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Indirect control of transport and interaction-induced negative mobility
in an overdamped system of two coupled particles
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One-dimensional transport of an overdamped Brownian particle biased by an external constant force does not
exhibit negative mobility. However, when the particle is coupled to another particle, negative mobility can arise.
We present a minimal model and propose a scenario in which only one (say, the first) particle is dc biased by a
constant force and ac driven by an unbiased harmonic signal. In this way we intend to achieve two aims at once:
(i) negative mobility of the first particle, which is exclusively induced by coupling to the second particle and
(ii) indirect control of the transport properties of the second particle by manipulating the first particle only. For
instance, the sign and amplitude of the averaged stationary velocity of the second particle can be steered by the
driving applied to the first particle. As an experimentally realizable system, we propose two coupled resistively
shunted Josephson junctions.
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I. INTRODUCTION

Systems under nonequilibrium conditions can display new
features as well as unexpected phenomena and processes
which in equilibrium systems are forbidden by fundamental
laws. One of the most prominent examples include the
phenomenon of negative mobility (conductance, resistance):
When a constant force is applied to a mobile particle, it moves
in the direction opposite to that of the force. It is impossible in
equilibrium states because it would violate the second law of
thermodynamics.

The phenomenon of negative mobility can occur in
p-modulation-doped multiple quantum-well structures [1],
in semiconductor superlattices [2], in charge-density-wave
conductors [3], in a three-terminal configuration in a two-
dimensional (2D) electron gas [4], in transport of vortices in
superconductors with inhomogeneous pinning under a driving
force [5], and in Josephson junctions [6]. Some other examples
that come to mind are the nonlinear response in ac-dc-
driven tunneling transport [7], in the dynamics of cooperative
Brownian motors [8], in Brownian transport containing a
complex topology [9,10], and in some stylized multistate
models with state-dependent noise [11]. The effect of negative
mobility can occur also in driven systems such as in nonlinear
inertial Brownian dynamics [12–15], in overdamped nonlinear
Brownian motion in the presence of time-delayed feedback
[16], and in transport of asymmetric particles in a periodically
segmented 2D channel [17].

For a one-particle system, the simplest, one-dimensional
(1D) model is formulated in terms of the Newton equation for
a particle moving in a symmetric spatially periodic potential,
biased by a static force and driven by an unbiased harmonic
force A cos(ωt) [12–15]. This system is out of equilibrium
and displays both absolute negative mobility (ANM) around
zero static applied force (the linear response regime) and
negative mobility in the nonlinear response regime (NNM). It
is known that the corresponding overdamped system does not
exhibit negative mobility and the inertial term in the Newton
equation is absolutely necessary for the negative mobility
to occur. However, phenomena which are absent in a single
element perhaps can occur in a system of coupled elements.

The physics of many-body systems provides hundreds of
examples. Therefore, we are going to check whether it is
possible to model a system of two coupled overdamped
particles that exhibits negative mobility. We can speculate that
the combined effect of the time-dependent driving and the
interaction between two particles can radically modify a one-
particle overdamped dynamics, yielding transport anomalies
as ANM or NNM. We want to construct a model composed of
minimal essential ingredients and therefore we apply the static
and time-periodic forces to only one (say, the first) particle.
This scenario is intended to achieve two aims at once: (i)
both positive and negative mobility of the first particle and
(ii) control and steering of motion of the second particle by
manipulation of the first particle. In particular, the second
particle can be transported in the same direction as the static
force or in the opposite direction. As an example of a real and
experimentally accessible system, we propose to investigate
two coupled Josephson junctions which play the role of two
interacting particles in the mechanical framework. Similar
effects (however, caused by radically different mechanisms)
have been studied in Ref. [18], where it was proposed to use
an active species of particles to control the passive species of
particles. The authors of Ref. [18] have considered a mixture
of two species of Brownian particles diffusing on 1D periodic
substrates and showed that in the mean-field approximation
the particles can move either together or in opposite directions,
depending upon the strength of the interaction, and whether
the interaction is attractive or repulsive.

