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Momentary information transfer as a coupling measure of time series
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We propose a method to analyze couplings between two simultaneously measured time series. Our approach is
based on conditional mutual sorting information. It is related to other concepts for detecting coupling directions:
the old idea of Marko for directed information and the more recent concept of Schreiber’s transfer entropy. By
setting suitable conditions we first of all consider momentary information in both time series. This enables the
detection not only of coupling directions but also delays. Sorting information refers to ordinal properties of time
series, which makes the analysis robust with respect to strictly monotonous distortions and thus very useful in
the analysis of proxy data in climatology. Fortunately, ordinal analysis is easy and fast to compute. We consider
also the problem of reliable estimation from finite time series.
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I. INTRODUCTION

The investigation of coupling and causality between sys-
tems is of great general interest in multivariate time-series
analysis. Recently, nonlinear methods have been proposed,
some of them on an information theoretical basis [1–9]. There
are interesting applications, for example, in the analysis of
the cardiac respiratory system [7], epileptic focus localization
from electroencephalography (EEG) data of the human brain
[8], functional magnetic resonance imaging of different brain
regions in cognitive tasks [10], and the climate system [11].
Remember that the well-known cross correlation measures
only linear statistical dependencies. The information theoretic
quantity mutual information (MI) takes into consideration non-
linear dependencies as well. However, a proper conditioned MI
(CMI) allows to study also causal relations (i.e., to distinguish
between the driving and the driven subsystem).

The idea of using CMI for studying causal dependencies
by setting suitable conditions is not very new. Already
Marko [12,13] considered the so-called directed information
in the context of data transmission over discrete memoryless
channels with feedback. It had been discussed until recently
in other applications like gambling, stock market portfolio
strategies, and data compression with causal side information
(e.g., Refs. [14–16]). Schreiber’s transfer entropy (TE) [1]
is similar to Marko’s directed information. A problem with
TE is that it does not well-detect coupling delays. We will
argue that this can be solved by setting some other conditions
leading to another special CMI which we call momentary
information transfer (MIT). To be practicable we use some
coarse- graining (partitioning) of state space which is related to
order patterns of the time series, thus we consider only sorting
information. It finally leads to a coupling measure which we
call momentary sorting information transfer (MSIT). In this
introductory section we give a rough explanation of our main
ideas. Details and examples follow in the next sections.

A. Momentary information and noise

The existence of some momentary information in both time
series is crucial for our concept of coupling analysis (i.e.,
we need series with nonvanishing source entropy). Remember

that in the framework of Shannon’s information theory source
entropy hx of a series of symbols is the uncertainty (also
called entropy) on the next symbol xt remaining if all former
symbols (. . . ,xt−2,xt−1) are known. If we get knowledge on
this next symbol by a measurement, we would say that we
get the information hx . Thus, in the case of nonvanishing
source entropy, complete knowledge on the next symbol
would require some additional information. Here we call it
also momentary information as it is the new information we
would get from a measurement in this moment only. A series
with positive source entropy is not predictable from its past
with zero mean prediction error. Any noisy time series has
momentary information as well as a series obtained from a
chaotic dynamical system.

All errors in measurements we make due to nonperfect
measuring equipment, which has, however, no influence on
the time evolution of the considered system, are summarized
as observational noise. In any measurement of a physical
quantity with continuous amplitude we have some inevitable
quantization error which is first of all due to a limited
resolution of the analog-to-digital converter. This coarse-
graining contributes to observational noise. In the framework
of the ergodic theory of dynamical systems this quantization
is considered as partitioning of state space. In contrast, the so-
called dynamical noise has an influence on the time evolution.
It is the random part of the time series that is not observational
noise. Dynamical noise can occur due to the interaction of
the considered system with another possibly very complex
system. This might also be our measuring apparatus. It could
be modeled by adding a random variable to the state space
variables. However, also some multiplicative noise may be
appropriate for modeling. As a result of the measurements
we get a symbolic sequence (times series). The source entropy
hsymb of this sequence depends on both the system under study,
including dynamical noise, as well as the observational noise.

Consider a dynamical system (without dynamical noise),
and the observational noise of the symbolic sequence should be
only due to partitioning. Then the source entropy hsymb depends
on the way of partitioning, however, it is bounded above by a
finite value, the Kolmogorov Sinai entropy (KSE), hKSE, also
called metric entropy. Here 0 � hsymb � hKSE < +∞ holds.
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A dynamical system is called chaotic if 0 < hKSE < +∞.
If there is a partition of state space such that hsymb = hKSE,
it is called generating partition. Such partitions are “best”
in the sense that, given all measurements in the past, the
new measurement provides a maximum of new (momentary)
information, which would be good for our coupling analysis.
In general, we have hsymb → hKSE if we use finer and finer
partitions (i.e., for an idealized analog-to-digital converter
with vanishing quantization step). Hence, source entropy
hsymb approximates KSE for time series using high-precision
measurements. This is, however, impractical. Later we come
back to this point.

For a dynamical system with some dynamical noise or any
typical random process (e.g., a random walk) KSE diverges,
hKSE = +∞. Nevertheless, in any case we have hsymb < +∞
if the number of possible different outputs of our measuring
equipment is finite.

For our coupling analysis we need (i) nonvanishing sym-
bolic source entropy, hsymb > 0, and (ii) not all of this entropy
should have its origin in observational noise only. Indeed, our
method yields the best results if there is a large amount of dy-
namical noise and/or the system is highly chaotic (large KSE).

B. Basic idea of coupling analysis

In our coupling analysis we ask for mutual momentary
information of both time series. More precisely, we search
for momentary information in observations xt of one time
series {xt } that is contained in the momentary information
of observations yt+τ of the other series {yt }, where the
time lag τ > 0 refers to coupling delays. The condition
in this mutual information analysis is the joint history
[(. . . ,xt−2,xt−1),(. . . ,yt+τ−2,yt+τ−1)] of both time series. Note
that this is different from considering the histories of the x and
y series separately. Thus, in our coupling analysis, we search
for the common part of the momentary information in xt and
yt+τ that is not in the joint history of both time series.

The variation of τ leads to the momentary information
transfer (MIT) function IMIT(τ ), which is our coupling
measure. In practice we have only finite time series, thus we
cannot consider the whole history. Instead we select a finite
number of values in the past, and the set of corresponding time
indices is called an embedding time comb.

If there is some coupling x → y with coupling delay
τx→y > 0, we expect that IMIT(τ ) significantly differs from
zero for this lag τ = τx→y . We consider only positive time
lags as our analysis presumes that we have first the cause and
then the effect. For the analysis of signals that are continuous
in time we have to apply sampling periods that are less than
the supposed minimum coupling delay. Otherwise we would
observe the information transfer at IMIT(τ = 0) and thus could
not resolve the coupling direction.

