from localization
to the ballistic, with the possibility, depending upon the
waveguide parameters, of finding the coexistence and diffusive
regimes. The coexistence regime can be present because of
the hierarchy of mode-attenuation lengths associated with the
square-gradient-scattering mechanism. Also, it is shown that
the role of gradient mechanism of scattering is decisive, giving
rise to a quite unexpected result. Specifically, it is demonstrated
that in this case the partial transmissions along two channels are
practically equal, and this effect is entirely due to the influence
of the gradient terms in the expression for partial attenuation
lengths. Due to the gradient-scattering mechanism that leads to
the strong interaction between channels, the diffusive regime
can take place.

Our results can help to understand specific properties of
surface scattering in waveguides and electronic devices, in
dependence on correlation properties of scattering profiles. In
particular, one can understand the conditions under which the
square-gradient mechanism of scattering has to be taken into
account.
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