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We consider the problem of inferring the interactions between a set of N binary variables from the knowledge
of their frequencies and pairwise correlations. The inference framework is based on the Hopfield model, a special
case of the Ising model where the interaction matrix is defined through a set of patterns in the variable space,
and is of rank much smaller than N . We show that maximum likelihood inference is deeply related to principal
component analysis when the amplitude of the pattern components ξ is negligible compared to

√
N . Using

techniques from statistical mechanics, we calculate the corrections to the patterns to the first order in ξ/
√

N .
We stress the need to generalize the Hopfield model and include both attractive and repulsive patterns in order
to correctly infer networks with sparse and strong interactions. We present a simple geometrical criterion to
decide how many attractive and repulsive patterns should be considered as a function of the sampling noise. We
moreover discuss how many sampled configurations are required for a good inference, as a function of the system
size N and of the amplitude ξ . The inference approach is illustrated on synthetic and biological data.
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I. INTRODUCTION

Understanding the patterns of correlations between the
components of complex systems is a fundamental issue
in various scientific fields, ranging from neurobiology to
genomic, from finance to sociology, etc. A recurrent problem is
to distinguish between direct correlations, produced by physio-
logical or functional interactions between the components, and
network correlations, which are mediated by other, third-party
components. Various approaches have been proposed to infer
interactions from correlations, exploiting concepts related
to statistical dimensional reduction [1], causality [2], the
maximum entropy principle [3], Markov random fields [4],
etc. A major practical and theoretical difficulty in doing so is
the paucity and the quality of data: reliable analysis should be
able to unveil real patterns of interactions, even if measures
are affected by undersampling or noisy sampling. The size of
the interaction network can be comparable to or larger than
the number of data, a situation referred to as high-dimensional
inference.

The purpose of the present work is to establish a quantitative
correspondence between two of those approaches, namely
the inference of Boltzmann machines (also called the Ising
model in statistical physics and undirected graphical models
for discrete variables in statistical inference [4]) and principal
component analysis (PCA) [1]. Inverse Boltzmann machines
(BMs) are a mathematically well-founded but computationally
challenging approach to infer interactions from correlations.
Our scope is to find the interactions among a set of N

variables σ = {σ1,σ2, . . . ,σN }. For simplicity, we consider
variables σi taking binary values ±1 only; the discussion
below can be easily extended to the case of a larger number
of values, e.g., to genomics where nucleotides are encoded
by four-letter symbols, or to proteomics where amino acids
can take 20 values. Assume that the average values of the
variables, mi = 〈σi〉, and the pairwise correlations, cij =
〈σiσj 〉, are measured, for instance, through the sampling of,

say, B configurations σ b, b = 1, . . . ,B. Solving the inverse
BM problem consists of finding the set of interactions Jij

and of local fields hi , defining an Ising model, such that
the equilibrium magnetizations and pairwise correlations
coincide with, respectively, mi and cij . Many procedures
have been designed to tackle this inverse problem, including
learning algorithms [5], advanced mean-field techniques [6,7],
message-passing procedures [8,9], cluster expansions [10,11],
graphical lasso [4] and its variants [12]. The performance
(accuracy, running time) of those procedures depends on
the structure of the underlying interaction network and on
the quality of the sampling, i.e., how large B is.

Principal component analysis (PCA) is a widely popular
tool in statistics to analyze the correlation structure of a set
of variables σ = {σ1,σ2, . . . ,σN }. The principle of PCA is
simple. One starts with the correlation matrix,

�ij = cij − mimj√(
1 − m2

i

) (
1 − m2

j

) , (1)

which expresses the covariance between variables σi and
σj , rescaled by the product of the expected fluctuations of
the variables taken separately. � is then diagonalized. The
projections of σ along the top eigenmodes (associated to the
largest eigenvalues of �) identify the uncorrelated variables
which contribute most to the total variance. If a few, say,
p (� N ), eigenvalues are notably larger than the remaining
ones PCA achieves an important dimensional reduction. The
determination of the number p of components to be retained is
a delicate issue. It may be done by comparing the spectrum of �

to the Marcenko-Pastur (MP) spectrum for the null hypothesis,
that is, for the correlation matrix calculated from the sampling
of B configurations of N independent variables [13]. Generally
those two spectra coincide when N is large, except for some
large or small eigenvalues of �, retained as the relevant
components.

051123-11539-3755/2011/83(5)/051123(22) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.051123


S. COCCO, R. MONASSON, AND V. SESSAK PHYSICAL REVIEW E 83, 051123 (2011)

The advantages of PCA are multiple, which explains its
success. The method is very versatile and fast as it only requires
to diagonalize the correlation matrix, which can be achieved
in a time polynomial in the size N of the problem. In addition,
PCA may be extended to incorporate prior information about
the components, which is particularly helpful for processing
noisy data. An illustration is sparse PCA, which looks for
principal components with many vanishing entries [14].

In this paper we present a conceptual and practical frame-
work which encompasses BM and PCA in a controlled way.
We show that PCA, with appropriate modifications, can be
used to infer BM and discuss in detail the amount of data
necessary to do so. Our framework is based on an extension
of a celebrated model of statistical mechanics, the Hopfield
model [15]. The Hopfield model was originally introduced to
model autoassociative memories, and relies on the notion of
patterns [16]. Informally speaking, a pattern ξ = (ξ1, . . . , ξN )
defines an attractive direction in the N -dimensional space of
the variable configurations, i.e., a direction along which σ

has a tendency to align. The norm of ξ characterizes the
strength of the attraction. While having only attractive patterns
makes sense for autoassociative memories, it is an unnecessary
assumption in the context of BMs. We therefore generalize
the Hopfield model by including repulsive patterns ξ̂ , that
is, directions in the N -dimensional space which σ tends to
be orthogonal to [17]. From a technical point of view, the
generalized Hopfield model with p attractive patterns and p̂

repulsive patterns is simply a particular case of BM with an
interaction matrix J of rank equal to p + p̂. If one knows
a priori that the rank of the true J is indeed small, i.e.,
p + p̂ � N , using the generalized Hopfield model rather than
a generic BM allows one to infer much fewer parameters and
to avoid overfitting in the presence of noisy data.

We first consider the case where the components ξi and
ξ̂i are very small compared to

√
N . In this limit case we

show that maximum likelihood (ML) inference with the
generalized Hopfield model is closely related to PCA. The
attractive patterns are in one-to-one correspondence with
the largest components of the correlation matrix, while the
repulsive patterns correspond to the smallest components,
which are normally discarded by PCA. When all patterns are
selected (p + p̂ = N ), inference with the generalized Hopfield
model is equivalent to the mean-field approximation [6].
Retaining only few significative components helps, in prin-
ciple, to remove noise from the data. We present a simple
geometrical criterion to decide in practice how many attractive
and repulsive patterns should be considered. We also address
the question of how many samples (B) are required for the
inference to be meaningful. We calculate the error bars over the
patterns due to the the finite sampling. We then analyze the case
where the data are sampled from a generalized Hopfield model,
and inference amounts to learning the patterns of that model.
When the system size N and the number of samples B are both
sent to infinity with a fixed ratio, α = B

N
, there is a critical value

of the ratio, αc, below which learning is not possible. The value
of αc depends on the amplitude of the pattern components. This
transition corresponds to the retarded learning phenomenon
discovered in the context of unsupervised learning with
continuous variables and rigorously studied in random matrix
and probability theories; see [13,18,19] for reviews. We

validate our findings on synthetic data generated from various
Ising models with known interactions, and present applications
to neurobiological and proteomic data.

In the case of a small system size N or of very strong compo-
nents, ξi, ξ̂i , the ML patterns do not coincide with the compo-
nents identified by PCA. We make use of techniques from the
statistical mechanics of disordered systems originally intended
to calculate averages over ensembles of interaction matrices to
compute the likelihood to the second order in powers of ξi√

N

for a given correlation matrix. We give explicit expressions
for the ML patterns in terms of nonlinear combinations of
the eigenvalues and eigenvectors of the correlation matrix.
These corrections are validated on synthetic data. Furthermore,
we discuss the issue of how many sampled configurations are
necessary to improve over the leading-order ML patterns as a
function of the amplitude of the pattern components and of the
system size.

The plan of the paper is as follows. In Sec. II we define the
generalized Hopfield model, the Bayesian inference frame-
work, and list our main results, that is, the expressions of the
patterns without and with corrections, the criterion to decide
the number of patterns, and the expressions for the error bars
on the inferred patterns. Tests on synthetic data are presented
in Sec. III. Section IV is devoted to the applications to real
biological data, i.e., recordings of the neocortical activity of
a behaving rat and consensus multisequence alignment of
the PDZ [post synaptic density protein (PSD95), Drosophila
disc large tumor suppressor (DlgA), and zonula occludens-1
protein (zo-1)] protein domain family. Readers interested in
applying our results rather than in their derivation need not
read the subsequent sections. Derivation of the log likelihood
with the generalized Hopfield model and of the main inference
formulas can be found in Sec. V. In Sec. VI we study the
minimal number B of samples necessary to achieve an accurate
inference, and how this number depends on the number of
patterns and on their amplitude. Perspectives and conclusions
are given in Sec. VII.

II. DEFINITIONS AND MAIN RESULTS

A. Generalized Hopfield model

We consider configurations σ = {σ1,σ2, . . . ,σN } of N

binary variables taking values σi = ±1, drawn according to
the probability

PH [σ |h,{ξμ},{ξ̂μ}] = exp(−E[σ ,h,{ξμ},{ξ̂μ}])
Z[h,{ξμ},{ξ̂μ}]

, (2)

where the energy E is given by

E[σ ,h,{ξμ},{ξ̂μ}] = −
N∑

i=1

hiσi − 1

2N

p∑
μ=1

(
N∑

i=1

ξ
μ

i σi

)2

+ 1

2N

p̂∑
μ=1

(
N∑

i=1

ξ̂
μ

i σi

)2

. (3)

The partition function Z in (2) ensures the normalization
of PH . The components of h = (h1, h2, . . . , hN ) are the
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local fields acting on the variables. The patterns ξμ =
{ξμ

1 ,ξ
μ

2 , . . . ,ξ
μ

N }, with μ = 1, 2, . . . , p, are attractive patterns:
they define preferred directions in the configuration space σ ,
along which the energy E decreases (if the fields are weak
enough). The patterns ξ̂

μ
, with μ = 1, 2, . . . , p̂, are repulsive

patterns: configurations σ aligned along those directions have
a larger energy. The pattern components, ξμ

i ,ξ̂
μ

i , and the fields
hi are real valued. Our model is a generalized version of
the original Hopfield model [15], which has only attractive
patterns and corresponds to p̂ = 0.

Energy function (3) implicitly defines the coupling Jij

between the variables σi and σj ,

Jij = 1

N

p∑
μ=1

ξ
μ

i ξ
μ

j − 1

N

p̂∑
μ=1

ξ̂
μ

i ξ̂
μ

j . (4)

Note that any interaction matrix Jij can be written under the
form (4), with p and p̂ being, respectively, the number of
positive and negative eigenvalues of J . Here, we assume that
the total number of patterns, p + p̂, i.e., the rank of the matrix
J is (much) smaller than the system size N .

The data to be analyzed consist of a set of B configurations
of the N spins, σ b, b = 1, . . . ,B. We assume that those
configurations are drawn, independently from each other, from
the distribution PH (2). The parameters defining PH , that is, the
fields h and the patterns {ξμ},{ξ̂μ} are unknown. Our scope is to
determine the most likely values for those fields and patterns
from the data. In Bayes inference framework the posterior
distribution for the fields and the patterns given the data {σ b}
is

P [h,{ξμ},{ξ̂μ}|{σ b}] = P0[h,{ξμ},{ξ̂μ}]
P1[{σ b}]

×
B∏

b=1

PH [σ b|h,{ξμ},{ξ̂μ}], (5)

where P0 encodes some a priori information over the param-
eters to be inferred and P1 is a normalization.

It is important to realize that many transformations affecting
the patterns can actually leave the coupling matrix J (4) and
the distribution PH unchanged. A simple example is given by
an orthogonal transformation O over the attractive patterns:
ξ

μ

i → ξ̄
μ

i =∑ν Oμνξν
i . This invariance entails that the prob-

lem of inferring the patterns is not statistically consistent: even
with an infinite number of sampled data no inference procedure
can distinguish between a Hopfield model with patterns {ξμ}
and another one with patterns {ξ̄μ}. However, the inference of
the couplings is statistically consistent: two distinct matrices
J define two distinct distributions over the data.