Coupling in the inverse direction y → x could be detected
by the exchange of the series or, equivalently, by taking
the first settings but negative time lags τ < 0. Note that
any coupling measure should be asymmetric to be able to
distinguish between the driving and the driven subsystem.
Our coupling measure has this asymmetry, as, in general,
IMIT(τ ) �= IMIT(−τ ) for τ �= 0.

The basic idea behind our approach of coupling analysis can
be illustrated as follows. Suppose we observe two real-world

systems x and y by simultaneously recording any meaningful
quantities xt and yt , respectively. We want to find out whether x

can influence y. Suppose that this could be done by “ kicking”
system x and waiting for a response of y. The latter should be
visible by any event in the yt record that is not expected if y

would run autonomously, this could be an unusual burst. If we
see such a response at delay τ = τx→y > 0, we would perhaps
repeat this experiment again and again. When we always get
the response at the same delay, we would be finally convinced
that x indeed has an influence on y, with this delay.

This setup needs the opportunity to kick the system x. In
real-world data analysis this is, however, often not possible.
Fortunately, our approach is nonintervening. Momentary
information hx,t of the x series plays the role of kicking. That
part of the momentary information hy,t+τ of the y series that
is common with hx,t plays the role of the response (burst). The
repeats are due to the fact that the considered information is
an averaged quantity. This approach works also if there is a
feedback y → x, as the effect of feedbacks are suppressed by
considering only momentary information.

C. Common driver problem

In our coupling analysis we assume that there are two
systems x and y that can bidirectionally interact with delays
τx→y > 0 and τy→x > 0. However, consider the case of a
hidden common driving system c that couples to both other
systems with delays τc→y > τc→x > 0, respectively. Then our
bivariate analysis would erroneously yield a coupling x → y

with coupling delay τx→y = τc→y − τc→x . From bivariate
observations (time series) of systems x and y we are not able
to distinguish between direct coupling, x → y, and spurious
coupling by a common driver, c → x and c → y. To evaluate
whether a special third system c acts as a common driver, we
have to measure a third time series at system c. Then from
the analysis of all six pairwise coupling delays we could get
the whole picture. This is one reason why we are interested
in detecting not only coupling directions, but also delays,
and this makes the main difference of our MIT approach
compared to TE. Such common driver analysis was also
done in Ref. [6], however, with a coupling measure different
from our present approach. A more detailed consideration of
directed information and Granger causality between nodes in
a complex network having more than two nodes is given in
Refs. [17,18].

D. Symbolic analysis

In the framework of Shannon’s information theory, en-
tropies are functionals of probability distributions. Especially
in the analysis of conditional mutual information considered
here, we usually need rather high-dimensional distributions
of some joint random variables that are supposed to generate
the time series we are dealing with. The latter have finite
length and thus it may be hard to get reliable entropy estimates
with moderate computational efforts, and without additional
assumptions on the underlying stochastic processes.

For series that are continuous in amplitude we could work
with some approximations of probability densities via kernel
estimators as proposed in Ref. [3]. We could use also some
nearest-neighbor statistics as in Ref. [6]. The existence of
densities is well motivated in real-world data analysis due to
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the omnipresent noise. However, in the framework of nonlinear
dynamics we often have to deal with invariant measures that
are fractal, and thus no such density exists.

Symbolic analysis does not presume probability densities
and thus represents an alternative approach. In general, the
symbols are obtained from some coarse-graining of state
space. For instance, due to analog-to-digital conversion of a
continuous signal we already have a symbolic representation.
However, usually the corresponding number of different
symbols is still too large for reliable statistics. Hence some
additional coarse-graining (binning) must be performed. In
the so-called adaptive binning the bins are defined by (nearly)
equidistant quantiles of the one-dimensional (marginal) em-
pirical probability distribution. However, in general there is
much ambiguity of binning.

We derive a symbolic representation of the time series
in another way — we consider order patterns of the delay
embedding vectors (“ words”). Each order pattern is equivalent
to a permutation of the coordinates of this vector such that they
are arranged in an ascending order. In this way only ordinal
properties of the data are considered. Indeed, each order pattern
(permutation) represents a subset of the embedding state space.
Hence, the basis of our method of symbolization is nothing but
a special partition of state space, the permutation partition.

Note also that ordinal time-series analysis has advantages in
the analysis of proxy data in climatology. Think, for instance,
of historical temperature data that can be measured only
indirectly from color intensities of sediments [19]. If the
relation between both quantities is strictly monotone, order
relations are the same in each series, and thus temperature
analysis can be based directly on color intensities.

E. Permutation and sorting entropy

Permutation entropy (PE) [20] is derived from permutation
partition. In the framework of (nonlinear) dynamics, PE is
related to the metric entropy of the dynamical system [21–23].
That is why the method of order patterns is considered as a
rather natural way of coarse-graining, and we expect that it
keeps essential parts of momentary information in the symbol
sequences — information that is needed for our coupling
analysis as described above.

PE measures the information on the order relations in a
(real-valued) delay embedding vector (i.e., the information
needed to sort this vector in an ascending sequence). Mutual
sorting information (MSI) is the information on sorting one
vector contained in PE of another vector. Finally, conditional
MSI (CMSI) is MSI under the condition that sorting of some
other delay embedding vectors is given. The condition has
to be carefully chosen to consider (first of all) momentary
information in our coupling analysis. An advantage of our
approach is that no explicit partitioning of state space has
to be done. For a recent review on permutation entropy and
ordinal patterns we refer to Amigo [23].

Order patterns have already been used for coupling analysis
[7,8]. However, the methods proposed there consider CMI of
the series of permutation indices. As they are constructed from
delay embedding vectors, the series of permutation indices
have some inevitable autodependencies even when the original
series is perfectly random [i.e., if it can be considered as
the realizations of an independent identically distributed (iid)

stochastic process]. This implies disadvantages for coupling
analysis as it was discussed in Ref. [9]. The methods are
compared in Fig. 1. Moreover, the concept in Ref. [7] is not
purely ordinal as a difference of vectors is involved.

F. Overview

In Sec. II we review basic definitions for delay embedding,
order statistics, information, and entropy. In Sec. III we
introduce MSI and CMSI. For appropriate conditions this
leads to MSIT, which is our measure for coupling of time
series. The relation of MIT to Schreiber’s transfer entropy or
Marko’s directed information are discussed as well as that of
MSIT to other coupling measures symbolic transfer entropy
(STE) and transfer entropy on rank vectros (TERV), which
are defined on the basis of sorting entropies introduced in
Refs. [8,9]. The problem of CMSI estimation from finite time
series is considered in Sec. IV. In Sec. V we give several
examples, among them bidirectionally and unidirectionally
coupled nonlinear dynamical systems. We also discuss the
influence of dynamical and observational noise. Finally, we
consider some real-world data from climatology.