The paper is organized as follows. We introduce in Sec. II
the theoretical model in terms of a set of two coupled Langevin
equations which describe the dynamics of two resistively
shunted Josephson junctions. In Sec. III we analyze the
transport properties of the system driven by the ac periodic
force and dc bias, both applied to the first junction. Finally, we
sumarize the paper by conclusions in Sec. IV.

II. THE MODEL

In a more general case, we can consider a system consisting
of two coupled resistively shunted Josephson junctions with
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FIG. 1. The system of two resistively shunted Josephson junc-
tions coupled by an external shunt resistance R3 and driven by the
currents I1(t) = I1 + a1 cos(ωt) and I2(t) = I2 + a2 cos(ωt).

critical currents (Ic1,Ic2), resistances (R1,R2), and phases
(φ1,φ2), respectively. The system is externally shunted by the
resistance R3 as shown in Fig. 1. Moreover, the junctions
can be dc biased by the currents I1 and I2, and ac driven
by the currents a1 cos(ωt) and a2 cos(ωt), respectively. We
consider the small junction area limit and a regime where
photon-assisted tunneling phenomena do not contribute to the
dynamics of the system. The phase dynamics of the junctions
is determined by two equations, the dimensionless form of
which read [19]

φ̇1 = I1 − Ic1 sin φ1 + b1 cos(ωt)

+α (I2 − Ic2 sin φ2) +
√

Dξ ′(t), (1a)

φ̇2 = αβ (I2 − Ic2 sin φ2) + b2 cos(ωt)

+α (I1 − Ic1 sin φ1) +
√

αβDξ ′′(t), (1b)

where the dot denotes a time derivative, and the parame-
ters β = 1 + R3/R1, b1 = a1 + αa2, and b2 = α(a1 + βa2).
The coupling parameter α = R2/(R2 + R3) ∈ [0,1] can be
changed by adjusting the external resistance R3. We use
the same dimensionless units as Nerenberg et al. [19]:
The current unit is the averaged critical supercurrent Īc =
(Ic1 + Ic2)/2, and the time unit is h̄/2eV0, where V0 =
ĪcR1 (R2 + R3) /(R1 + R2 + R3) is the characteristic voltage.
We assume that all resistors are at the same temperature T , and
that the noise sources (the Johnson thermal noise) in Fig. 1
are represented by zero-mean white noises ξi(t) (i = 1,2,3)
which are delta correlated, i.e., 〈ξi(t)ξj (s)〉 = δij δ(t − s) for
i,j ∈ {1,2,3}. The noises ξ ′(t) and ξ ′′(t), which appear in
Eqs. (1), are linear combinations of the noises ξi(t),i =
1,2,3. The dimensionless noise strength is D = 4ekBT /h̄Īc.
Equations (1) are the extended version of the system studied by
Nerenberg et al. [19,20], which now includes ac-driving and
noise terms. The considered system assumes a series-opposing
configuration of the bias currents—that is, I1 and I2 flow in
opposite directions. It is easy to verify that the series-aiding

case (i.e., when I1 and I2 flow in the same direction) can be
obtained by the substitution α → −α and β → −β.

Equations (1) describe the overdamped dynamics of a
hypothetical mechanical system of two interacting particles
of coordinates x1 = φ1 and x2 = φ2, respectively. Our model
is minimal in the sense that the phase space of the deterministic
system (1) is 3D, namely, {x1 = φ1,x2 = φ2,x3 = ωt} and
three is the minimal phase dimension necessary for it to display
chaotic evolution, which is an important feature for anomalous
transport to occur [12–15]. At a nonzero temperature, D > 0,
the Johnson thermal fluctuations activate a diffusive dynamics
where stochastic escape events among existing attractors
become possible. Moreover, the system can now visit any
part of the phase space and evolve within some finite time
interval by closely following any existing orbits, either stable
or unstable.