In the presence of repulsive patterns the complete invariance
group is the indefinite orthogonal group O(p,p̂), which has
1
2 (p + p̂)(p + p̂ − 1) generators. To select one particular set
of most likely patterns, we explicitly break the invariance
through P0. A convenient choice we use throughout this paper
is to impose that the weighted dot products of the pairs of

attractive and/or repulsive patterns vanish:

∑
i ξ

μ

i ξ ν
i

(
1 − m2

i

) = 0

[
1

2
p(p − 1) constraints

]
,

∑
i ξ

μ

i ξ̂ ν
i

(
1 − m2

i

) = 0 [pp̂ constraints],

∑
i ξ̂

μ

i ξ̂ ν
i

(
1 − m2

i

) = 0

[
1

2
p̂(p̂ − 1) constraints

]
.

(6)

In the following we will use the vocable maximum likelihood
inference to refer to the case where the prior P0 is used to break
the invariance only. P0 may also be chosen to impose specific
constraints on the pattern amplitude; see Sec. II E devoted to
regularization.

B. Maximum likelihood inference: Lowest order

Due to the absence of three- or higher-order-body interac-
tions in E (3), P depends on the data {σ b} only through the N

magnetizations mi and the 1
2N (N − 1) two-spin covariances

cij of the sampled data:

mi = 1

B

∑
b

σ b
i , cij = 1

B

∑
b

σ b
i σ b

j . (7)

We consider the correlation matrix � (1), and call λ1

� · · · � λk � λk+1 � · · · � λN its eigenvalues. vk denotes
the eigenvector attached to λk and normalized to unity. We
also introduce another notation to label the same eigenvalues
and eigenvectors in the reverse order: λ̂k ≡ λN+1−k and v̂k =
vN+1−k , e.g., λ̂1 is the smallest eigenvalue of �; the motivation
for doing so will be transparent below. Note that � is, by
construction, a semidefinite positive matrix: all its eigenvalues
are positive. In addition, the sum of the eigenvalues is equal to
N since �ii = 1,∀i. Hence the largest and smallest eigenvalues
are guaranteed to be, respectively, larger and smaller than unity.

In the following greek indices, i.e., μ,ν,ρ, correspond to
integers comprised between 1 and p or p̂, while roman letters,
i.e., i,j,k denote integers ranging from 1 to N .

Finding the patterns and fields maximizing P (5) is a
very hard computational task. We introduce an approximation
scheme for those parameters,

ξ
μ

i = (ξ 0)μi + (ξ 1)μi + · · · ,
ξ̂

μ

i = (ξ̂ 0)μi + (ξ̂ 1)μi + · · · , (8)

hi = (h0)i + (h1)i + · · · .
The derivation of this systematic approximation scheme and
the discussion of how much smaller the contributions get
with the order of the approximation can be found in Sec. V A.
To the lowest order the patterns are given by

(ξ 0)μi =
√

N

(
1 − 1

λμ

)
v

μ

i√
1 − m2

i

(1 � μ � p),

(ξ̂ 0)μi =
√

N

(
1

λ̂μ
− 1

)
v̂

μ

i√
1 − m2

i

(1 � μ � p̂).

(9)

The above expressions require that λμ > 1 for an attractive
pattern and λ̂μ < 1 for a repulsive pattern. Once the patterns
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are computed the interactions (J 0)ij can be calculated from
(4),

(J 0)ij = 1√(
1 − m2

i

)(
1 − m2

j

)
⎡
⎣ p∑

μ=1

(
1 − 1

λμ

)
v

μ

i v
μ

j

−
p̂∑

μ=1

(
1

λ̂μ
− 1

)
v̂

μ

i v̂
μ

j

⎤
⎦ . (10)

The values of the local fields are then obtained from

(h0)i = tanh−1 mi −
∑

j

(J 0)ij mj , (11)

which has a straightforward mean-field interpretation.
The above results are reminiscent of PCA, but differ in

several significative aspects. First, the patterns do not coincide
with the eigenvectors due to the presence of mi-dependent
terms. Second, the presence of the λμ-dependent factor in
(9) discounts the patterns corresponding to eigenvalues close
to unity. This effect is easy to understand in the limit case
of independent spins and perfect sampling (B → ∞): � is
the identity matrix, which gives λμ = 1,∀μ, and the patterns
rightly vanish. Third, and most importantly, not only the largest
but also the smallest eigenmodes must be taken into account
to calculate the interactions.

The couplings J 0 (10) calculated from the lowest order
approximation for the patterns are closely related to the mean-
field (MF) interactions [6],

JMF
ij = − (�−1)ij√(

1 − m2
i

)(
1 − m2

j

) , (12)

where �−1 denotes the inverse matrix of � (1). However, while
all the eigenmodes of � are taken into account in the MF
interactions (12), our lowest-order interactions (10) include
contributions from the p largest and the p̂ smallest eigenmodes
only. As the values of p,p̂ can be chosen depending on the
number of available data, the generalized Hopfield interactions
(10) is a priori less sensitive to overfitting. In particular, it is
possible to avoid considering the bulk part of the spectrum
of �, which is essentially due to undersampling ( [13] and
Sec. VI B 2).

C. Sampling error bars on the patterns

The posterior distribution P can locally be approximated
with a Gaussian distribution centered in the most likely values

for the patterns, {(ξ 0)μ}, {(ξ̂ 0
)μ}, and the fields h0. We obtain

the covariance matrix of the fluctuations of the patterns around
their most likely values,

〈
	ξ

μ

i 	ξν
j

〉 = N [Mξξ ]μν

ij

B

√(
1 − m2

i

)(
1 − m2

j

) , (13)

and identical expressions for 〈	ξ
μ

i 	ξ̂ ν
j 〉 and 〈	ξ̂

μ

i 	ξ̂ ν
j 〉

upon substitution of [Mξξ ]μν

ij with, respectively, [Mξ ξ̂ ]μν

ij and
[Mξ̂ ξ̂ ]μν

ij . The entries of the M matrices are

[
Mξξ

]μν

ij
= δμν

⎡
⎣ N−p̂∑

k=p+1

vk
i vk

j

|λk − λ̂μ| +
p∑

ρ=1

|λμ − 1|λρ v
ρ

i v
ρ

j

G1(λρ,λμ)

+
p̂∑

ρ=1

|λμ − 1|λ̂ρ v̂
ρ

i v̂
ρ

j

G1(λ̂ρ,λμ)

⎤
⎦+ G2(λμ,λν)

G1(λμ,λν)
v

μ

j vν
i ,

[
Mξ ξ̂

]μν

ij
= G2(λμ,λ̂ν)

G1(λμ,λ̂ν)
v

μ

j v̂ν
i , (14)

and [Mξ̂ ξ̂ ]μν

ij is obtained from [Mξξ ]μν

ij upon substitution of

λμ,λν,v
μ

i ,vν
i with, respectively, λ̂μ,λ̂ν,v̂

μ

i ,v̂ν
i . Functions G1

and G2 are defined through

G1(x,y) = (x |y − 1| + y |x − 1|)2,

G2(x,y) =
√

x y |x − 1| |y − 1|. (15)

The covariance matrix of the fluctuations of the fields is given
in Sec. V D. Error bars on the couplings (4) can be calculated
from the ones on the patterns.

Formula (13) tells us how significative are the inferred
values of the patterns in the presence of finite sampling.
For instance, if the error bar 〈(	ξ

μ

i )2〉1/2 is larger than or
comparable with the pattern component (ξ 0)μi calculated from
(9) then this component is statistically compatible with zero.
According to formula (13) we expect error bars of the order of

1√
α

over the pattern components, where α = B
N

.

D. Optimal numbers of attractive and repulsive patterns

We now determine the numbers of patterns, p and p̂,
based on a simple geometric criterion; the reader is referred to
Sec. V E for detailed calculations. To each attractive pattern
ξμ we associate the rescaled pattern (ξμ)′, whose components

are (ξμ

i )′ = ξ
μ

i

√
1 − m2

i /
√

N . We write

(ξμ)′ = √
aμ vμ + βμ, (16)

where aμ is a positive coefficient, and βμ is a vector orthogonal
to all rescaled patterns by virtue of (6) (Fig. 1). Our lowest
order formula (9) for the maximum likelihood estimators gives
aμ = 1 − 1

λμ and βμ = 0; see Fig. 1. This result is, to some
extent, misleading. While the most likely value for the vector
βμ is indeed zero, its norm is almost surely not vanishing!
The statement may appear paradoxical but is well known
to hold for stochastic variables: while the average or typical
value of the location of an isotropic random walk vanishes, its
average squared displacement does not. Here, βμ represents
the stochastic difference between the pattern to be inferred
and the direction of one of the largest eigenvectors of �. We
expect the squared norm (βμ)2 to have a nonzero value in the
N,B → ∞ limit at fixed ratio α = B

N
> 0. Its average value

can be straightforwardly computed from formula (14),

〈(βμ)2〉 = 1

B

∑
i

[Mξξ ]μμ

ii = 1

B

N−p̂∑
k=p+1

1

λμ − λk
, (17)
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λ

θ

β
ξ'

v(ξ ) =0'

a v

1− 1

FIG. 1. Geometrical representation of identity (16), expressing
the rescaled pattern ξ ′ as a linear combination of the eigenvector v
and of the orthogonal fluctuations β. The most likely rescaled pattern,
(ξ ′)0, corresponds to a = 1 − 1

λ
,β = 0. The dashed arc has radius√

1 − 1
λ
. The subscript μ has been dropped to lighten notations.

where μ is the index of the pattern. We define the angle θμ

between the eigenvector vμ and the rescaled pattern (ξμ)′
through

θμ = sin−1

√
〈(βμ)2〉
1 − 1

λμ

; (18)

see Fig. 1. Small values of θμ correspond to reliable patterns,
while large θμ indicate that the maximum likelihood estimator
of the μth pattern is plagued by noise. The value of p such that
θp is, say, about π

4 is our estimate for the number of attractive
patterns.

The above approach can be easily repeated in the case of
repulsive patterns. We obtain, with obvious notations,

〈(β̂μ
)2〉 = 1

B

∑
i

[Mξ̂ξ̂ ]μμ

ii = 1

B

N−p̂∑
k=p+1

1

λk − λ̂μ
, (19)

and

θ̂μ = sin−1

√√√√ 〈(β̂μ
)2〉

1
λ̂μ

− 1
. (20)

The value of p̂ such that θ̂ p̂ is, say, about π
4 is our estimate for

the number of repulsive patterns.

E. Regularization

So far we have considered that the prior probability P0 over
the patterns was uniform, and was used to break the invariance
through the conditions (6). The prior probability can be used
to constrain the amplitude of the patterns. For instance, we can
introduce a Gaussian prior on the patterns,

P0 ∝ exp

⎡
⎣−γ

2

N∑
i=1

(
1 − m2

i

)⎛⎝ p∑
μ=1

(
ξ

μ

i

)2 +
p̂∑

μ=1

(
ξ̂

μ

i

)2⎞⎠
⎤
⎦ ,

(21)

which penalizes large pattern components [11]. The presence
of the (1 − m2

i ) factor entails that the effective strength
of the regularization term, γ (1 − m2

i ), depends on the site
magnetization. Regularization is particularly useful in the case
of severe undersampling. With regularization (21) the lowest

order expression for the pattern is still given by (9), after
carrying out the following transformation on the eigenvalues,

λμ → λμ − γ (μ = 1, . . . ,p),

λk → λk (k = p + 1, . . . ,N − p̂), (22)

λ̂μ → λ̂μ + γ (μ = 1, . . . ,p̂).

The values of p and p̂ must be such that the transformed
λp and λ̂p̂ are, respectively, larger and smaller than unity.
Regularization (21) ensures that the couplings do not blow up,
even in the presence of zero eigenvalues in �. Applications will
be presented in Secs. III and IV. The value of the regularization
strength γ can be chosen based on a Bayesian criterion [20].

F. Maximum likelihood inference: First corrections

We now give the expression for the first order correction to
the attractive patterns,

(ξ 1)μi =
√

N

1 − m2
i

N∑
k=1

Akμ Bkμ vk
i , (23)

where

Akμ = CkCμ +
⎛
⎝ p∑

ρ=1

+
N∑

ρ=N+1−p̂

⎞
⎠ (λρ − 1)

×
∑

i

vk
i v

μ

i

⎡
⎣(vρ

i )2 + 2 mi Cρ v
ρ

i√
1 − m2

i

⎤
⎦ (24)

and

Bkμ =

⎧⎪⎨
⎪⎩

1
2

√
λμ

λμ−1 if k � p,

√
λμ(λμ−1)
λμ−λk if k � p + 1

(25)

and

Ck =
∑

i

mi v
k
i√

1 − m2
i

⎛
⎝ p∑

ρ=1

+
N∑

ρ=N+1−p̂

⎞
⎠ (λρ − 1)

(
v

ρ

i

)2
. (26)

Similarly, the first corrections to the repulsive patterns are

(ξ̂ 1)μi =
√

N

1 − m2
i

N∑
k=1

ÂkμB̂kμvk
i . (27)

The definition of Âkμ is identical to (24), with Cρ and v
ρ

i

replaced with, respectively, CN+1−ρ and v̂
ρ

i . Finally,

B̂kμ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2

√
λ̂μ

1 − λ̂μ
if k � N − p̂ + 1,

√
λ̂μ(1 − λ̂μ)

λ̂μ − λk
if k � N − p̂.