II. BASIC DEFINITIONS

A. Embedding time comb

For a (stationary, scalar) time series {xt }Tt=1 we consider the
M-dimensional delay-embedding vector (m = 1,2, . . . ,M),

xϑ
t = (xt+ϑ1 , . . . ,xt+ϑm

, . . . ,xt+ϑM
). (1)

We use the time delays, called embedding time comb,

ϑ = {ϑ1, . . . ,ϑm, . . . ,ϑM},
with integers ϑm∗ �= ϑm for all m∗ �= m, and embedding dimen-
sion M � 2. We suppose | min ϑ |,| max ϑ | � T , and have in
mind M � T . Time t is running in a range such that 1 �
t + ϑm � T for all m. In this paper we use only time combs
{ϑ1, . . . ,ϑM} formed by multiples of an integer embedding
delay d (i.e., |ϑm − ϑm+1| = d, for all m = 1, . . . ,M − 1).
However, in general, nonuniformly spaced time combs could
be chosen as well, if there is good reason to do so [6].

B. Order patterns

We sort the coordinates according to their ranks

xt+ϑπ(1) < . . . < xt+ϑπ(m) < . . . < xt+ϑπ(M) .

Sorting is related to a permutation π of the time comb indices

{1, . . . ,m, . . . ,M},
↓

{π (1), . . . ,π(m), . . . ,π (M)}.
The order pattern of a vector xϑ

t is given by

Rϑ
t = (Rt+ϑ1 , . . . ,Rt+ϑm

, . . . ,Rt+ϑM
), (2)

where Rt+ϑm
= π (m) − 1 is the rank of xt+ϑm

among the
coordinates of xϑ

t . It can be written also as

Rt+ϑm
= #{xt+ϑm∗ < xt+ϑm

: m∗ = 1,2, . . . ,M}, (3)
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where #{·} denotes the cardinality (number of elements) of the
set {·}. Thus, the rank Rt+ϑm

of the coordinate xt+ϑm
of the delay

embedding vector (1) is given by the number of coordinates
of this vector that are less than xt+ϑm

. In this way, the smallest
coordinate gets the rank 0 and the largest coordinate has rank
M − 1. Note that Rϑ

t is a permutation of [0,1, . . . ,(M − 1)].
In this way, a permutation π encodes the order pattern Rϑ

t of
the delay-embedding vector xϑ

t . Note that there may occur, at
most, M! different order patterns.

To be well defined also for tied ranks (i.e., for cases where
there are some equal coordinates xt = xt∗ ) we set xt < xt∗ if
t < t∗. However, we have in mind situations without tied ranks,
which is almost surely the case for time series with absolutely
continuously distributed amplitude, and rather likely for series
obtained from real-world signals with a high resolution of
analog-to-digital conversion.

C. Numbering of order patterns

The order pattern Rϑ = (Rϑ1 ,Rϑ2 , . . . ,RϑM
) of any vector

xϑ = (xϑ1 ,xϑ2 , . . . ,xϑM
) (omitting time index t for conve-

nience) can be unambiguously numbered in the following way:

i = 1 +
M∑

m=2

(m − 1)! rm,

where rm ∈ {0,1,2, . . . ,m − 1} is the rank of xϑm
among

(xϑ1 ,xϑ2 , . . . ,xϑm
).

Consider, for example, the case M = 3. Here we have
M! = 6 order patterns (Rϑ1 ,Rϑ2 ,Rϑ3 ) which are numbered as

(Rϑ1 ,Rϑ2 ,Rϑ3 ) → (r2,r3) → i = 1 + 1! r2 + 2! r3,

(2,1,0) → (0,0) → i = 1,

(1,2,0) → (1,0) → i = 2,

(2,0,1) → (0,1) → i = 3,

(0,2,1) → (1,1) → i = 4,

(1,0,2) → (0,2) → i = 5,

(0,1,2) → (1,2) → i = 6.

Note that this numbering is very useful for programming.

D. Permutation series

In the described way, the M-dimensional vector xϑ
t is

mapped to a permutation

xϑ
t → πϑ

t ∈ {π1,π2, . . . ,πi, . . . ,πM!},
and a time series is transformed to the symbolic series of
permutations

embedding sorting
{xt } −→ {xϑ

t } −→ {πϑ
t }. (4)

Consider, for example, the time series

{xt } = {0.6, − 1.4, − 2.5,0.9,4.6, − 3.6, . . .},
and the three-dimensional time comb ϑ = {−4, − 2,0}, using
embedding delay d = 2. Sorting of the delay-embedding
vector xϑ

5 = (x1,x3,x5) = (0.6, − 2.5,4.6) yields the order

pattern (1,0,2). At the next time step we get xϑ
6 = (x2,x4,x6) =

(−1.4,0.9, − 3.6) with the order pattern (1,2,0).

E. Permutation entropy

Let pi denote the probability for πϑ
t = πi in the permutation

series (4). Then order M permutation entropy is defined as [20]

Hx =
M!∑
i=1

pi ln
1

pi

. (5)

We always use the natural logarithm ln = loge, thus entropies
are measured in units of nit henceforth.

Consider two time combs ϑx and ϑz with cardinalities
Mx and Mz, respectively. Now we ask for the conditional
uncertainty on the order pattern of x

ϑx

t , if we already know the
order pattern of x

ϑz

t

Hx|z = Hxz − Hz =
Mz!∑
k=1

pk

Mx !∑
i=1

pi|k ln
1

pi|k
, (6)

where Hxz is the permutation entropy of the joint probabilities
pik for (πϑx

t ,π
ϑz

t ) = (πi·,π·k). (Note that, in general, πi· �=
π·k if ϑx and ϑz have different cardinality.) The marginal
probabilities are p·k = ∑

i pik , and the conditional probabil-
ities are given by pi|k = pik/p·k , provided p·k > 0, pi|k = 0
otherwise.

For the special time combs ϑz = {−Mz, . . . , − 1}, ϑx =
ϑz ∪ {0}, Hx|z is the so-called sorting entropy (SE) [20],
with Hx|z � ln(Mz + 1). Equality Hx|z = ln(Mz + 1) holds
for any iid series. For chaotic series, SE is related to the
metric entropy of the underlying ergodic dynamical system
[21,22]. For piecewise monotone one-dimensional (1D) maps
SE converges to the metric entropy for Mz → ∞, however,
for noisy series SE diverges for this limit. In any case, for
sufficiently large Mz, SE represents more or less momentary
information.

Consider an example, ϑz = {−2, − 1} and ϑx = {−2, −
1,0, + 1}. Here we have Hx|z � ln 3 + ln 4. This is the uncer-
tainty to sort (xt ,xt+1) among (xt−2,xt−1,xt ,xt+1) remaining
if (xt−2,xt−1) is already sorted. Again, equality holds for iid
series.

For ϑz ⊆ ϑx we get Hx|z � ln Mx! − ln Mz!. For any time
combs we have Hx|z � Hx � ln Mx!, where equalities hold
for iid series if ϑz ∩ ϑx = �. However, for ϑz ∩ ϑx �= � we
get Hx|z < ln Mx!, even if the series is iid.