III. DRIVING APPLIED TO ONE JUNCTION

We consider a simplified system of two identical junctions
(R1 = R2, Ic1 = Ic2 = 1, αβ = 1) and the case when I2 = 0
and a2 = 0 – that is, when only the first junction is dc
biased and ac driven. In this way, we want to manipulate
the first junction only and observe the response of both the
first and second junctions. We address the question of under
what conditions we can control transport properties of the
second junction. To answer this question, we numerically
study the dimensionless long-time averaged voltage v1 = 〈φ̇1〉
across the first junction and the voltage v2 = 〈φ̇2〉 across
the second junction. The long-time physical voltage is then
expressed as Vi = V0vi (i = 1,2). If the problem is formulated
in terms of overdamped motion of classical Brownian particles,
the voltage vi translates into the averaged velocity of the
first or second particles, respectively, and the dc current I1

translates into an external constant force acting only on the first
particle. The junction resistance (or equivalently conductance)
translates then into the particle mobility. One can use this
analogy to simplify the visualization of transport processes
in junctions. The voltage vi = vi(I1),i = 1,2, is typically a
nonlinear and nonmonotonic function of the dc current I1. In
the “normal” transport regime, the voltage vi is positive for
positive bias I1, i.e., the “nonlinear resistance” or the static
resistance ri = vi/I1 at a fixed bias current I1 is positive. The
case of r1 < 0 (i.e., when the response of the first junction
is opposite to the external load applied to it) is usually
referred to as the anomalous transport regime with ANM or
NNM. With the necessary changes, we will call the case with
r2 = v2/I1 < 0 as ANM or NNM.

We begin the analysis of the system (1) by some general
remarks about its long-time behavior. As expected from
symmetry, in the zero bias case, i.e., when I1 = 0, there is
no net transport. If the dc bias I1 is sufficiently large in
comparison to the amplitude a1 of the ac driving, one can
detect the normal transport regime where v1 > 0 and v2 > 0
for I1 > 0, i.e., the voltage across both junctions has the same
sign as the dc current. This is rather obvious because the driving
is not important in such a regime. More interesting effects can
take place in the regime of small I1. However, the parameter
space {α,I1,a1,ω,D} is 5D and thus too large for an extensive
numerical scan. Therefore, a number of low-resolution scans
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FIG. 2. (Color online) The long-time transport properties of the
driven system of two Josephson junctions in the parameter space
{a1,ω} of the ac driving acting on the first junction at a representative
coupling strength α = 0.77, a2 = I2 = 0, and temperature D = 2 ×
10−5. The transport regime (A) is illustrated at I1 = 0.008 in (A1)
for the averaged voltage v1 and (A2) for the averaged voltage v2. The
transport regime (B) is illustrated at I1 = 0.05 in (B1) for v1 and (B2)
for v2.

over the parameters {α,a1,ω} at fixed values of I1 and D = 0
were first performed. Next, the interesting regions of the
parameter space were analyzed in more detail and at a higher
resolution. These initial scans were done for initial values
of the phases φ1 and φ2 randomly chosen from the interval
[0; 2π ]. They were then supplemented by scans at nonzero
temperatures. We have found that for I1 < 0.1 the modulus
of the average voltage across both junctions takes its highest
values for ω ∈ (0,1) and is gradually diminished for higher
frequencies. At large ac-driving frequencies (ω > 5) there is
no noticeable net transport regardless of the values of other
parameters.

We have found that the normal transport regime dominates
in the parameter space. However, we can also identify two
remarkable and distinct regimes of anomalous transport,
namely, (A) v1 < 0 and v2 < 0 for I1 > 0, and (B) v1 > 0 and
v2 < 0 for I1 > 0. We have not found regimes where v1 < 0
and v2 > 0 for I1 > 0.