(28)

The first order corrections to the fields hi can be found in
Sec. V F.

It is interesting to note that the corrections to the pattern
ξμ involve nonlinear interactions between the eigenmodes
of �. Formula (24) for Akμ shows that modes μ and k

interact through a multibody overlap with mode ρ (provided
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λρ �= 1). In addition, Akμ does not a priori vanish for k �
p + 1: corrections to the patterns have nonzero projections
over the “noisy” modes of �. In other words, valuable
information over the true values of the patterns can be extracted
from the eigenmodes of � associated to bulk eigenvalues.

G. Quality of the inference vs size of the data set

The accuracy ε on the inferred pattern is limited both by
the sampling error resulting from the finite number of data
and the intrinsic error due to the expansion (8). According to
Sec. II C, the sampling error on the pattern component is

expected to decrease as ∼
√

N
B

. The intrinsic error depends on
the order of the expansion, on the size N , and on the amplitude
of the patterns.

No inference is possible unless the ratio α = B
N

ex-
ceeds a critical value, referred to as αc in the following
(Sec. VI A 2). This phenomenon is similar to the retarded learn-
ing phase transition discovered in the context of unsupervised
learning [18].

Assume that the pattern components ξi are of the order
of 1 (compared to N ), that is, that the couplings are almost
all nonzero and of the order of 1

N
. Then, the intrinsic error is

of the order of 1
N

with the lowest order formula (9), and of
the order of 1

N2 when corrections (23) are taken into account;
for a more precise statement see Sec. V A and formula (49).
The corresponding values of B at which saturation takes place
are, respectively, of the order of N3 and N5. The behavior
of the relative error between the true and inferred patterns,
ε, is summarized in Fig. 2. In general we expect that B ∼
N1+2a samples at least are required to have a more accurate
inference with ath order patterns than with (a − 1)th order
patterns. Furthermore, there is no need to sample more than
N3+2a configurations when using the ath order expression for
the patterns.

If the system has O(N ) nonvanishing couplings Jij of the
order of J , then patterns have few large components, of the
order of

√
J . In this case the intrinsic error over the patterns

will be of the order of J with the lowest order inference
formulas, and of the order of J 2 with the first corrections.
The numbers of sampled configurations, B, required to reach

B5

−2

−1

1
~ (N/B)

1/2

with corrections

lowest order

N

N

NN N3

ε

FIG. 2. Schematic behavior of the error ε on the inferred patterns
as a function of the number B of sampled configurations and for a
problem size equal to N , when the pattern components are of the
order of unity compared to N . See main text for the case of few large
pattern components, of the order of

√
N , i.e., couplings J of the order

of 1.

those minimal errors will be, respectively, of the order of N
J 2

and N
J 4 .

III. TESTS ON SYNTHETIC DATA

In this section we test the formulas of Sec. II for the patterns
and fields against synthetic data generated from various Ising
models with known interactions. We consider four models:

(i) Model A is a Hopfield model with N = 100 spins,
p (= 1 or 3) attractive patterns, and no repulsive pattern
(p̂ = 0). The components of the patterns are Gaussian random
variables with zero mean and standard deviation ξ , specified
later. The local fields hi are set equal to zero.

(ii) Model B: Model B consists of N spins, grouped into
four blocks of N

4 spins each. The p = 3 patterns have

uniform components over the blocks: ξ 1 = 2
√

3
5 (0,1,1,1), ξ 2 =

2
5 (

√
3,1, − 2,1), ξ 3 = 2

5 (
√

3, − 2,1,1). The fields are set to
zero. Those choices ensure that the patterns are orthogonal
to each other, and have a weak intensity: on average, |ξi |2 =
9
25 < 1.
(iii) Model C is a very simple Ising model where all fields

and couplings vanish, except coupling J12 ≡ J between the
first two spins.

(iv) Model D is an Ising model with N = 50 spins, on an
Erdos-Renyi random graph with average connectivity (number
of neighbors for each spin) equal to d = 5 and coupling values
J distributed uniformly between −1 and 1. Model D is an
instance of the Viana-Bray model [21]. In the thermodynamic
limit N → ∞ this model is in the spin glass phase since
d〈tanh2(J )〉J > 1 [21].

For each one of the models above, the magnetizations and
pairwise correlations can be estimated through the sampling
of B configurations at equilibrium using Monte Carlo simula-
tions. This allows us to estimate the consequence of sampling
noise on the inference quality by varying the value of B.
Furthermore, for models B and C, it is possible to obtain the
exact Gibbs values for mi and cij (corresponding to a perfect
sampling, B = ∞).1 This allows us to study the systematic
error resulting from formulas (9),(23),(27), irrespectively of
the sampling noise.

Model A is used to test the lower order formula for the
patterns, and how the quality of inference depends on the
amplitude of the patterns. Models C and D are highly diluted
networks with strong J = O(1) interactions, while models A
and B correspond to dense networks with weak J = O( 1

N
)

couplings. Models C and D are therefore harder benchmarks
for the generalized Hopfield model. In addition, the couplings
implicitly define, through (4), both attractive and repulsive
patterns. Those models can thus be used to determine how
much repulsive patterns are required for an accurate inference
of general Ising models.

1As a result of the block structure the energy (3) depends on the
N -spin configuration through the four block magnetizations (sums
of the N

4 spins in each block) only. Hence the correlations cij and
magnetizations mi can be calculated in a time growing as N4 (instead
of 2N ), which allows us to reach sizes equal to a few hundred easily.
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FIG. 3. Application of formula (9) to two sets of B = 40 (top)
and 400 (bottom) configurations, randomly generated from the
distribution PH (2) for model A with p = 1 pattern. The standard
deviation of the pattern components is ξ = 0.7. Left: comparison of
the true and inferred couplings for each pair (i,j ). Right: comparison
of the true and inferred components ξi of the pattern, with the error
bars calculated from (13). The dashed lines have slope unity. Inference
is done with p = 1 attractive pattern and no repulsive pattern.

A. Dominant order formula for the patterns

We start with model A with p = 1 pattern. In this case,
no ambiguity over the inferred pattern is possible since the
energy E is not invariant under continuous transformations;
see Sec. II A. We may therefore directly compare the true
and the inferred patterns. Figures 3 and 4 show the accuracy
of the lowest order formula for the patterns, Eq. (9). If the
pattern components are weak, each sampled configuration σ

is weakly aligned along the pattern ξ . If the number B of
sampled configurations is small, the largest eigenvector of � is
uncorrelated with the pattern direction (Fig. 3). When the size
of the data set is sufficiently large, i.e., B > αcN (Sec. VI A 2),
formula (9) captures the right direction of the pattern, and the
inferred couplings are representative of the true interactions.
Conversely, if the amplitudes of the components of the pattern
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FIG. 4. Same as Fig. 3, but with a standard deviation ξ = 1.3
instead of ξ = 0.7. The amplitude is strong enough to magnetize the
configurations along the pattern; see Secs. VI A 1 and VI B 3.

1 10block (a,b)
0

0.02

0.04

0.06

0.08

0.1

0.12

ΔJ
ab

 / 
J ab

 N = 52
 N = 100
 N = 200

0 0.01 0.02
1/N

0

0.04

0.08

av
er

ag
e 

ΔJ
/J

FIG. 5. Relative differences between the true and the inferred
couplings, 	Jab/Jab, for three system sizes N . The inference was
done using the lowest order ML formulas (9) for the patterns. Data
were generated from model B (perfect sampling); there are a priori
ten distinct values of the couplings, one for each pair of blocks a

and b. Inset: average value of 	Jab/Jab as a function of 1
N

. Circles,
squares, and diamonds correspond to, respectively, N = 52, 100, and
200 spins.

ξ are strong enough, each sampled configuration σ is likely
to be aligned along the pattern. A small number B (compared
to N ) of those configurations suffice to determine the pattern
(Fig. 4). In the latter case, we see that the largest components
ξi are systematically underestimated. A systematic study of
how large B should be for the inference to be reliable can be
found in Sec. VI.

We now use model B to generate the data. As model B

includes more than one pattern, the inferred patterns cannot
be compared to the true one easily due to the invariance of
Sec. II A. We therefore compare in Fig. 5 the true couplings and
the interactions found using (9) for three sizes, N = 52, 100,
and 200. The size N sets also the amplitude of the couplings,
which decreases as 1

N
from (4). As the patterns are uniform

among each one of the four blocks there are ten possible values
for the couplings Jij , depending on the labels a and b of the
blocks to which i and j belong, with 1 � a � b � 4. For
N = 100 spins, the relative errors range between 3% and 5.5%.
When the number of spins is doubled (respectively, halved)
the relative errors are about two times smaller (respectively,
larger). This result confirms that formula (9) is exact in the
infinite N limit only, and that corrections of the order of O( 1

N
)

are expected for finite system sizes (inset of Fig. 5). This
scaling was expected from Sec. II G.

We now consider model C. For perfect sampling (B = ∞)
the correlation matrix (1) is

� =

⎛
⎜⎜⎜⎝

1 tanh J 0 · · · 0
tanh J 1 0 · · · 0

0 0 1 · · · 0
0 · · · 0 1 0
0 · · · 0 0 1

⎞
⎟⎟⎟⎠ . (29)
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FIG. 6. Inferred coupling J 0 between the first two spins of
model C, within lowest order ML, and as a function of the true
coupling J . Values of p and p̂ are shown in the figure.

The top eigenvalue, λ1 = 1 + tanh J > 1, and the smallest
eigenvalue, λ̂1 = λN = 1 − tanh J < 1, are attached to the
eigenvectors

v1 = 1√
2

⎛
⎜⎜⎜⎜⎝

1
1
0
...
0

⎞
⎟⎟⎟⎟⎠ , v̂1 = 1√

2

⎛
⎜⎜⎜⎜⎝

1
−1

0
...

0

⎞
⎟⎟⎟⎟⎠ . (30)

The remaining N − 2 eigenvalues are equal to 1. Using
formula (10) for the lowest order coupling, J 0, we find that
those eigenmodes do not contribute and that the interaction
can take three values, depending on the choices for p and p̂:

(J 0)p=1,p̂=0 = tanh J

2 (1 + tanh J )
� J

2
− J 2

2
+ J 3

3
+ · · · ,

(J 0)p=0,p̂=1 = tanh J

2 (1 − tanh J )
� J

2
+ J 2

2
+ J 3

3
+ · · · ,

(J 0)p=1,p̂=1 = tanh J

1 − tanh2 J
� J + 2 J 3

3
+ · · · . (31)

Those expressions are plotted in Fig. 6. The coupling (J 0)1,0

(dashed line), corresponding to the standard Hopfield model,
saturates at the value 1

4 and does not diverge with J . Even
the small J behavior, (J 0)1,0 � J

2 , is erroneous. Adding the
repulsive pattern leads to a visible improvement, as fluctuations
of the spin configurations along the eigenvector v̂1 (one spin
up and the other down) are penalized. The inferred coupling,
(J 0)1,1 (bold line), is now correct for small J , (J 0)1,1 � J , and
diverges for large values of J .

We now turn to model D. Figure 7 compares the inferred
and true couplings for B = 4500 sampled configurations. The
generalized Hopfield model outperforms the standard Hopfield
model (p̂ = 0), showing the importance of repulsive patterns
in the inference of sparse networks with strong interactions.
Large couplings, either positive or negative, are overestimated
by the lowest order ML estimators for the patterns.

B. Error bars and criterion for p, p̂

An illustration of formula (13) for the error bars is shown
in Fig. 3, where we compare the components of the true
pattern used to generate data in model A with the inferred

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
p=9

-1 -0.5 0 0.5 1

-2

-1

0

1

2

p=35

p=9

^

FIG. 7. Inferred vs true couplings for model D, with B =
4500 sampled configurations. Left: Hopfield model with p = 9
(corresponding to the optimal number of patterns selected by the
geometrical criterion); no repulsive pattern is considered (p̂ = 0).
Right: generalized Hopfield model with (p,p̂) = (9,35) (optimal
numbers).

one, (ξ 0)i , and the error bar,
√

〈(	ξi)2〉. For small α = B
N

the inferred pattern components are uncorrelated with the true
pattern and compatible with zero within the error bars. For
larger values of α, the discrepancy between the inferred and
the true components are stochastic quantities of the order of
the calculated error bars.