III. COUPLING MEASURES

A. Mutual sorting information

Suppose there are two time series {xt } and {yt } of any
underlying systems x and y. We want to know whether these
systems are coupled, with some positive delays τx→y and
τy→x . Somehow, naively we could consider mutual sorting
information for varying time lag τ of the permutation series
{πϑx

t } and {πϑy

t } obtained from the x and y series, respectively,
as described by Eq. (4)

IMSI
xy (τ ) = Hx + Hy − Hxy

= Hx − Hx|y
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= Hy − Hy|x

=
Mx !, My !∑

i,j=1

pij ln
pij

pi· p·j
. (7)

The joint entropy Hxy is obtained from the joint probabili-

ties pij for (πϑx

t ,π
ϑy

t+τ ) = (πi·,π·j ). The marginals are pi· =∑
j pij , and p·j = ∑

i pij . The joint probabilities pij and
hence also Hxy depend on time lag τ , however, the marginal
entropies Hx and Hy do not due to supposed stationarity. For
coupling analysis we would use embedding time combs ϑx

and ϑy that have negative entries, but one entry being zero

ϑ = {0,ϑ2, . . . ,ϑm, . . . ,ϑM},
with ϑm < 0 for all m = 2, . . . ,M.

However, from this analysis we would get, in general, no
detailed knowledge on coupling delays as the corresponding
order patterns contain information smeared over a time interval
given by the embedding time comb. Autodependencies of the
time series could be misleading as well.

B. Conditional mutual sorting information

In our coupling analysis we want to restrict (as well as
possible) to momentary mutual sorting information. This is
achieved by setting suitable conditions z. We ask for MSI of
x and y under the condition z which will be specified below.
This leads to the conditional mutual sorting information

ICMSI
xy|z (τ ) = Hx|z + Hy|z − Hxy|z (8)

= Hxz + Hyz − Hz − Hxyz (9)

= Hx|z − Hx|yz

= Hy|z − Hy|xz

=
M∗

z∑
k=1

p··k
Mx !, My !∑

i,j=1

pij |k ln
pij |k

pi·|k p·j |k
(10)

=
Mx !, My !, M∗

z∑
i,j,k=1

pijk ln
pi·|jk

pi·|k
(11)

=
Mx !, My !, M∗

z∑
i,j,k=1

pijk ln
p·j |ik
p·j |k

. (12)

In general, all entropies on the right-hand side depend on
time lag τ . The joint entropy Hxyz = Hx|yz + Hyz is obtained

from the joint probabilities pijk for [πϑx

t ,π
ϑy

t+τ ,(π
ϑzx

t ,π
ϑzy

t+τ )] =
(πi··,π·j ·,π··k). The condition z is constructed from the joint

permutations (πϑzx

t ,π
ϑzy

t+τ ), which can be numbered by k =
1,2, . . . ,M∗

z , with M∗
z = Mzx

! Mzy
! . The marginal distribu-

tions are obtained from pi·k = ∑
j pijk , p·jk = ∑

i pijk , and
p··k = ∑

i,j pijk . Moreover, we use the notations

pi·|k = pi·k/p··k, p·j |k = p·jk/p··k,
pi·|jk = pijk/p·jk, p·j |ik = pijk/pi·k.

In general, we have 0 � ICMSI
xy|z � min{Hx|z, Hy|z}. Equality

ICMSI
xy|z = 0 holds if and only if x and y are independent under

the condition z (i.e., if and only if pij |k = pi·|kp·j |k for all i, j ,

k). For empty time combs ϑzx
= ϑzy

= �, CMSI (8) reduces
to MSI (7).

C. Momentary sorting information transfer

For our coupling analysis we take embedding time combs
ϑz∗ , where ∗ stands for x or y,

ϑz∗ = {ϑ1, . . . ,ϑm, . . . ,ϑMz∗ },
with ϑm < 0 for all m = 1, . . . ,Mz∗ , and

ϑ∗ = ϑz∗ ∪ {0}. (13)

If we use in Eq. (8) these special embedding time combs
and positive time lags τ , we would call CMSI momentary
sorting information transfer. Note that for large embedding
dimensions Mzx

and Mzy
, MSIT regards first of all to

momentary sorting information. Thus we write for all τ > 0

IMSIT
x→y (τ ) = ICMSI

xy|z (τ ),
(14)

IMSIT
y→x (τ ) = ICMSI

xy|z (−τ ) = ICMSI
yx|z (τ ).

Consider an example: We set ϑzx = ϑzy = {−2, − 1} and
ϑx = ϑy = {−2, − 1,0}. These time combs match the con-
ditions in Eq. (13), hence CMSI is considered as MSIT.
Then IMSIT

x→y (τ ) is the information to sort xt among (xt−2,xt−1)
that is contained in the information to sort yt+τ among
(yt+τ−2,yt+τ−1), provided that the condition z is already
known, which is the joint information of sorting (xt−2,xt−1)
and of sorting (yt+τ−2,yt+τ−1). Here we get IMSIT

x→y (τ ) � ln 3.

D. Transfer entropy and momentary information transfer

From Eqs. (11) and (12) we see that CMSI can be
considered as a Kullback-Leibler entropy (divergence), that
is, as the information we gain if the probability distribution
{pi·|k} is replaced by {pi·|jk}, or if {p·j |k} is replaced by
{p·j |ik}, respectively. Note that Schreiber’s transfer entropy
introduced in Ref. [1] was also motivated by interpreting it
as an information gain. Using our notations for embedding
dimensions, he considered the coupling measure

ITE
x→y =

∑
p
(
x

Mx

t ,y
Mzy +1
t+1

)
ln

p
(
yt+1|xMx

t ,y
Mzy

t

)
p
(
yt+1|yMzy

t

) (15)

=
∑

p
(
x

Mx

t ,yt+1,z
)

ln
p
(
x

Mx

t ,yt+1|z
)

p
(
x

Mx

t |z)p(
yt+1|z

) , (16)

with the condition z = y
Mzy

t ,

where we use the delay embedding vectors

x
Mx

t = (xt−Mzx +1, . . . ,xt ),

y
Mzy

t = (yt−Mzy +1, . . . ,yt ),

and p(. . .) being the corresponding probabilities. Hence TE
could be considered also as a conditional mutual information
between the future value yt+1 of the y series and the past

x
Mx

t of the x series under the condition z = y
Mzy

t , which
is the past of the y series. Note also that Marko’s directed
information [12,13] is equal to transfer entropy for embedding
dimensions Mx,Mzy

→ ∞.
Suppose that we do not consider sorting information in our

MSIT approach, but instead the probability distributions of
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the time series in the same way as in TE. Moreover, we take
embedding time combs as in Eq. (13), however, with ϑm = m

for all m = 1, . . . ,Mz∗ . Then instead of MSIT in Eqs. (10),
(11), and (12) we obtain a quantity that we call momentary
information transfer of xt to yt+1

IMIT
x→y(τ ) =

∑
p
(
x

Mzx +1
t ,y

Mzy +1
t+τ

)
ln

p
(
yt+τ |xMzx +1

t ,y
Mzy

t+τ−1

)
p
(
yt+τ |xMzx

t−1 ,y
Mzy

t+τ−1

)
(17)

=
∑

p(xt ,yt+τ ,z) ln
p(xt ,yt+τ |z)

p(xt |z)p(yt+τ |z)
,

with the condition z = (
x

Mzx

t−1 ,y
Mzy

t+τ−1

)
,

and time lag τ = 1,2, . . . . (18)

A comparision of Eqs. (15) and (16) with Eqs. (17) and (18),
respectively, makes obvious the difference between both ap-
proaches: TE considers the mutual information of yt+1 and xt

under the condition z, which is the past of yt+1. MIT represents
the mutual information of yt+τ and xt under the condition z,
which is the joint past of both, xt and yt+τ , for varying time lag
τ = 1,2, . . .. The idea for considering MSIT is just the same as
considering MIT instead of TE. However, in MSIT only sorting

information of yt+τ among y
Mzy

t+τ−1 and that of xt among x
Mzx

t−1 is
considered.