For fixed but small values of the dc bias I1 < 0.1, strips of
nonzero average voltage are clearly visible in the parameter
space {a1,ω,α}. For weak coupling of two junctions (small α),
there is no net transport in the second junction. For stronger
coupling, strips of nonzero average voltage start to appear
at progressively lower values of the amplitude a1 of the ac
driving. The strips are also visible in the plots of the average
voltage of the first junction, which means that they represent
regimes of the parameter space where both junctions operate
in synchrony. Figure 2 illustrates this behavior: the asymptotic,
averaged voltages across the first and second junction in the
two regimes (A) and (B) defined above are depicted. In doing
so here we do not discriminate between ANM and NNM. Both
these transport behaviors are jointly presented.

In Fig. 3 we present the influence of temperature on
transport properties in regime (B), where we show how the
parameter plane {a1,ω} is divided into regions of normal (v1 >

0 and v2 > 0 for I1 > 0) and anomalous (v1 > 0 and v2 < 0
for I1 > 0) transport. For small temperature, the structures
visible in the plots become more complex [as in Fig. 3(e)] and
regions of negative conductance of the second junction can be
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FIG. 3. (Color online) The influence of temperature on transport
properties of the driven system of two Josephson junctions in the
parameter space {a1,ω} of the ac driving acting on the first junction
at a representative coupling value of α = 0.77, the dc bias I1 = 0.05,
and a2 = I2 = 0. In (a) and (b) the averaged voltage v1 across the first
junction is shown at two dimensionless temperatures D = 5 × 10−5

and 2.5 × 10−4, respectively. (c) and (d) The averaged voltage v2

across the second junction is depicted at the same temperatures as in
(a) and (b), respectively. (e) presents an enlarged part of (c): the plot
reveals the island structure of regions of negative resistance of the
second junction.

identified. For higher temperature, a rich structure is gradually
smeared out by thermal equilibrium fluctuations.

In Fig. 4 we depict the typical dependence of the voltages
v1 and v2 on the bias I1 in the (A) regime with ANM. In the
inset, we present the temperature dependence of the voltages.
It follows that ANM is solely induced by thermal fluctuations,
and this mechanism is explained in Ref. [12]. For small and
large thermal fluctuations, ANM does not occur. Notably, there
is a window of temperatures in which ANM can be detected.
Moreover, there exists an optimal temperature at which ANM
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FIG. 4. (Color online) The ANM regime of long-time averaged
voltages v1 and v2 of the first and second junctions, respectively, at
a dimensionless temperature of D = 5 × 10−5. The inset depicts the
influence of temperature: It reveals the noise-induced mechanism
of ANM. The parameters are the coupling strength α = 0.77,
amplitude a1 = 1.8912, and frequency ω = 0.2708 of the ac driving,
a2 = I2 = 0.
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is most pronounced, i.e., v1 and v2 take their absolute minimum
(negative) values.

We now discuss the dependence of the voltages v1 and
v2 on the dc bias I1 > 0, in the anomalous transport regime
(B) illustrated in panels (B1) and (B2) of Fig. 2. The result
is presented in Fig. 5(a). The characteristic feature is the
emergence of intervals of I1, where the voltage v2 is negative.
Two anomalous effects are detected: ANM for I1 → 0 (the
linear response regime) and NNM when I1 has a value remote
from zero. In the case presented in Fig. 5(a), there are two
intervals of the bias I1 where NNM occurs. This is to be
contrasted with the averaged voltage v1 of the first junction,
which is never negative. However, one can note a rough
synchronization in the dependency of v1 and v2 on the bias
I1: simultaneous increases and decreases of both voltages in
some intervals of the bias. Similar synchronization is also
observed in the temperature dependence—see Figs. 5(b) and
5(c). A closer inspection of Fig. 5(c) reveals another interesting
result: There are two fundamentally different mechanisms
generating anomalous transport. In the case I1 = 0.025, the
negative resistance is induced by thermal fluctuations [12].
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FIG. 5. (Color online) The long-time averaged voltages v1 and v2

of the first and second junctions, respectively. In (a) the dependence
on the dc bias is depicted at a fixed temperature D = 2 × 10−5. (b)
and (c) depict the temperature dependence of v1 and v2, respectively.
In (c), two distinct mechanisms for the negative voltage of the
second junction can be observed: noise induced for I1 = 0.025 and
deterministic, chaotic assisted for I1 = 0.456. The parameters are the
coupling strength α = 0.77, amplitude a1 = 1.7754, and frequency
ω = 0.1876 of the ac driving, a2 = I2 = 0.