We report in Fig. 8 the tests of the criterion for determining
p and p̂ on artificially generated data from an extension
of model A with p = 3 patterns. For very poor sampling
(Fig. 8, top) the angle θ1 is close to π

4 : even the first pattern
cannot be inferred correctly. This prediction is confirmed by
the very poor comparison of the true interactions and the
inferred couplings calculated from the first inferred pattern. For
moderately accurate sampling (Fig. 8, middle) the strongest
pattern can be inferred; the accuracy on the inferred couplings
worsens when the second pattern is added. Excellent sampling
allows for a good inference of the structure of the underlying
model: the angle θμ is small for μ = 1,2,3 (Fig. 8, bottom), and
larger than π

4 for μ � 4 (not shown). Not surprisingly, large
couplings are systematically affected by errors. Those errors
can be corrected by taking into account O( ξ√

N
) corrections

to the patterns if the number of data, B, is large enough
(Sec. VI).

Figure 9 compares the inferred and true couplings for
B = 4500 sampled configurations of model D. The optimal
number of patterns given by the geometrical criterion is
(p = 9,p̂ = 35); see Fig. 7. Hence most of the components of
� are retained and the interactions inferred with the generalized
Hopfield model do not differ much from the MF couplings.

C. Corrections to the patterns

Formula (23) for the corrections to the patterns was tested
on model B in the case of perfect sampling. Results are reported
in Fig. 10 and show that the errors in the inferred couplings
are much smaller than in Fig. 5. The inset of Fig. 10 shows
that the relative errors are of the order of 1

N2 only. This scaling
was expected from Sec. II G. Pushing our expansion of ξ to
the next order in powers of 1

N
could in principle give explicit

expressions for those corrections. We have also tested our
higher order formula when the fields hi are nonzero. For
instance, we have considered the same Hopfield model with
p = 3 patterns as above, and with block pseudomagnetizations
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FIG. 8. Criterion to decide the number p of patterns and per-
formance of the ML inference procedure for three different sizes
of the data set, B. Left: inferred vs true interactions with p = 1, 2,
or 3 patterns; the dashed line has slope unity. Right: coefficients
aμ = (ρμ)2 and bμ = 〈(βμ)2〉 vs pattern index μ, and angles θμ,
divided by π

2 ; see definitions (16) and (18). For each value of B

one data set was generated from model A with p = 3 patterns, and
standard deviations ξ 1 = .95, ξ 2 = 0.83, and ξ 3 = 0.77.

t = 1
15 (2

√
3,2,2, − 4), see Sec. V A. Hence t was orthogonal

to the patterns, and the field components were simply given
by hi = tanh−1 ti , according to (38).2 For N = 52 spins the
relative error over the pseudomagnetizations (averaged over
the four blocks a) was 	ta

ta
� 0.0301 with the large-N formula

(9) and 	ta
ta

� 0.0029 with the finite-N formulas (23) and (78).

Corrections to the PCA were also tested when data are
corrupted by sampling noise. We compare in Fig. 11 the
components of the pattern of model A found with the lowest
order approximation (9) and with our first order formulas (23)
(case of strong pattern). A clear improvement in the quality
of the inference is observed, even when the sampling noise is

2The corresponding magnetizations were � (−0.26,0.13,0.13,

0.23) for N = 52 spins.
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FIG. 9. Inferred vs true couplings for model D, with B =
4500 sampled configurations. Left: generalized Hopfield model
with (p,p̂) = (9,10) and (11,39) (corresponding to the numbers
of eigenvalues respectively larger and smaller than unity). Right:
angles θμ and θ̂μ for, respectively, attractive (triangle) and repulsive
(diamond) patterns.

strong. Our second example is model B. We show in Fig. 12
the relative errors

εJ = 2

N (N − 1)

∑
i<j

∣∣∣∣	Jij

Jij

∣∣∣∣ (32)

between the true and the inferred couplings, with formulas
(9) and (23), as a function of the number of sampled
configurations, B, and for N = 52 spins. As B increases,
the relative error with the lowest order patterns (PCA) first
decreases as B−1/2, then saturates to the value � 0.0794, as
expected from Fig. 5. The relative error with the correction to
the patterns also decreases as B−1/2, and is expected to saturate
to the lower value � 0.003 74 (Fig. 10). We remark that the
gain in accuracy over the inferred couplings resulting from
the corrections (23) to the patterns is obtained only when B is
very large. B ∼ N3 configurations at least should be sampled
to obtain an improvement over the lowest order formula (9).
This scaling holds when the couplings are weak, and decrease
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FIG. 10. Relative differences between the true and the inferred
couplings, 	Jab/Jab, as a function of the system size N . The inference
was done using the finite-N ML formulas (9) and (23) for the patterns.
Data were generated from a perfect sampling of the equilibrium
distribution of a Hopfield model with p = 3 patterns and four blocks
of N

4 spins; see main text. a and b are the block indices. Inset: average
value of 	Jab/Jab as a function of 1

N2 . Circles, squares, and diamonds
correspond to, respectively, N = 52, 100, and 200 spins.
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FIG. 11. True vs inferred components of the patterns ξi for the
model with N = 100 spins described in Fig. 4. Full circles are the
result of the lowest order inference formula (9), while empty circles
show the outcome of the first order formulas (23).

as 1
N

. If the interaction network is dilute and carries couplings
J = O(1), we expect that B ∼ N/J 2 configurations have to be
sampled to make the first corrections to the patterns effective.

We have applied our formula (23) to calculate the first
correction to the couplings for models C and D. For model C,
we find that the correction to the coupling (J 0)1,1 (31) vanishes;
this result is due to the fact that (J 0)1,1 is already correct to the
second order in J , and that higher order corrections would be
needed. The corrections to the coupling (J 0)1,0 are equal to

(J 1)1,0 = tanh J

2
√

2
+ tanh J (1 + tanh J )

16

=
(

1

16
+ 1

2
√

2

)
J + J 2

16
+ · · · . (33)

The resulting coupling (J 0 + J 1)10 is plotted as a function of
J in Fig. 6, and qualitatively improves over the lowest order
result (31). In particular, for small J , the inferred coupling
is now (J 0 + J 1)10 � 0.916 J − 0.438 J 2, which is definitely
closer to J than (J 0

1,0) (31). In the case of model D, the first
order corrections improve only slightly the estimates for the
large couplings.
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FIG. 12. Relative error between the inferred and true couplings
for model B (with N = 52 spins) vs number of sampled configura-
tions, B. The two curves correspond to the inference done with the
zeroth order formula (9) (black circles) and the first order formula (23)
(squares). Each data point is the average over ten samples; relative
error bars are about 1%, and are much smaller than the symbol size.
The asymptotic value of the errors, corresponding to perfect sampling
(B = ∞), are extracted from Figs. 5 and 10.

IV. APPLICATION TO BIOLOGICAL DATA

In this section we show how the inference approach can
be applied to real biological data, and compared to other
Boltzmann machine learning procedures.

A. Cortical activity of the rat

We have first analyzed data coming from the recording of
37 neurons in the prefrontal cortex of rats. The experiment,
done by Peyrache, Battaglia, and their collaborators, consists
in recording the neural activity during a task and during the
slow wave sleep preceding and following the learning of the
task [22]. PCA allowed Peyrache et al. to identify patterns in
the activity, which are generated when the rat learns a task and
are replayed during the sleep [22].

We have analyzed with the generalized Hopfield model the
data corresponding to a 20-min-long recording of the activity
of a rat during the task (data shown in Fig. 1 of [22]). The
raster plot was binned with a 10-msec window to obtain
binary configurations of the neurons (active or silent in the
time bin). We have then calculated the magnetizations mi

and the pairwise correlations cij . We calculate the couplings
with p attractive and p̂ repulsive patterns according to (9)
and (10). The numbers p and p̂ are calculated according to
the geometrical criteria (18) and (20). Hereafter, we compare
the couplings obtained this way to the ones found with the
adaptive cluster expansion (ACE) of [11], which is not based
on the expansion of the log likelihood used in the present work.

In Fig. 13 (top) we compare the Hopfield (p̂ = 0) couplings
with p = 4,8,17 selected patterns to the ACE couplings. The
agreement is quite good for p∗ = 8. In [22] p = 6 patterns
were kept in the PCA; this value is close to the optimal value,
p = 8, that we find using the geometrical criterion. Addition
of repulsive patterns (bottom of Fig. 13) slightly improves
the similarity with the ACE couplings. We find, indeed, that
the couplings Jij are rather weak, and that repulsive patterns
do not play an important role. Calculating the couplings
with all eigenmodes (p = 17,p̂ = 20) is equivalent to the
mean-field (MF) approximation. A clear discrepancy between
the Hopfield and the ACE couplings is found for the largest
(in absolute value) interactions. We have checked that this
discrepancy is not reduced when the first order corrections to
the patterns are included, presumably because the number of
data is not sufficient. Couplings are not significatively changed
in the presence of the regularization (21) for sensible values
of γ .

B. Protein-domain families

We have next analyzed the alignement of a family of
240 sequences of PDZ, a commonly encountered domain
binding the C terminus of proteins, with 92 amino acids [23].
Ranganathan and collaborators have elaborated an approach,
called statistical coupling analysis (SCA), to extract inter-
actions between residues by using evolutionary data for
the protein, i.e., by sampling the single-site and pairwise
frequencies from multisequence alignments of the family [24].
Briefly speaking, SCA consists of doing a PCA analysis of a
weighted correlation matrix Di�ijDj where the weight Di on
site i is small for poorly conserved residues [23].
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FIG. 13. Couplings calculated with the generalized Hopfield
model vs couplings calculated with the adaptive cluster expansion
of [11] for 37 cells recorded in the prefrontal cortex of a behaving
rat. Top: Hopfield model with p = 4, 8 (corresponding to the optimal
number of patterns selected by the geometrical criterion), and 17; no
repulsive pattern is considered (p̂ = 0). Bottom; generalized Hopfield
model with (p,p̂) = (4,4), (8,8) (optimal numbers), and (17,20)
(corresponding to the numbers of eigenvalues respectively larger and
smaller than unity).

We have taken the binary data representation of the 240
PDZ sequences in the alignment given in the supplemental
material [25]. This consensus approximation amounts to
replacing the amino acid on each site (20 possible types) with
a binary variable σb

i , equal to +1 if the amino acid i in the bth
sequence is the most common amino acid at that position in
the alignment, to −1 otherwise. The consensus representation
does not allow us to keep track of all the information contained
in the alignment but is indicative of the conservation pattern
in the family.

The inferred couplings, denoted by J 92, are shown in
Fig. 14. As in the case of model D in Sec. III we find
that proteomic data are better accounted with the generalized
Hopfield model than with the standard Hopfield model:
repulsive patterns seems necessary to recover the couplings
found with the ACE method. The couplings found with
attractive patterns only are not correlated with the ACE
couplings (top of Fig. 14), while the agreement is quite good
when taking into account attractive and repulsive patterns; the
optimal numbers of patterns are p = 4 and p̂ = 10.

We have also calculated the couplings when discarding
all but the most weighted sites. More precisely, we have
recalculated the distribution of the weights Di as in [23,25],
and found a bimodal distribution, which suggests a natural
cutoff between large and small weights. We have redone the
previous inference when keeping only the 44 residues (out of
92) with the largest weights, corresponding to the red sites in
Fig. C of [23]. The resulting interactions, denoted by J 44, are
shown in Fig. 15. Again we compare the couplings found with
the Hopfield model and with the ACE. The agreement is not
good with attractive patterns only (as done in usual PCA), and
is very good when repulsive patterns are included.

An interesting question is whether the couplings obtained
between the 44 most conserved residues are strongly affected
by the presence or the absence of the remaining 48 residues
in the inference. The interactions in the 44-site model are
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FIG. 14. Couplings calculated with the generalized Hopfield
model vs coupling calculated with the adaptive cluster expansion
for 92 amino acids in the PDZ domain. The values of p,p̂ are given
in the figure. Note that p̂ = 0 for the top panels. The middle panels
correspond to the optimal values for the number of patterns.

effective and a priori differ from their values in the 92-site
model, in that they account for chains of interactions going
through the remaining 48 sites. Nevertheless, we find that the
couplings calculated with all 92 residues and the couplings
obtained from the subset of 44 sites with large weights are
similar; see Fig. 16. This result suggests that the 48 residues
removed from our second analysis are not strongly interacting
with the 44 retained sites.