From IM(S)IT
x→y (τ ), τ = 1,2, . . . , we can expect a better

resolution of coupling delays because we consider, first of
all, momentary information not only of xt but also of yt+τ .
For large embedding dimensions (i.e., for Mzx

,Mzy
→ ∞)

M(S)IT accounts for momentary information in both time
series. In real-world data analysis this limit cannot be attained.
That is why it may be rather useful to look for nontrivial
low-dimensional embedding time combs such that, first of
all, momentary information is used for coupling analysis.
In some of our examples given below we vary the time
combs.

E. Coinformation

In general, the difference between conditional and uncondi-
tional mutual information is known as interaction information
or coinformation [24,25]. Here we get the sorting coinforma-
tion (SCO)

I SCO
xyz = ICMSI

xy|z − IMSI
xy

= Hxy + Hxz + Hyz − Hx − Hy − Hz − Hxyz.

Obviously, coinformation is completely symmetric (e.g.,
I SCO
xyz = I SCO

xzy = I SCO
yzx ). In general, we get

I SCO,min
xyz � I SCO

xyz � I SCO,max
xyz ,

where

I SCO,min
xyz = − min

{
IMSI
xy ,IMSI

xz ,IMSI
yz

}
� 0,

I SCO,max
xyz = min

{
ICMSI
xy|z ,ICMSI

xz|y ,ICMSI
yz|x

}
� 0.

Hence coinformation may be positive, negative, or zero.
However, in our examples discussed below we always get
nonpositive coinformation, which is the more intuitive (natu-

ral) case where the condition z decreases mutual information
between x and y.

A simple example for positive coinformation is given
by the joint probability distribution {pijk}, where p111 =
p122 = p212 = p221 = 1/4 and all other probabilities equal
to zero. Here we get Hx = Hy = Hz = ln 2, Hxy = Hxz =
Hyz = Hxyz = ln 4. Thus we have IMSI

xy = 0 (i.e., x and y

are independent). However, ICMSI
xy|z = ln 2 > 0 (i.e., x and y

are not independent under the condition z). Hence, I SCO
xyz =

ln 2 > 0.

F. Relations of MSIT to other concepts

For comparison of our MSIT approach with that in
Refs. [8,9] we refer to Fig. 1. We discuss it for embedding
time delay d = 1. All three approaches represent special cases

(a)ISTE
x→y(τ) for τ > 0

x
Mzx
t = xt−Mzx+1, . . . , xt

↓

τ y
My
t+τ = yt+τ−My+1, . . . , yt+τ

condition:

y
My
t = yt−My+1, . . . , yt

(b)ITERV
x→y

x
Mzx
t = xt−Mzx+1, . . . , xt

↓

y
Mzy+M∗

y

t+M∗
y

= yt−Mzy+1, . . . , yt−1, yt, yt+1, . . . , yt+M∗
y

condition:

y
Mzy
t = yt−Mzy+1, . . . , yt

(c) IMSIT
x→y (τ) for τ > 0

x
Mzx+1
t = xt−Mzx

, . . . , xt−1, xt πϑx
t

↓

τ y
Mzy+1

t+τ = yt+τ−Mzy
, . . . , yt+τ−1, yt+τ π

ϑy
t+τ

condition:

τ y
Mzy
t+τ−1 = yt+τ−Mzy

, . . . , yt+τ−1 π
ϑzy
t+τ

x
Mzx
t−1 = xt−Mzx

, . . . , xt−1 π
ϑzx
t

FIG. 1. Setups of three different approaches for coupling analysis.
Each box symbolizes the permutation (order pattern) π of the
corresponding random vectors. (a) Symbolic transfer entropy (STE)
according to Ref. [8]. (b) Transfer entropy on rank vectors (TERV)
according to Ref. [9]. (c) Momentary sorting information transfer
(MSIT, our approach). All three approaches represent special cases
of conditional mutual sorting information (CMSI), Eq. (8).
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of CMSI. One of the main differences is that in MSIT the
condition z is derived from the joint past of both time series.
In STE and TERV introduced in Refs. [8] and [9], respectively,
the condition is only derived from the past of y. This could
be expressed formally by ϑx = � and hence z = zy . Another
striking difference of our CMSI approach is that for increasing
time lag τ of the order pattern π

ϑy

t+τ we also shift the conditional

pattern π
ϑzy

t+τ . All this has the effect that for varying time lag τ

we can more precisely detect the right coupling delays as we
consider first of all only momentary information.

G. Proper embedding time combs

The choice of proper embedding time combs plays a central
role in our analysis. For our analysis it is crucial that, first of
all, momentary information of the x and y series contributes
to CMSI. Moreover, if we want to apply our method to
short time series, we should use low embedding dimensions
Mx,My,Mzx

,Mzy
, to get reliable CMSI estimates. A method to

select perhaps nonuniformly spaced time combs for nonlinear
autoregressive predictions of time series was described in
Ref. [26]. Similar techniques to detect best time combs could
be applied here as well. A more detailed consideration of time
comb selection is beyond the scope of this paper. Nevertheless,
in some of our examples given below we systematically vary
time combs.

If the signal x(t) is time continuous, a proper choice of
the sampling period �t is important. Suppose the signal
is bandlimited. Then, for any embedding dimension Mz

and sufficiently small �t , most of the embedding vectors
[x(t − Mz �t), . . . , x(t − �t), x(t)] represent a continuously
increasing or decreasing episode, and it is rather likely that
x(t) is the largest or smallest coordinate, respectively. Hence,
for fixed Mz > 1 and �t → 0, SE in Eq. (6) would vanish and
our coupling analysis becomes impossible.

If the signal is noisy (dynamical noise), SE reaches its
maximum ln(Mz + 1) for �t → 0, even for very low noise
levels. A large value of SE is, in principle, good for our
coupling analysis. However, this is no guarantee to detect all
couplings. Some effects of noise are illustrated in the examples
given below.