V. EXPANSION OF THE CROSS ENTROPY AND
MAXIMUM LIKELIHOOD INFERENCE

This section is intended to provide the derivations of
the results announced in Sec. II. Maximizing the posterior
probability (5) with respect to the patterns and the fields is
equivalent to minimizing the cross entropy of the Hopfield
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FIG. 15. Same as Fig. 14 when retaining the 44 residues with the
largest weights Di only [23]. The values of p,p̂ are given in the figure.
Note that p̂ = 0 for the top panels. The middle panels correspond to
the optimal values for the number of patterns.
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FIG. 16. Comparison between the couplings Jij calculated with
all 92 residues and with the 44 most weighted residues only, for each
one of the 44 × 43/2 pairs (i,j ) of residues.

model given the data,

�[h,{ξμ},{σ b}] = lnZ[h,{ξμ}] + U [h,{ξμ},{σ b}], (34)

where Z is the partition function appearing in (2),

Z[h,{ξμ}] =
∑

σ

exp(−E[σ ,h,{ξμ}]), (35)

and U is the average value of the energy E (3) over the sampled
configurations:

U [h,{ξμ},{σ b}] = −
N∑

i=1

himi − 1

2

∑
i,j

Jij cij , (36)

where the couplings Jij are calculated from the patterns
according to (4). The calculation of the partition function,
which is defined as a sum over 2N configurations, cannot
generally be done in a reasonable time for large sizes N . In
the next section we show how the use of statistical mechanics
techniques allows one to obtain a systematic expansion of Z

and thus of the cross entropy,

� = �0 + �1 + · · · , (37)

in powers on ξi√
N

and ξ̂i√
N

.

A. Expansion of the free energy of the Hopfield model
in powers of ξi√

N
,

ξ̂i√
N

To lighten notations calculations are presented for the case
of attractive patterns only. We explain at the end of the
section how formulas are modified in the presence of repulsive
patterns.

For technical reasons to be made clear below it is convenient
to make the change of variables h → t described by

hi = tanh−1 ti − 1

N

∑
μ

∑
j

ξ
μ

i ξ
μ

j tj , (38)

where the ti , hereafter called pseudomagnetizations, are real-
valued numbers comprised between −1 and 1. Hereafter, we
will infer the most likely values for t, and will recover the

fields h through (38). The change h → t amounts to consider
the energy function

E = −
N∑

i=1

σi tanh−1 ti − 1

2N

p∑
μ=1

(
N∑

i=1

ξ
μ

i (σi − ti)

)2

, (39)

instead of the original expression for E (3) (with p̂ = 0).
Obviously, when the identities (38) are fulfilled, both energies
are equal (up to a σ -independent additive term) and define the
same likelihood function (2).

We unravel the squared terms in the partition function
(35) through a set of p auxiliary Gaussian variables x =
(x1, . . . ,xp), and carry out the summation over the spin
configurations. We obtain

Z =
∫ ∏

μ

dxμ

√
2π

exp

⎡
⎣−1

2

∑
μ

(xμ)2 −
∑
i,μ

xμ ξ
μ

i ti√
N

+
∑

i

ln2 cosh

(
tanh−1 ti +

∑
μ

xμ ξ
μ

i√
N

)]
. (40)

If N is large enough the dominant contribution to the integral
will come from x∗, the value of x maximizing the argument of
the exponential above. We obtain the following saddle point
equation for x:

(xμ)∗ = 1√
N

∑
i

ξ
μ

i (Ti − ti), (41)

where

Ti ≡ tanh

(
tanh−1 ti +

∑
μ

(xμ)∗ ξ
μ

i√
N

)
. (42)

We then write xμ = (xμ)∗ + yμ and expand the hyperbolic
cosine function in powers of yμ. The change of variable (38)
is such that the linear term in yμ in the expansion of the
hyperbolic cosine function cancels out with the linear term in

the exponential, −
∑
i,μ

yμ ξ
μ

i ti√
N

, independently of the value of

(xμ)∗. Expanding the hyperbolic cosine up to the second order
in yμ we find our lowest order approximation to the partition
function,

Z0 = eF ∗
∫ ∏

μ

dyμ

√
2π

exp

[
−1

2

∑
μ

(yμ)2 (43)

+ 1

2 N

∑
i

∑
μ,ν

ξ
μ

i ξ ν
i yμyν

(
1 − T 2

i

)] = eF ∗

√
det A

,

where F ∗ is the argument of the exponential in (40) calculated
in xμ∗,

F ∗ =N ln2+ 1

2

∑
i

ln
(
1 − T 2

i

)−∑
μ,ij

ξ
μ

i ξ
μ

j (Ti Tj − ti tj ),

(44)

and A is the p × p matrix with entries,

Aμν = δμν − 1

N

∑
i

ξ
μ

i ξ ν
i

(
1 − T 2

i

)
. (45)
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We then compute the average energy U (36),

U = −
∑

i

mi tanh−1 ti (46)

− 1

2N

∑
μ,ij

ξ
μ

i ξ
μ

j (cij − mi tj − timj + ti tj ).

Our lowest order approximation for the cross entropy is,
according to (34), (44), and (46),

�0 = −
N∑

i=1

mi tanh−1 Ti + N ln2 + 1

2

∑
i

ln
(
1 − T 2

i

)

− 1

2N

∑
μ,ij

ξ
μ

i

(
cij − mi mj

)
ξ

μ

j − 1

2
ln det A

+ 1

2N

∑
μ

[∑
i

ξ
μ

i

(
Ti − mi

)]2

. (47)

The first order contribution to the cross entropy, �1 in (37), is
obtained by retaining the fourth order in yμ in the expansion
of the hyperbolic cosine function in (40),

�1 = 1

4N2

∑
i

(
1 − 4T 2

i + 3T 4
i

) (∑
μ,ν

ξ
μ

i (A−1)μνξν
i

)2

.

(48)

We expect the differences � − �0 and � − (�0 + �1) be-
tween, respectively, the true and the lowest order cross
entropies and the true and the first order cross entropies to
be of the order of, respectively, R2 and R3, where

R = p

N
ξ 2 (1 − m2) �. (49)

Here, ξ 2 is the order of magnitude of the pattern components,
which can range from 1 if the patterns are extended over the
whole system to ∼√

N for highly sparse patterns, m is the
typical value of the local magnetization, and � is the order of
magnitude of the eigenvalues of A−1, which can range from 1
to N . The value of R fixes the instrinsic error ε on the inferred
patterns discussed in Sec. II G, ε ∼ R for the lowest order
approximation and ε ∼ R2 with the first order corrections.

The above calculation can be straightforwardly extended
to the case of the generalized Hopfield model by considering
the p̂ repulsive patterns as patterns with purely imaginary
components, ξμ = i ξ̂

μ
, with i2 = −1. For instance, the

general lowest order expression for the cross entropy is

�0 = −
N∑

i=1

mi tanh−1 Ti + N ln2 + 1

2

∑
i

ln
(
1 − T 2

i

)

− 1

2N

∑
ij

(
cij − mi mj

)⎛⎝ p∑
μ=1

ξ
μ

i ξ
μ

j −
p̂∑

μ=1

ξ̂
μ

i ξ̂
μ

j

⎞
⎠

+ 1

2N

p∑
μ=1

[∑
i

ξ
μ

i

(
Ti − mi

)]2

− 1

2N

p̂∑
μ=1

[∑
i

ξ̂
μ

i

(
Ti − mi

)]2

−1

2
ln det

(
A iÂ

−iÂT ˆ̂A

)
, (50)

where

Ti = tanh

⎛
⎝tanh−1 ti +

p∑
μ=1

(xμ)∗ξμ

i√
N

−
p̂∑

μ=1

(x̂μ)∗ξ̂ μ

i√
N

⎞
⎠ ,

(x̂μ)∗ = 1√
N

∑
i

ξ̂
μ

i (Ti − ti),

Âμν = 1

N

∑
i

ξ
μ

i ξ̂ ν
i

(
1 − T 2

i

)
,

ˆ̂A
μν = δμν + 1

N

∑
i

ξ̂
μ

i ξ̂ ν
i

(
1 − T 2

i

)
.

(51)

The first order correction (48) can be easily written for the case
of repulsive patterns, too.

B. Are the physical properties of the system relevant
for the inference?

The Hopfield model was first introduced as a model for
which a set of p desired ground states ξμ (or fixed points of
the zero temperature Glauber dynamics) could be programed
through an adequate choice of the interactions. Each fixed
point has a basin of attraction in the configuration space,
corresponding to a phase of the system. The order parameters
are the overlaps,

qμ =
∑

σ

PH [σ |h,ξ ]

(
1

N

∑
i

ξ
μ

i σi

)
, (52)

which quantify how much the configurations are on average
aligned along each pattern. The amplitudes and directions of
the pattern and the field vectors determine if spin configura-
tions tend to be aligned along the field, or along one or more
patterns. In the infinite size limit (N → ∞) the overlaps are
the roots of p coupled and self-consistent equations,

qμ = lim
N→∞

1

N

∑
i

ξ
μ

i tanh

(
hi +

∑
ρ

qρξ
ρ

i

)
. (53)

Using (38) and the saddle point equation (41) it is easy to
check that the overlaps

qμ = 1

N

∑
i

ξ
μ

i Ti (54)

are solutions to the set of equations (53). Solutions are in
one-to-one correspondence with the saddle points (xμ)∗.

The saddle-point solution x∗ = 0 corresponds to Ti = ti .
The average interaction term in the energy function (39)
vanishes, meaning that configurations tend to be mainly
determined by the fields. Such a behavior corresponds to the
paramagnetic phase. The solution x = 0 is locally stable if
the eigenvalues of the matrix A are all positive and thus if the
patterns are weak enough. Solutions with x∗ �= 0 correspond to
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stronger patterns and interaction terms in (39) having nonzero
values on average: they correspond to magnetized phases.

The cross entropy � depends on the solution x∗ through
the variables Ti only. Once the Ti’s and the patterns ξμ’s are
inferred, it is easy to calculate the value of the fields hi based
on Eqs. (38), (41), and (42). One finds that hi is given by (38)
where ti is substituted with Ti . Hence the inferred parameters
do not explicitly depend on the value of x∗. The procedure
followed to infer the patterns and the fields is not affected
by the physical phase (paramagnetic or magnetized) of the
system, though the values of the data mi and cij obviously
depend on those physical properties.

It may accidentally happen that equations (41) have
different solutions with equal or almost equal contributions
to the partition function Z. The most natural illustration is the
case of zero field (ti = 0) and one strong pattern, where two
ferromagnetic states with opposite overlaps, (x1)∗ and −(x1)∗,
coexist. In this latter case both states give equal contributions
to the partition function.

C. Maximum likelihood inference: Lowest order

We first infer the patterns and the pseudomagnetizations
from �0. Minimization of �0 (47) over T immediately shows
that, up to O(R) corrections, pseudo- and true magnetizations
coincide:

(Ti)
∗ = mi. (55)

Without loss of generality we may write the patterns to infer
as

(
ξ 0
)μ
i

=
√

N aμ v
μ

i + √
Nβ

μ

i√
1 − m2

i

,

(
ξ̂ 0
)μ
i

=
√

N âμ v̂
μ

i + √
Nβ̂

μ

i√
1 − m2

i

,

(56)

where
√

aμ,
√

âμ are real-valued coefficients, and vμ and v̂μ

are eigenvectors of �. According to identity (55) the conditions
(6) are fulfilled in the large N limit if the (p + p̂) vectors βμ

and β̂
ν

are orthogonal to each other, and to all the patterns (ξ 0)ν

and (ξ̂ 0)ν . The matrices A (45) and ˆ̂A (51) are then diagonal,
while Â vanishes. We rewrite the cross entropy (50) as

�0 = −
∑

i

∑
σ=±1

(
1 + σ mi

2

)
ln

(
1 + σ mi

2

)

−1

2

∑
μ

λμ aμ − 1

2

∑
ij,μ

β
μ

i �
(r)
ij β

μ

j ,

+1

2

∑
μ

λ̂μ âμ + 1

2

∑
ij,μ

β̂
μ

i �
(r)
ij β̂

μ

j ,

−1

2

∑
μ

ln

[
1 − aμ −

∑
i

(
β

μ

i

)2]

−1

2

∑
μ

ln

[
1 + âμ +

∑
i

(
β̂

μ

i

)2]
, (57)

where �(r) is the restriction of � to the (N − p − p̂)-
dimensional subspace orthogonal to the p largest and p̂

smallest eigenvectors:

�
(r)
ij =

N−p̂∑
k=p+1

λkvk
i v

k
j . (58)

Minimizing �0 over the coefficients aμ and the vectors βμ

gives the coupled set of equations

λμ = 1

1 − aμ − bμ
, (59)

∑
j

�
(r)
ij β

μ

j = β
μ

i

1 − aμ − bμ
, (60)

where bμ = (βμ)2 is the squared norm of βμ. If the vector βμ

were nonzero, it would be an eigenvector of � with eigenvalue
λμ according to (60). This cannot be true as the largest
eigenvalue of �(r) is smaller than λp. Hence βμ = bμ = 0.
From (59) we obtain

aμ = 1 − 1

λμ
. (61)

We conclude that the maximum likelihood values for the p

attractive patterns are given by (9). The minimization of �0

over the coefficients âμ and the vectors β̂
μ

can be done along
the same lines. We find

âμ = 1

λ̂μ
− 1 (62)

and β̂μ = 0. The maximum likelihood estimators for the p̂

repulsive patterns are given by (9) again. Once the patterns
are computed the values of the local fields hi are obtained
from (11).

Notice that vμ

i ,v̂
μ

i are typically of the order of N−1/2, which
entails that the components of the patterns are of the order
of unity. Though keeping each ξi,ξ̂i of the order of unity
is a natural scaling in the infinite size limit N → ∞, other
scalings are possible. Consider a pair of strongly coupled
spins, i.e., such that the correlation �ij is sizeably larger than
1
N

. According to expression (4) for the coupling Jij induced
by the patterns between spins i and j , we expect the pattern
components to be of the order of

√
N . There is thus no

compelling reason to assume that ξi√
N

,
ξ̂i√
N

is vanishingly small
for all components i.

To end with we compute the decrease in cross entropy when
adding a pattern attached to the eigenvalue λ (= λμ or λ̂μ).
Inserting expressions (61), (62) for aμ,âμ in (57) we obtain

	� = − 1
2

(
λ − 1 − lnλ

)
, (63)

a quantity which is strictly negative for λ �= 1. Not surprisingly,
adding more parameters to the model allows for a better fit of
the data. We will see in Sec. V E how the values of p and p̂

can be determined.

D. Error bars on the patterns and fields

When the sample size B is large the posterior distribution P

tends to a Gaussian law centered in the most likely values for
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the patterns, {ξμ},{ξ̂μ}, and the pseudomagnetizations T. For
the sake of simplicity we consider below the case of attractive
patterns only; repulsive patterns can formally be seen as purely
imaginary attractive patterns; see Sec. V A. Let H denote the
Hessian matrix of �0. We find, to the leading orders,

(Ht t )ij ≡ ∂2�0

∂T 1
i ∂T 1

j

= δij

1 − m2
i

− (J 0)ij ,

(Hξξ )μν

ij ≡ ∂2�0

∂(ξ 0)μi ∂(ξ 0)νj
= δμν

N

[
mimj − cij + (1 − m2

i

)

× λμ

(
δij + (1 − m2

j )
∑

ρ

λρ

N
(ξ 0)ρi (ξ 0)ρj

)]

+λμλν

N2

(
1 − m2

i

) (
1 − m2

j

)
(ξ 0)νi (ξ 0)μj , (64)

(Htξ )νij ≡ ∂2�0

∂Ti∂(ξ 0)νj
� 0. (65)

Here, δ denotes the Kronecker function and the expression of
the lowest order coupling matrix J 0 is given in (10). The sum
over ρ runs over all pattern indices. The cross second deriva-
tive Htξ of the order of |ξ |

N
is much smaller than the expected

order, |ξ |√
N

, and can be neglected.
The covariance matrix of the Gaussian posterior probability

P is the inverse matrix of B H. The inverse is properly defined
in the subspace of dimension N (p + p̂ + 1) − 1

2 (p + p̂)(p
+ p̂ − 1), orthogonal to the modes generating the invariance
over the patterns; see Sec. II A. We write H̃ = DHD, where

D is a diagonal matrix with elements Di =
√

1 − m2
i in

the T sector, and D
μ

i =
√

N

1−m2
i

in the ξμ sector. Matrix H̃

has a particularly simple expression in the eigenbasis of the
correlation matrix �, and can be diagonalized exactly after
some simple algebra. We obtain the following expression for
the covariance matrix of the fluctuations:

〈	Ti 	Tj 〉 =
√(

1 − m2
i

) (
1 − m2

j

)
B

[Mt t ]ij , (66)

where

[
Mt t
]
ij

= δij +
p∑

ρ=1

(λρ − 1) v
ρ

i v
ρ

j +
p̂∑

ρ=1

(λ̂ρ − 1) v̂
ρ

i v̂
ρ

j .

(67)

The expressions for the fluctuations of the pattern components
are reported in (13). Note that the cross term 〈	Ti 	ξν

j 〉
vanishes at the expected order of

√
N

B
, and is actually of the

order of 1
B

only. Using formula (38) we find that the error over
the fields hi is of the order of p√

α
, where α = B

N
.

E. Optimal number of patterns

So far we have assumed that the number of patterns p was
known. In practice p is often determined based on simple
criteria, such as how many eigenvalues “come out” from the
spectrum of the correlation matrix (Sec. VI B 2). Alternative

approaches exist, e.g., Bayesian information criterion (BIC)
[26]. In the BIC the decrease B	� (63) in cross entropy
obtained with a new pattern is added, a “cost” N lnB, equal
to the number of new parameters times the logarithm of
the number of data. As the index μ increases, the selected
eigenvalue λμ or λ̂μ gets closer to 1; B|	�| (63) decreases
in absolute value, and, eventually, is counterbalanced by the
cost term N lnB. The value of μ for which the two terms
balance each other depends on the size of the data set: the
higher B, the more significative are the correlations and the
more patterns we need to represent the interactions. However,
BIC is mathematically justified when B is large compared to
N , which is not always the case in real data sets.

Hereafter, we propose a different approach based on
Bayesian and geometric considerations. Based on the dis-
cussion in Sec. II D we expect the squared norm bμ of
the transverse fluctuations βμ to be nonvanishing in the
B,N → ∞ limits. Let us call aμ the squared projection of
the μth rescaled pattern onto vμ (16). The same quantities, âν

and b̂ν , can be defined for repulsive patterns. We define the
marginal probability PM of the squared projections aμ,âν and
of the squared norms bμ,b̂ν through

PM=
∫ ∏

μ,i

dβ
μ

i√
1 − m2

i

∏
ν,i

dβ̂ν
i√

1 − m2
i

∏
μ

d�μ

πiαN/2

×
∏
ν

d�̂ν

πiαN/2
exp

[
− α

2

∑
μ

�μ [(βμ)2 − N bμ]

]

× exp

[
− α

2

∑
ν

�̂ν[(β̂
ν
)2 − N b̂ν]

]

×P

⎡
⎣
⎧⎨
⎩T 0

i ,

√
N aμ v

μ

i +
√

Nβ
μ

i√
1−m2

i

,

√
N âν v̂ν

i +√
Nβ̂ν

i√
1−m2

i

⎫⎬
⎭
⎤
⎦ ,

(68)

where P is the posterior probability (5), and the sums over μ

and ν run from 1 to, respectively, p and p̂. After carrying out
the integrals over the fluctuations βμ and β̂

ν
we obtain

PM = 1

Z1

∫ ∏
μ

d�μ
∏
ν

d�̂ν

× exp

[
−B

2

∑
μ

	�M (�μ) − B

2

∑
ν

	�̂M (�̂ν)

]
,

(69)

where Z1 is a normalization constant and

	�M (�μ) = λμ aμ + �μ bμ + ln (1 − aμ − bμ)

− 1

B
ln det[�μ 1 − �(r)] + O

(
lnN

N

)
, (70)

	�̂M (�̂ν) = −λ̂ν âν + �̂ν b̂ν + ln
(
1 + âν + b̂ν

)
− 1

B
ln det

[
�̂ν 1 + �(r)

]+ O

(
lnN

N

)
. (71)
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Here 1 denotes the N -dimensional identity matrix. When B is
large the integrals in (69) are dominated by the contributions
coming from the vicinity of the roots of

∂	�M

∂�μ
= ∂	�̂M

∂�̂ν
= 0. (72)

Maximization of 	�M with respect to the aμ,bμ’s gives
Eqs. (59) and

�μ = λμ, (73)

for each μ = 1, . . . ,p. We then compute the squared norm bμ

from the extremization condition (72) and obtain

bμ = 1

B

N−p̂∑
k=p+1

1

λμ − λk
, (74)

aμ = 1 − 1

λμ
− bμ. (75)

Repeating the same procedure to maximize 	�̂M gives

b̂ν = 1

B

N−p̂∑
k=p+1

1

λk − λ̂ν
,

âν = 1

λ̂ν
− 1 − b̂ν . (76)

The difference between expressions (61) and (75) for the
coefficients aμ must be emphasized. P defined in (5) is a
probability density over pN pattern components, once the
pseudomagnetizations have been inferred. Maximization of
P , or, equivalently, of � over this large-dimensional space
gives expression (61) for the projection aμ of the pattern ξμ

onto the μth largest eigenvector of �, vμ. Instead of directly
maximizing P , we may first integrate out the orthogonal
fluctuations to vμ in P , and obtain the marginal probability
density PM for 2p parameters only, namely the squared
projections on the eigenvectors aμ and the squared norms
of the orthogonal fluctuations bμ. Maximizing the marginal
probability density PM or, equivalently, minimizing �M shows
that bμ (75) does not vanish, and that the value of the squared
projection aμ (75) is smaller than (61). Figure 1 sketches
the geometrical meaning of the coefficient

√
aμ and the

fluctuations βμ; see (16). Small values of the angle θμ are
expected for reliable patterns. A similar picture can be drawn
for repulsive patterns. We will see how expression (75) for
the squared norm bμ naturally arises in the context of random
matrix theory.

F. Maximum likelihood inference: First corrections

We now look for the corrections to the lowest order
expressions of the patterns and the fields (9),(55), encoded in
expressions (8) and Ti = T 0

i + T 1
i . The first order contribution

to the cross entropy �1 can be seen as a perturbation to
the lowest order cross entropy �0 according to (37). Within
linear response theory this perturbation will shift the maximum

likelihood estimators by

⎛
⎝ T1

{(ξ 1)μ}
{(̂ξ 1

)μ}

⎞
⎠ = −(H)−1

⎛
⎜⎜⎝

∂�1

∂T

{ ∂�1

∂ξμ }
{ ∂�1

∂ ˆξμ }

⎞
⎟⎟⎠ , (77)

where the inverse of the Hessian matrix of �0, H, was given
in Sec. V D. The calculation of the gradient of �1 does not
present any particular difficulty. The resulting corrections to
the patterns are given in Eq. (23). The expression for the shift
in the pseudomagnetization is

T 1
i =

p∑
μ=1

(λμ − 1)

[
Cμ v

μ

i

√
1 − m2

i + mi

(
v

μ

i

)2 ]

+
p̂∑

μ=1

(λ̂μ − 1)

[
CN+1−μ v̂

μ

i

√
1 − m2

i + mi

(
v̂

μ

i

)2 ]
,

(78)

where Ck is given in (26). Notice that, if the magnetizations
mi vanish, so do the dominant and first order contributions to
the pseudomagnetizations.

VI. RELIABILITY OF THE INFERENCE

An important issue is to determine how many configurations
should be sampled in order to ensure that the inference of the
patterns is accurate. To do so, we assume that the examples σ b

are drawn independently and at random from the equilibrium
probability PH (2) of a Hopfield model, with fixed fields h̃
and patterns ξ̃ . We call S[{σ b}] the entropy of the posterior
distribution P (5) for the fields h and patterns ξ . In the large
N limit, we expect this entropy to be self-averaging, that is,
to depend on the set of examples only through their number
B. We want to determine how fast S decays with B. To do
so it is instructive to first consider the simple case where the
local fields are known, and only one pattern has to be inferred.
This specific situation is treated in great analytical details in
Sec. VI A. The general (and harder) case where both fields and
patterns have to be inferred is treated in Sec. VI B.

A. Case of one unknown pattern and known fields

Throughout this section, we assume that the local fields
vanish, h̃ = 0, and that the number of patterns to be inferred
is p = 1. The posterior entropy,

S[{σ b}] = −
∑

{ξi=±ξ̃}
P [0,ξ |{σ b}] lnP [0,ξ |{σ b}], (79)

therefore measures the uncertainty about this unique pat-
tern given a set B sampled configurations. Intuitively, the
dependence of S on B is closely related to the physics of
the Hopfield model (with pattern ξ̃ and zero fields) used to
generate the examples. If the model is in the paramagnetic
phase, i.e., if the components of the pattern are weak [27],
the examples σ b have vanishingly small overlap (52) with
the pattern. We expect that a large number B (diverging with
N ) of examples is necessary to convey reliable information
about the pattern. Conversely, few configurations sampled in
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a ferromagnetic state around a strong pattern (or its opposite)
should be sufficient to reconstruct the pattern.

We now make this scenario quantitative in various cases. An
important simplification arises when the pattern is restricted
to have binary components, ξ̃ = {ξ̃i = ±ξ̃}, with ξ̃ > 0.
Hamiltonian (3) with p = 1 pattern is invariant under the
exchange of the spin configuration and the pattern: E[σ ,0,ξ ] =
E[ξ ,0,σ ]. Our inference problem can thus be mapped onto a
dual Hopfield model, where the normalized inferred pattern
ξ/ξ̃ plays the role of the dual spin configuration and the
sampled spin configurations σ b, b = 1, . . . ,B correspond to
the B dual patterns. In particular, the posterior entropy S is
equal to the entropy of the dual Hopfield model at inverse
temperature,

β = ξ̃ 2. (80)

The duality property allows us to exploit the well-understood
physics of the Hopfield model [27] to simplify the study of our
inference problem.