H. Coupling indices

In analogy to Refs. [2,5], we could consider also “coupling
indices”

I
∑

MSIT
x→y = 1

τmax

τmax∑
τ=1

IMSIT
x→y (τ ), (19)

I
∑

MSIT
y→x = 1

τmax

−τmax∑
τ=−1

IMSIT
x→y (τ ). (20)

They might be considered as a coupling strength. The delay
τmax > 0 is the presumed maximal coupling delay, describing
the coupling of x to y and y to x, respectively. However,
from these indices we cannot derive coupling delays. That
is why we rather consider the function IMSIT

x→y (τ ). We should
also be aware that the magnitude of our coupling measure
depends on the embedding dimensions and time combs. Hence
its interpretation is somehow arbitrary, and we should look first
of all for time lags τ where IMSIT

xy|z (τ ) has significant peaks.

Note also that if we would take coupling indices (19) and
(20) based on transfer (sorting) entropy, T(S)E, instead of
momentary (sorting) information transfer, M(S)IT, the indices
would typically yield a larger coupling strength as T(S)E
typically has broader peaks near the coupling delays than
M(S)IT has.

IV. ESTIMATION

The proposed CMSI method is based on permutation
entropy (5) which is a (discrete) Shannon entropy. It has to
be estimated from finite permutation series {πϑ

t }Tt=0, derived
from the time series as described in Eq. (4). The same holds
for the joint permutation entropies at the right hand side of
Eq. (8). (Note that length T here is a bit smaller than that of
the time series due to embedding.)

For the estimation of entropy (5) we could somehow naively
replace the probability pi by the relative frequencies ti/T , ti =
#{πϑ

t = πi : t = 1, . . . ,T }. The resulting naive estimator

Ĥ n = ln T − 1

T

M!∑
i=1

ti ln ti , (21)

would work for T 
 M! and ti 
 1 for all i = 1,2, . . . ,M!.
However, for small ti it is strongly biased. Here Grassberger’s
estimator [27,28] works much better, which is defined by

ĤG = ln T − 1

T

M!∑
i=1

ti G(ti), (22)

where

G(0) = 0,

G(1) = −γ − ln2, with Euler′s constant γ ≈ 0.577 215,

G(2) = 2 + G(1),

G(t) = G(t − 1) for all odd t = 3,5 . . . ,

G(t) = G(t − 1) + 2/(t − 1) for all even t = 4,6 . . . .

The bias of ĤG might also be negative which is in contrast to
that of Ĥ n. This is, however, irrelevant for our CMSI estimator
decribed below.

We consider the CMSI estimator

̂ICMSI
xy|z

G
(τ ) = Ĥxz

G + Ĥyz
G − Ĥz

G − Ĥxyz
G
, (23)

which is defined by replacing H in Eq. (8) with ĤG defined
in Eq. (22). Analogously, we define the naive CMSI estimator̂ICMSI

n
by replacing H in Eq. (8) with Ĥ n. Some values for the

bias b and standard deviation (SD) s of both CMSI estimators
are given in Table I.

We found that ̂ICMSI
G

has lower bias than ̂ICMSI
n
, however,

usually larger SD. In our examples we always use ĤG.
The uncoupled iid series provide much larger bias than
the uncoupled logistic maps. Thus we cannot simply derive
a universal threshold ICMSI∗ such that coupling could be
considered to be significant if ̂ICMSI > ICMSI∗.

We obtain this threshold from a shuffle test: Let {πϑy

λ(t)}
and {πϑzy

λ(t)} be the shuffled permutation series corresponding to
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TABLE I. Bias b and standard deviation s of the naive and
Grassberger’s CMSI estimator (23) for uncoupled iid sequences
and uncoupled logistic maps [Eq. (25), for cy→x = cx→y = 0]. The
time combs are ϑx = ϑy = {−2, − 1,0}, and for the condition ϑzx

=
ϑzy

= {−2, − 1}. The values are obtained from N = 1000 runs for

each series length T . The error of the bias represents b ± (2s/
√

N).

̂ICMSI
n ̂ICMSI

G

log2 T b s b s

Uncoupled iid series
6 0.1737(33) 0.052 0.0063(65) 0.10
7 0.0754(16) 0.026 0.0013(28) 0.044
8 0.03375(74) 0.011 0.0006(12) 0.020
9 0.01639(36) 0.0058 0.00032(63) 0.0099
10 0.00805(18) 0.0028 0.00012(30) 0.0048
11 0.004000(88) 0.0013 0.00009(14) 0.0023
12 0.001980(43) 0.00069 0.000057(76) 0.0012

Uncoupled logistic maps
6 0.0888(26) 0.041 0.0118(52) 0.083
7 0.0435(13) 0.020 0.0032(24) 0.039
8 0.02037(64) 0.010 0.0014(11) 0.018
9 0.01000(33) 0.0053 0.00085(55) 0.0088
10 0.00481(16) 0.0025 0.00029(26) 0.0042
11 0.002367(79) 0.0012 0.00016(13) 0.0021
12 0.001169(38) 0.00060 0.000050(68) 0.0010

the y series, using a random permutation λ, [1,2, . . . ,T ] →
[λ(1),λ(2), . . . ,λ(T )]. This kind of shuffling keeps the prob-
ability distribution {pyzy

}, and hence the corresponding
marginal distributions {py·} and {p·zy

}, but it destroys (with
high probability) any coupling between the x and y se-
ries. We shuffle using many different random permutations
λl , l = 1,2, . . . ,L, and get for each λl a CMSI estimate
ICMSI
l according to Eq. (23). Finally, the threshold ICMSI∗

for coupling decision is derived from the corresponding
empirical 95% quantile, that is, ICMSI∗ is chosen such
that

ICMSI∗ ∈ {
ICMSI
l

}
, L∗ − 1 < 0.95L � L∗, (24)

where L∗ = #{ICMSI
l < ICMSI∗}.

Note that for the time combs defined in Eq. (13), CMSI is
equal to our coupling measure MSIT, Eq. (14).

V. EXAMPLES

A. Bidirectionally coupled logistic maps

We study a bidirectionally delay-coupled logistic map f :
[0,1] → [0,1], f (x) = 4x(1 − x),

xt = f (gy→xmod 1),

gy→x = cy→xyt−τy→x
+ (1 − cy→x)xt−1,

(25)
yt = f (gx→ymod 1),

gx→y = cx→yxt−τx→y
+ (1 − cx→y)yt−1.

In our examples we always take only T = 512 samples. First
we examine the role of conditioning. We test whether CMSI
can detect the correct coupling lag which allows to draw

FIG. 2. Estimates of mutual sorting information (MSI), Eq. (7),
and several conditional MSI (CMSI), Eq. (8), according to the
estimator of Eq. (23) for the bidirectionally coupled logistic map
(25). The coupling strengths amount to cy→x = 0.2 and cx→y =
0.5, the coupling delays to τy→x = 5 and τx→y = 2. The sample
size is T = 512. Error bars denote standard deviations of 1000
trials. The gray band denotes the 95% significance level ICMSI∗,
Eq. (24). Panel (a) shows the cross correlation function ρ in the
top plot as well as MSI and CMSI functions for different time
combs: (i) MSI for ϑx = ϑy = {−1,0}, ϑzx

= ϑzy
= �, (ii) MSI

for ϑx = ϑy = {−2, − 1,0}, ϑzx
= ϑzy

= �, and (iii) CMSI for
ϑx = ϑy = {−2, − 1,0}, ϑzx

= ϑzy
= {−2, − 1}. Note that for these

time combs CMSI is equivalent to MSIT [cf. Eqs. (13) and (14)].
(iv) CMSI for ϑx = ϑy = {−2, − 1,0,1}, ϑzx

= ϑzy
= {−2, − 1},

(v) CMSI for ϑx = ϑy = {−2, − 1,0} for all lags τ , but ϑzx
= �,

ϑzy
= {−2, − 1} for positive τ > 0, and ϑzx

= {−2, − 1}, ϑzy
= �

for τ < 0. The ticks at the ordinate mark the significance threshold
ICMSI∗, Eq. (24), and the maximum value ICMSI

max = maxτ ICMSI.
The figures illustrate that best results for coupling analysis are
obtained by the MSIT approach of (a) (iii). (b) shows the maximum
MSIT value for positive delays, IMSIT

max ,τ>0 = maxτ>0 IMSIT (solid line),
and negative delays, IMSIT

max ,τ<0 = maxτ<0 IMSIT (dashed line). The
coupling strength cy→x = 0.2 is constant, and cx→y is varied. We
use here the time combs of (a) (iii), hence CMSI is indeed MSIT,
Eqs.(13) and (14). The 95% significance level is separate for each
coupling.

conclusions about a coupling direction. In Fig. 2(a) we have
set the coupling delays to τy→x = 5 and τx→y = 2, and the
coupling strengths to cy→x = 0.2 and cx→y = 0.5.

Cross correlation ρ does not detect any coupling y → x

for negative lags τ . Moreover, for positive lags the magnitude
of ρ detects the wrong coupling delay. CMSI is shown for
different time combs. Subfigure (i) and (ii) correspond to MSI
with no conditions as in Eq. (7). Due to autodependencies
the peaks are quite broad, the right peak extends to the side
of negative delays which is misleading for the detection of
causal direction, especially when we would consider sums
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over lags like in Eqs. (19) and (20). In (i) the weaker coupling
is not detected. Subfigure (iii) shows CMSI as in Eq. (8)
for the smallest possible time comb. The peaks are much
sharper and allow for a correct detection of coupling directions
and delays because these embedding time combs quite well
select momentary information only. Note that the time combs
fulfill the conditions given in Eq. (13), and thus this special
CMSI is called MSIT, defined by Eq. (14). In subfigure (iv)
CMSI measures the sorting of the two next values leading
to a greater sensitivity in coupling strength. However, now
no longer first of all momentary information is used which
makes the peaks broader. Nevertheless, the information used
is quasimomentary, as it comes from two adjacent samples.
In subfigure (v) the choice of time combs corresponds to
transfer sorting entropy as the condition in CMSI is performed
only from one time series. It yields an asymmetric coupling
measure, but for the logistic map it fails to detect the right
delay τx→y , and the peaks are broad. Generally the variance
decreases for larger samples. Note that for τ = 1 this is similar
to STE and TERV introduced in Refs. [8] and [9], respectively
(Fig. 1). Thus the figures illustrate that best results for coupling
analysis are obtained by the MSIT approach. As we did
argue above this is due to considering first of all momentary
information.

Figure 2(b) shows the maximum MSIT value for positive
delays, IMSIT

max ,τ>0 = maxτ>0 IMSIT (solid line), and negative
delays, IMSIT

max ,τ<0 = maxτ<0 IMSIT (dashed line). The coupling
strength cy→x = 0.2 is constant, and cx→y is varied. IMSIT

max ,τ>0

describes the coupling direction x → y, and IMSIT
max ,τ<0 that of

the inverse direction, y → x. Note that IMSIT
max ,τ<0 is nearly

constant which well reflects that cy→x is constant. On the
other hand, IMSIT

max ,τ>0 is varied, however, it does not increase
monotonously with cx→y . In general, such a monotonous
relation cannot be expected as the coupled systems may
undergo several bifurcations.

At cx→y = cy→x = 0.2, MSIT reproduces the equal cou-
pling strength. This equality is expected because now the
whole system is completely symmetric with respect to the
subsystems. At larger values of cx→y the system undergoes
some bifurcations, and beyond cx→y = 0.4 the directions can
again be well distinguished.

This analysis is rather robust if we add dynamical noise
ξ∗,t , where ∗ stands for x or y. We take noise that is
iid, zero mean normally distributed with standard deviation
σ∗ � 0.1 [i.e., ξ∗,t ∼ N (0,σ∗)]. In each iteration we first map
(xt−1,yt−τx→y

) → (xt ,yt ) according to Eq. (25) and then we
add the noise

xt → xt + σxξx,t , yt → yt + σyξy,t . (26)

The random variables ξx,t and ξy,t are independent, and we
take the same noise levels, σ = σx = σy . For increasing σ ,
however, both values IMSIT

max ,τ<0 and IMSIT
max ,τ>0 decrease, the

latter more than the first. For σ � 0.1 longer time series are
necessary to get significant results.

B. Unidirectionally coupled Lorenz systems

Next, we demonstrate the importance of a suitable time
comb in two delay-coupled Lorenz systems, defined for

i,j = 1,2 by

Ẋi(t) = σ (Yi(t) − Xi(t)) + σdynξX,i,

Ẏi(t) = r Xi(t) − Yi(t) − Xi(t) Zi(t)

+
∑
j �=i

cij Y 2
j (t − τij ) + σdynξY,i ,

Żi(t) = Xi(t) Yi(t) − b Zi(t) + σdynξZ,i . (27)

We take standard parameters, σ = 10, b = 8/3, r = 28 cou-
pling strength c12 = 1, c21 = 0, and coupling delay τ12 = 1.
Hence, system i = 1 operates autonomously, and couples
unidirectionally to system j = 2. The integration step was
0.001, but we recorded only every 20th point leading to
a sampling period �t = 0.02. Dynamical noise was added
each integration step, with ξX,i , ξY,i , ξZ,i being completely
independent and standard normally distributed [i.e., each being
∼ N (0,1)]. For our coupling analysis we take, xt = Z1(t �t)
and yt = Z2(t �t). The corresponding power spectra have a
strong periodic component, with a period of about 38 �t .