1. Strong components

In the ferromagnetic regime (ξ̃ > 1), the dual spin config-
uration is strongly magnetized along the dual patterns. Going
back to the inference problem, we find that the overlap between
the inferred pattern and a sampled configuration,

qb =
∑

{σ b},ξ
P [0,ξ |{σ b}]

∏
b

PH [σ b,ξ̃ ]
1

N

∑
i

ξiσ
1
i , (81)

may take values +q or −q, where q is the positive root of
q = tanh(q ξ̃ 2). The sign of the overlap qb is random,
depending on which one of the two states with opposite
magnetizations the configuration σ b in sampled in; it is equal
to + or − with equal probabilities 1

2 . These statements hold if
the thermodynamical limit, N → ∞, is taken while B is kept
fixed. We find that S/N is equal to the entropy of a single
spin at inverse temperature β, interacting with B other spins
of magnetization q,

S

N
=

B∑
b=0

(
B

b

)(
1 + q

2

)b (1 − q

2

)B−b

S
[
(B − 2b)qξ̃ 2

]
,

(82)

where S(u) = ln(2 cosh u) − u tanh u. Figure 17(a) shows that
the entropy is almost a pure exponential: ln(S/N ) � −B/Bc

where the decay constant, Bc = 1/ln cosh(q ξ̃ 2), is finite
(compared to N ). In the ferromagnetic regime few sampled
configurations are sufficient to determine ξ̃ accurately.

This result also applies to the case of a single ferromagnetic
state. If the field h does not strictly vanish and explicitly
breaks the reversal symmetry between the two states, all con-
figurations are sampled from the same state, with probability
1 − exp[−O(N )]. Remarkably, expression (82) for the entropy
still holds. Again we find that B = O(1) configurations are
sufficient to infer the pattern. We will discuss in more detail
the inference in the ferromagnetic regime in Secs. VI B 1
and VI B 3.

2. Weak components

In the paramagnetic phase (ξ̃ < 1), the overlap (81) between
the inferred pattern and an example is typically very small,
q ∼ N−1/2. No inference is possible unless the number of
examples B scales linearly with N ; we denote α = B/N . In
this regime, we expect the entropy to be self-averaging: S[{σ b}]
does not depend on the detailed composition of the data set
and is a function of the value of the macroscopic parameters,
e.g., the ratio α, only. To calculate this function S we use the
replica method [16,27]. We report below the results of the
replica symmetric calculation; technical details can be found
in the Appendix. The order parameter is the average overlap r

between the inferred and the true patterns,

r =
∑

{σ b},ξ
P [0,ξ |{σ b}]

∏
b

PH [σ b,ξ̃ ]
1

N

∑
i

ξi ξ̃i , (83)

which is solution of the self-consistent equation

r =
∫ ∞

−∞
Dz tanh(z

√
r̂ + r̂), (84)

where Dz = dz√
2π

e−z2/2 is the Gaussian measure, and

r̂ = αβ2r

(1 − β)(1 − β + βr)
. (85)

The posterior entropy is equal to

S

N
=
∫ ∞

−∞
Dz ln2 cosh(z

√
r̂ + r̂) − α

2
ln(1 − β + βr)

− αβ(1 − β − r + 3βr)

2(1 − β)(1 − β + βr)
, (86)

and is plotted in Fig. 17(b). To check this analytical prediction
we have run extensive numerical simulations on small-size
systems (N = 10,20). The numerical procedure follows three
steps: (i) evaluate the partition function Z in (2) through
an exact enumeration; (ii) generate a data set of B = αN

configurations {σb
i } according to the Hopfield measure PH

by rejection sampling; (iii) evaluate P1 in (5) and S in (79)
through exact enumerations. The resulting entropy, averaged
over 100 data sets, is compatible with the analytical prediction
and the existence of 1

N
finite size effects.

The inset of Fig. 17(b) shows that the overlap r remains
null until α reaches the critical value

αc =
(

1

ξ̃ 2
− 1

)2

. (87)

Hence in the range [0; αc], the posterior probability becomes
more concentrated (S decreases), but not around the true
pattern ξ̃ . The existence of a lagging phase before any mean-
ingful inference is possible is similar to the “retarded learning”
phenomenon discovered in the field of unsupervised learning,
where the variables to be learned are real valued [28–30].
In the present case of binary spins we expect the replica
symmetric assumption to break down at large α. The entropy
(86) indeed becomes negative when α > α0 � 42 for the case
studied in Fig. 17(b). Nevertheless, we may conjecture that the
entropy decays as S ∼ 1

α
when α → ∞. The dual Hopfield

model has random couplings Jij , with second moment equal
to 〈J 2

ij 〉 − 〈Jij 〉2 = α
N

. Hence T = 1√
α

sets the temperature
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FIG. 17. Entropy of the posterior distribution for the patterns S

(in bits and per component), as a function of the number of sampled
configurations B when the local fields hi are known to vanish. (a)
Ferromagnetic regime (ξ̃ 2 = 1.1): the entropy decays exponentially
with B. Inset: comparison with the theoretical prediction exp(−B/Bc)
(dashed line), with Bc � 6.85, in semilog scale. (b) Paramagnetic
regime (ξ̃ 2 = 0.5): S (86) is a decreasing function of α = B/N .
The entropies calculated from numerical calculations are shown for
N = 10 and N = 20. Inset: the overlap r (83) between the inferred
and true patterns is positive when α exceeds αc = 1 (87).

scale of the dual model. The low temperature scaling of the
entropy of the Sherrington-Kirkpatrick (SK) model suggests
that S ∝ T 2 ∼ 1

α
[31]; this scaling is compatible with the

small-N results of Fig. 17(b). However, the dual and SK
models are not strictly identical when α → ∞: the coupling
matrix J of the dual model is guaranteed to be semidefinite
positive, while the entries of J are independent in the SK
model. A complete calculation of the entropy valid for any
(large) α would require a replica symmetry broken ansatz for
the order parameters [32], and is beyond the scope of this
paper.

Note that the calculations above can be extended to real
patterns; β in (80) is then replaced with 〈ξ 2〉, where the
average is taken over the pattern components. The entropy
is not constrained to be positive as in the binary case. The
distinction between the strong- and weak-component regimes
remains qualitatively unchanged, and so does the value of the
critical ratio αc (87), which does not depend on the third and
higher moments of ξ̃i .

B. General case of unknown patterns and fields

In this section, we first interpret the above results. We show
that, while B = O(1) configurations can be sufficient in a
particular context, B = O(N ) data are generally necessary
for the inference to be successful. The connection between the
results of Sec. VI A and random matrix theory are emphasized.

1. Inference from the magnetizations

Consider first the case where a single state exists, i.e.,
Eq. (53) admit a single solution {qμ}; the case where states
coexist will be discussed in Sec. VI B 3. For large N , the
average value of spin i with the measure PH (2) is

mi = tanh

(
hi +

∑
μ

qμ ξ
μ

i

)
. (88)

As the error on the estimate of mi decreases as ∼
√

1−m2
i

B

with B, O(1) configurations are sufficient to sample the mag-
netizations accurately. Few sampled configurations therefore
give access to the knowledge of a linear combination of the
field vector and pattern vectors with nonzero overlaps qμ.
This linear combination is simply T 0

i , and Eq. (88) coincides
with (55).

When the fields hi are known and the model consists of a
single strong pattern (p = 1) the pattern components ξ 1

i can
be readily calculated from the magnetizations (88) through

ξ 1
i = 1

q
tanh−1 mi, where q2 = 1

N

∑
j

mj tanh−1 mj .

(89)

This particular case was encountered at the end of Sec. VI A 1,
when the fields hi are sent to zero after having broken the
reversal symmetry of the system to avoid state coexistence.
In the generic situation of unknown fields and patterns,
knowledge of the magnetizations does not suffice to determine
the field and the patterns, and must be supplemented with the
information coming from the correlation matrix �ij .

2. Inference from the correlations: Relationship with random
matrix theory

What is the order of magnitude of �ij ? We first consider the
ideal case of perfect sampling (B → ∞ while N is large but
finite). As a result of the presence of the patterns in the energy
(3) the spins are correlated. The entries of the correlation
matrix are, for large N ,3

�ij = δij + 1

N

ξiξj

√(
1 − m2

i

) (
1 − m2

j

)
1 − 1

N

∑
k ξ 2

k (1 − mk)2
, (90)

where we have considered the case of a single pattern (p = 1,

p̂ = 0) to lighten notations. Though the pattern affects each
correlation �ij by O( 1

N
) only, these small contributions add

up to boost the largest eigenvalue from 1 (in the absence of
pattern) to

L = 1

1 − 1
N

∑
k ξ 2

k (1 − mk)2
. (91)

The eigenvector attached to L has components vi

∝ ξi

√
1 − m2

i and ML inference perfectly recovers the pattern.
In the presence of sampling noise (finite B), each corre-

lation (90) is corrupted by a stochastic term of the order

3Formula (90) can be found by inverting identity (12), with
Jij = 1

N
ξiξj .
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of x = 1√
B

. This stochastic term will, in turn, produce an

overall contribution of the order of x
√

N = 1√
α

to the largest
eigenvalue. Intuitively, whether α is large or small compared to
L−2 should tell us how hard or easy it is to extract the pattern
ξ from �. Several studies in the physics [33,34] and in the
mathematics [35] literatures have indeed found that an abrupt
phase transition takes place at the critical ratio

αc = 1

(L − 1)2
. (92)

It is a simple check that αc coincides with the ratio (87) for the
retarded learning transition calculated in Secs. VI A 2.

In the strong noise regime (α < αc) the largest eigen-
vector v1 of � is uncorrelated with (orthogonal to) the pattern
ξ , and the spectrum of � is identical to the one of the sample
correlation matrix of independent spins, whose density of
eigenvalues is given by the Marcenko-Pastur (MP) law,

ρMP (λ′)=v(1 − α) δ(λ′)+ α

2πλ′
√

v[(λ+ − λ′)(λ′−λ−)]

(93)

with v(u) = max(u,0) [19]. The edges of the continuous
component of the MP spectrum are given by

λ± =
(

1 − 1√
α

)2

. (94)

The largest eigenvalue of �, λ+, is not related to the value
of L.

In the weak noise regime (α > αc) the largest eigenvalue
of � is [35]

λ1 = L

(
1 + 1

α (L − 1)

)
. (95)

It exceeds L for any finite α, and converges to L when α → ∞.
The rest of the spectrum is described by the MP density (93).
Expression (74) for the squared norm b1 of the orthogonal
fluctuations leads to the analytical formula

b1 = 1

α

∫ λ+

λ−
dλ′ ρMP (λ′)

λ1 − λ′ = λ1 − L

λ1
, (96)

where we have used the analytical expression of the Stieltjes
transform of ρMP [13]. Using (75) we deduce the value of the
squared projection of the inferred rescaled pattern (ξ 1)′ onto
v1,

a1 = L − 1

λ1
. (97)

Identities (96) and (97) are graphically interpreted in Fig. 1:
b1 is the squared norm of the orthogonal fluctuations β, while
a1 is the squared projection of the rescaled pattern ξ onto v1.

The above discussion is illustrated on the simple case of
a Hopfield model with p = 1,p̂ = 0 patterns in Fig. 18, see
caption for the description of the model. Using formula (91)
we compute the largest eigenvalue of the correlation matrix
for perfect sampling, L = 2. Figure 18 shows that a large
eigenvalue clearly pulls out from the bulk spectrum for the
ratio α = 4 (top spectrum), larger than the critical ratio αc = 1
according to (92) (bottom). For α = 4, the infinite-N predicted
values for the largest eigenvalue, λ1 = 2.5 (95), and for the
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eigenvalue λ
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B = 100

top eigenvalue

FIG. 18. Spectrum of the correlation matrix for a Hopfield model
with p = 1 pattern, N = 100 spins, and for B = 100 (bottom) and
400 (top) randomly sampled configurations at equilibrium. The bulk
parts of the spectra coincide with the Marcenko-Pastur law for random
correlation matrices. When B is large the top eigenvalue clearly
comes out from the noisy bulk and the corresponding eigenvector
approximately corresponds to the pattern. The pattern components
are independent identically distributed Gaussian variables, of zero
mean and variance ξ 2 = 0.5; local fields hi have zero values.

edges of the MP spectrum, λ− = 0.25,λ+ = 2.25 (94), are in
good agreement with the numerical results for N = 100.