Figure 3(b) shows MSIT for varying embedding delays
d = 1, . . . ,30, which is in units of the sampling period
�t . The embedding dimensions are fixed at Mx = My = 3,
Mzx

= Mzy
= 2. The time combs ϑx = ϑy = {−2d, − d,0}

cover a period of 2d which we refer to as time scale. Remember
that for these time combs CMSI is the same as MSIT, see
Eqs. (13) and (14). The bottom plot shows the cumulated
MSIT over all time scales,

∑
d IMSIT. For comparison, we also

show mutual information (MI) which is obtained from adaptive
binning according to the (n/8) quantiles, n = 1,2, . . . ,7, of the
empirical one-dimensional distribution of the series. For time
scales 2d = 20 and 2d = 38, the MSIT functions are plotted
separately in Fig. 3(c).

Obviously the choice of proper time combs is crucial here.
If the time scale is similar to the period of the dominant
harmonic component (i.e., for 2d ≈ 38), IMSIT(τ ) much better
reflects the right coupling at time delay τ = 50 × 0.02 equal
to the coupling delay τ12 = 1. However, for most time lags
and time scales MSIT exceeds our significance level, which
might be misleading. The reason is that, in general, time
series with strong (nearly) periodic components require higher-
dimensional embedding covering many periods to ensure that,
first of all, momentary information is used in the coupling
analysis. This is unfeasible for short time series. The lack of
momentary information in the shuffle surrogates leads to an
underestimation of the autodependencies and thus yields too
small values of the decision threshold IMSIT∗. Nevertheless,
if we add dynamical noise (Fig. 4), the right coupling delay
and coupling direction is detected very well for all time scales.
Thus, dynamical noise improves our coupling analysis.

Figure 5 shows results for the influence of observational
noise. For this we first generate the whole time series {x∗

t }
and {y∗

t } as in Fig. 3 (without any noise) and then we add
each sampling period �t = 0.02 some observational noise
(iid) ξobs,∗,t ∼ N (0,σobs,∗), where ∗ = x,y, with noise level
σobs,∗ = 20. Thus we consider in our coupling analysis the
series {xt = x∗

t + ξobs,x;t } and {yt = y∗
t + ξobs,y;t }.

Obviously, observational noise does not improve our
coupling analysis, which is in contrast to dynamical noise.
This is not surprising, as observational noise does not increases
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FIG. 3. Results for the Lorenz system, Eq. (27), for dynamical
noise level σdyn = 0. (a) The signals x and y represent Z compo-
nents of two unidirectionally delay-coupled Lorenz systems as in
Eq. (27), with T = 1500 samples (only 500 shown), using sampling
period �t = 0.02. (b) MSIT function, gray encoded, for varying
time combs ϑx = ϑy = {−2d, − d,0}, ϑzx

= ϑzy
= {−2d, − d} for

different embedding delays d = 1,2, . . . ,30. Lower plot shows the
cumulated MSIT over all time scales (solid), and mutual information
(MI, dotted). (c) MSIT for time scales 2d = 20 (top) and 2d = 38
(bottom) where the gray band denotes the 95% significance level
MSIT∗ = ICMSI∗, Eq. (24).

momentary dynamical information which is used in our analy-
sis. Observational noise only increases irrelevant information
in a measurement.

C. Real-world data from the climate system

We apply now our MSIT approach of coupling analysis
to real-world data. In detail, we analyze the sea surface
temperature anomalies of the North Atlantic at positions x
(40 ◦N, 50 ◦W), and y (60 ◦N, 20 ◦W). The data are taken from
the Hadley Center SST Reanalysis [29] from 1870 to 2010.

FIG. 4. Results as in Fig. 3, but with dynamical noise σdyn = 0.3.

The path of the North Atlantic Current (NAC), the time series
from positions x and y, and MSIT on different time scales 2d

are shown in Fig. 6. MSIT reveals couplings at two lags, one
at about four years only on larger time scales, and one with
about zero lag on all time scales.

The first one might be explained as caused by the NAC.
The path from x to y has a distance of about 5000 . . . 6000 km
and the detected coupling delay of about four years implies an
average velocity of about 5 cm/s which is of the same order
as the mean velocity measured by drift experiments [30]. This
long-range mechanism with a large delay is only detected in
the MSIT functions for larger time scales, as high frequency
noise destroys the coupling information on smaller time scales.

The maximum at zero lag is probably caused by atmo-
spheric processes affecting both x and y like the North Atlantic
Oscillation (NAO) which are typically on a time scale of about
one month. It is known [31] that the Atlantic surface winds are
strongest during winter when they average near 5 m/s from
the eastern United States across the Atlantic onto northern
Europe. For distances 5000 . . . 6000 km between x and y this
yields an expected coupling delay of 0.38 . . . 0.46 months. As
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FIG. 5. Results as in Fig. 3, but with observational noise.
Remember that the MSIT (CMSI) estimator (23) can be negative
as we take Grassbergers entropy estimator.

we have only monthly data, our MSIT function cannot resolve
this delay, instead we get a peak at delay τ = 0.

The correlation coefficient between x and y at lag zero
is ρ = −0.13, implying an anticorrelation. (Note that MSIT
does not distinguish correlation from anticorrelation.) The
correlation of the NAO index (data from Ref. [31]) and x is ρ =
+0.15, between NAO and y it is ρ = −0.24 (anticorrelated).
Thus the common effect of the NAO might be the cause of the
anticorrelation between x and y at zero lag.

We note that the precise coupling delays are much better
detected with MSIT than with MI and cross correlation (not
shown, very similar to MI). Thus the condition leading to
the restriction on momentary information is very helpful in
determining the time delays of a physical coupling mechanism.

VI. OUTLOOK

The proposed momentary sorting information transfer is
able to detect the direction and the coupling delays of
information exchange in coupled systems. We expect that it

FIG. 6. (a) Path of the North Atlantic Current (NAC) with the
locations marked as x and y (from Ref. [32]). (b) Anomalized time
series (1680 months). (c) MSIT time scales, significant estimates
according to the 99.9% significance level (calculated from 10 000
samples) are above the contours. MSIT is shown for varying time
combs ϑx = ϑy = {−2d, − d,0}, ϑzx

= ϑzy
= {−2d, − d} for d =

1, . . . ,60 covering time scales up to ten years. Lower plot shows
cumulated MSIT over all time scales (solid) and MI (dotted, estimated
using adaptive binning with eight quantiles). Our MSIT coupling
analysis detects two significant coupling delays: The first is about 50
months, it could be related to the surface water current from x and
y with mean velocity of about 5 cm/s. The second is less than one
month, it could be related to the Atlantic surface winds from x and y
with mean velocity in winter of about 5 m/s.
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works even for rather short time series, which needs, however,
a more detailed analysis that is beyond the scope of this paper.

Another interesting aspect would be the application non-
stationary cases. We expect that our method is robust against
some trends which is due to considering an ordinal pat-
tern only. This would make the analysis appropriate for
sliding window analysis. However, this is part of future
work.

Moreover, the method is based on suitable time combs
for delay embedding. The main rule here is to find a low-
dimensional embedding such that first of all momentary

information in each series contributes to mutual sorting
information. Our examples give some hints how to do so,
however, a more systematic approach is part of future work as
well.
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