Formulas (96) and (97) hold for each pattern μ when p � 2
patterns are present, provided that p remains finite when N →
∞. The case of p = 2 patterns, where one pattern is strong
and has overlap q > 0 (81) with the sampled configurations,
and the second pattern has weak components, is of particular
interest. Again, we assume that the fields vanish. Repeating the
calculation of Sec. VI A 2 and the Appendix we find that the
entropy S/N quickly decreases with B from two bits down to
one for B = O(1). When B ∝ N , the entropy decreases from
1 down to 0; the expression of S coincides with (86) where β is
replaced with β(1 − q2). Hence we have a two-step behavior:
the strong pattern is determined with O(1) examples, the weak
pattern requires O(N ) sampled configurations. Learning of the
weak pattern is possible if

α �
(

1

ξ̃ 2(1 − q2)
− 1

)2

, (98)

according to (87). The two-step behavior agrees with the
discussion of Sec. VI B 1.

3. Coexistence of ferromagnetic states

Consider now the case of the coexistence of two ferromag-
netic states exposed in Sec. V B. Data are generated from a
Hopfield model, with zero fields and one strong pattern ξ ,
as in Fig. 4. In the up state the spins are magnetized with
m+

i = tanh(q ξi). In the down state the local magnetization
is m−

i = −m+
i . Overall, the local magnetization is mi =

1
2 m+

i + 1
2 m−

i = 0, up to O( 1√
B

) fluctuations. The discrepancy
between the Gibbs magnetizations, mi = 0, and the state
magnetizations, m±

i , results in a O(1) contribution m+
i m+

j (=
m−

i m−
j ) to the correlation matrix entry �ij , dominating the
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O( 1
N

) contributions due to the interactions between spins. The
largest eigenvalue of �,

λ1 =
∑

i

(m+
i )2, (99)

is of the order of N ; the corresponding eigenvector is v1 =
(m+

1 ,m+
2 , . . . ,m+

N )/
√

λ1. Informally speaking, the information
about the state magnetizations is not conveyed by the Gibbs
magnetizations (as in Sec. VI B 1) but by the correlation matrix
[36]. According to formula (55) the pseudomagnetization Ti

vanishes; hence we correctly infer that the fields hi have zero
values. Using formula (9) we obtain

(ξ 0)i �
√

N

λ1
m+

i . (100)

Therefore the inferred pattern component is not equal to
the true pattern component, but is proportional to its hyper-
bolic tangent. This nonlinear transform is clearly seen in
Fig. 4. The discrepancy between the true and inferred com-
ponents is a nice illustration of the claimed scaling for the
higher order corrections in (49) (recall that the eigenvalues
of A−1 are the p largest eigenvalues of �). In the presence of
coexistent states, while ξ 2 is small compared to N , λ1 is of

the order of N , making the ratio λ1ξ 2

N
of the order of unity.

Corrections are required and shown to improve the quality of
the inferred pattern in Fig. 11.

VII. CONCLUSION

In this paper we have studied how to infer a small-rank
interaction matrix between N binary variables given the
average values and pairwise correlations of those variables.
We have seen that the generalized Hopfield model, where the
interactions are encoded into a set of attractive and repulsive
patterns ξ , is a natural framework for maximum likelihood
(ML) inference. Using techniques from the statistical physics
of disordered systems, we have presented a systematic expan-

sion of the log likelihood in powers of �
ξ 2

N
, where � is the

largest eigenvalue of the correlation matrix � (1). We have
then calculated the ML estimators for the patterns and the
fields to the lowest and first order in this expansion in a variety
of physical regimes. The lowest order is a simple extension
of principal component analysis, where not only the largest
but also the smallest eigenmodes build in the interactions.
First order corrections involve nonlinear combinations of the
eigenvalues and eigenvectors of �. We have validated our
ML expressions for the patterns on synthetic data generated
by Hopfield models with known patterns and fields, and by
Ising models with sparse interactions. We have also presented
a simple geometrical criterion for deciding the number of
patterns. Those results have been discussed and compared
to previous studies in the unsupervised learning and random
matrix literatures.

The quality of the inference strongly depends on the number
of sampled configurations B. The sampling error on each
magnetization mi and pairwise correlation cij is of the order of
B−1/2. Elementary insights from random matrix theory suggest
that the resulting errors on the eigenvectors of the matrix �

are
√

N times larger. The error on the inferred patterns ε

picks up a contribution ∼ (N
B

)1/2
due to finite sampling,

as found in Sec. II C. This scaling has several important
consequences. First, inference is retarded: no information
about the true couplings can be obtained unless the ratio B

N

exceeds a critical value (Secs. VI A 2 and VI B 2). Second,
for larger B, ε decreases as B−1/2, which is confirmed by
the simulations presented in Fig. 12, and then saturates to
the intrinsic error resulting from our approximate expressions
for the patterns. The intrinsic error depends on the order in
the expansion used for the calculation of the cross entropy
in Sec. V. Note that other inference methods, looking for the
local structure of the interaction network [11,12], may unveil
strong couplings J = O(1) from a much smaller number of
sampled configurations, B = O(lnN ), and do not suffer from
the retarded learning transition.

Our study could be extended in several directions. It would
be particularly interesting to consider the case of spins taking
Q > 2 values (Potts model), e.g., for applications to the
study of coevolution between residues in protein sequences
[24,25,37]. Mean-field inference methods provide a simple
and efficient way to get interactions from correlations [38].
Knowing how MF interactions are modified when some
eigenmodes are rejected (using the criterion of Sec. II D)
or first-order corrections are taken into account would be
of interest. However, the linear increase in the number of
possible symbols with Q (= 20 for amino acids) may make
the effective size of the problem, N × Q, larger than the
number of configurations B in practical applications. A large
number of vanishing eigenvalues is expected in those cases,
and extracting repulsive patterns may become a difficult task.

Appropriate priors P0 could also be used to force many
pattern components to identically vanish, instead of acquiring
small values as in Sec. II E. This can be particularly useful
when the true patterns are known to be highly sparse and few
data are available. Inspired by the so-called Lasso regression
method [39], a natural prior is

P0 ∝ exp

⎡
⎣−γ

N∑
i=1

√
1 − m2

i

⎛
⎝ p∑

μ=1

|ξμ

i | +
p̂∑

μ=1

|ξ̂ μ

i |
⎞
⎠
⎤
⎦ .

(101)

Contrary to the case of the quadratic penalty (21) the most
likely values for the patterns cannot be expressed by means of
simple analytical formulas. However, they could be efficiently
obtained using convex optimization algorithms minimizing the
sum of the cross entropy and of the penalty term (101).

Last of all, we have considered in this work that the
configurations were sampled at equilibrium. In practice, when
more than one state exist, the equilibration time may be
prohibitive and a reasonable assumption would be to sample
from one state only. To what extent ergodicity breaking in
the sampling affects the quality of inference is an interesting
question.

ACKNOWLEDGMENTS

We thank S. Leibler for numerous discussions. V.S. thanks
the Simons Center for Systems Biology for its hospitality.

051123-20



HIGH-DIMENSIONAL INFERENCE WITH THE . . . PHYSICAL REVIEW E 83, 051123 (2011)

This work was partially funded by ANR Contract No.
06-JC-JC-051.

APPENDIX: REPLICA CALCULATION OF THE ENTROPY
S FOR WEAK PATTERNS

When the pattern has binary components ξ̃i = ±ξ̃ we make
the change of variables σ ′

i = ξiσi to rewrite the partition
function (35) of the Hopfield model through

Z =
∑
{σ ′}

exp

⎡
⎣ β

N

∑
i<j

σ ′
i σ

′
j + β

2N

⎤
⎦ , (A1)

where the inverse temperature β is defined in (80). The parti-
tion function is thus independent of the pattern direction, which
makes the calculation considerably simpler. The posterior
entropy (79) can be written as

S[{σ b}] =
(

1 − β
∂

∂β

)
lnÑ [{σ b},β]. (A2)

where

Ñ [{σ b},β] =
∑
{ξ}

exp

⎛
⎝ β

N

B∑
b=0

∑
i<j

ξiξjσ
b
i σ b

j

⎞
⎠ , (A3)

Thus we are left with the calculation of Ñ [{σ b}]. The
expression for Ñ is formally identical to the partition function
of a dual Hopfield model where the B measured configurations
σ b play the role of the dual patterns and ξ plays the role of
the dual spin variables. The posterior entropy S is simply the
entropy of this dual Hopfield model.

Equation (A2) gives the entropy of the system for a partic-
ular set of measures {σ b}. It is natural to expect the entropy
to be reproducible across different sets of measurements. In
this context, we are interested in evaluating the average of the
entropy with respect to all possible measurements. Assuming
that the configurations {σ b} are sampled from the equilibrium
measure of a Hopfield model with one pattern ξ̃ , we write the
average entropy as

S =
(

1 − β
∂

∂β

)
〈lnÑ〉(β̃,β)

∣∣
β̃=β

, (A4)

where

〈lnÑ〉(β̃,β) = 1

ZB

∑
{σ b}

exp

⎛
⎝ β̃

N

B∑
b=0

∑
i<j

ξ̃i ξ̃j σ
b
i σ b

j

⎞
⎠

×lnÑ [{σ b},β]. (A5)

To calculate the average value of the logarithm of Ñ in
(A5) we use the replica trick [27] and estimate the nth moment
of Ñ ,

〈Ñn〉 = e−βBn/2
∑

{ξρ },ξ̃ ,{σ b}

∫ B∏
b=1

n∏
ρ=1

dm
ρ

b√
2π/(βN )

× exp

⎡
⎣−βN

2

∑
b,ρ

(
m

ρ

b

)2 + β
∑
b,ρ,i

m
ρ

bξ
ρ

i σ b
i

+ β̃

N

∑
b

∑
i<j

σ b
i σ b

j ξ̃i ξ̃j

⎤
⎦ . (A6)

We introduce auxiliary Gaussian variables, denoted by m̃b, to
linearize the quadratic term in the spins σb

i . We obtain, after
summation over the spins,

〈Ñn〉 = e−βBn/2
∑
{ξρ },ξ̃

∫ ∏
b,ρ

dm
ρ

b√
2π/(βN )

∏
b

dm̃b√
2π/(β̃N )

× exp

⎡
⎣−βN

2

∑
b,ρ

(
m

ρ

b

)2 − β̃N

2

∑
b

(m̃b)2

+
∑
i,b

ln 2 cosh

(
β
∑

ρ

m
ρ

bξ
ρ

i + β̃ m̃b ξ̃i

)]
. (A7)

In the paramagnetic phase we expect the variables m
ρ

b and m̃b

to be of the order of 1√
N

. Expanding the hyperbolic cosine
to the second order in those variables and carrying out the
resulting Gaussian integral we obtain

〈Ñn〉 � e−βBn/2
∑
{ξρ },ξ̃

[det M]−B/2 . (A8)

Here, M is the (n + 1) × (n + 1) matrix with elements

Mρσ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − β if ρ = σ � p,

1 − β̃ if ρ = σ = p + 1
−
√

ββ̃ tσ if ρ = p + 1, σ � p,

−
√

ββ̃ tρ if ρ � p, σ = p + 1,

−β rρσ if ρ � p, σ � p

(A9)

with the overlaps defined through rρσ = 1
N

∑
i ξ

ρ

i ξ σ
i and tρ

= 1
N

∑
i ξ

ρ

i ξ̃i . We now enforce the definitions of the overlaps
using conjugated Lagrange multipliers, r̂ρσ and t̂ρ , and obtain

〈Ñn〉 =
∫ ∏

ρ<σ

drρσ dr̂ρσ

2π

∏
ρ

dtρ dt̂ρ

2π
�N, (A10)

where � is given by

� =
∑
{ξρ ,ξ̃}

exp

[
−α

2
ln det M −

∑
ρ<σ

r̂ρσ rρσ − αβn

2

−
∑

ρ

t̂ρ tρ +
∑
ρ<σ

r̂ρσ ξρξσ +
∑

ρ

t̂ρ ξ̃ ξ ρ

]
. (A11)

We look for a replica-symmetric saddle point of �: rρσ = r ,
tρ = t , r̂ρσ = r̂ , and t̂ρ = t̂ . We obtain, after some elementary
algebra,

� =
∫ ∞

−∞
Dz exp

{
−α

2
ln det M − n(n − 1)

2
r̂ r − n t̂ t

+ nln
[
2 cosh(t̂ + z

√
r̂)
]

− αβn

2

}
, (A12)

where Dz = dz e−z2/2/
√

2π is the Gaussian measure and

det M = (1 − β + βr)n−1
[
(1 − β̃)(1 − β)

−(n − 1)(1 − β̃)βr − nββ̃ t2
]
. (A13)
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We now send n to zero. The saddle point equations show that
t = r; this result was expected from the fact that, if β̃ = β, the
true pattern ξ̃ plays the role of an extra replicated pattern ξ . In

addition, t̂ = r̂ , where r̂ is defined in (85). The self-consistent
equations for r and the entropy S are given by, respectively
Eqs. (84) and (86).
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