There is a finite interval of temperature where this effect
occurs. For very low temperatures (lower than 1.2 × 10−5) and
high temperatures (greater than 2 × 10−3) the voltage v2 takes
positive values. Between these two temperatures, the voltage
is negative. In contrast, in the case I1 = 0.0456, the negative
resistance is generated purely by deterministic dynamics, and
this mechanism is described in detail in Ref. [15]. Even in
zero temperature D = 0, the resistance is negative. For this
chaos-assisted mechanism, temperature plays a destructive
role: Increasing temperature monotonically diminishes the
negative voltage v2, and after crossing zero at some critical
temperature, the voltage assumes positive values.

From the above analysis it follows how we can control
the transport properties of the second junction. We should
choose an optimal regime by fixing the temperature and the
parameters of the ac driving, and next change the dc current
I1 applied to the first junction. In this way we can change the
sign and amplitude of the averaged stationary voltage of the
second junction. It should be emphasized that the anomalous
transport effects are all caused by the coupling between two
junctions—without coupling, the negative voltage vanishes.
Figure 6 shows how the average voltage of the second junction
depends on the coupling constant α. We note that there are
always finite windows of α for which this effect can be
observed. The location and size of these windows depend on
values of other system parameters. For the regimes depicted
in Fig. 5, we illustrate it in Fig. 6. In the case when the bias is
I1 = 0.025, there are four distinct intervals of the coupling
constant for which the voltage v2 is negative. In the case
I1 = 0.0456, in turn, there are two distinct intervals of the
coupling constant for which the voltage v2 is negative.

We want to point out that adding a constant bias to the
second particle has a destructive impact on the negative
mobility—the higher the value of I2, the smaller the parameter
area where negative mobility can be observed. For instance, we
find 0.1 to be the limiting value of I2 at which areas of negative
mobility cease to exist everywhere in the analyzed area when
I1 = 0.05. Increasing I2 has a general smoothing effect on the
transport properties of the second particle—at higher values
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FIG. 6. (Color online) The influence of the coupling parameter α

on transport properties of the second junction. The long-time averaged
voltage v2 across the junction is depicted for two fixed values of the
externally applied dc current I1 and D = 2 × 10−5. For I1 = 0.025
there are four intervals of α where the voltage v2 is negative, while
for I1 = 0.0456 there are two intervals of such α. Other parameters
are the same as in Fig. 5.

051117-4



INDIRECT CONTROL OF TRANSPORT AND . . . PHYSICAL REVIEW E 83, 051117 (2011)

of I2, the fine details visible for I2 = 0 gradually disappear.
Increasing I2 also causes all features to move slightly toward
higher values of a1 and ω. It is therefore possible to find areas
of the parameter space where I2 induces a negative mobility
effect, as well as areas where it increases the strength of an
existing negative mobility effect.

IV. SUMMARY

It is of great importance to construct simple models which
make it possible to explain and clarify the understanding of
unusual transport properties not only in physical but also
in biological systems such as, e.g., the bidirectionality of
the net cargo transport inside living cells [21]. Such models
can be used for fundamental studies of transport control
and can also serve as a basis for the construction of more
realistic and quantitative models for transport of interacting
carriers in collective systems. In this paper, we constructed a
minimal model of two coupled elements, described in terms of
overdamped dynamics, which exhibits negative mobility both
in the linear and nonlinear regimes. There are regimes where
both particles can be transported in the same direction as the
external static force acting on the first particle. There are also
regimes where only the second particle can be transported

in the opposite direction to the bias. We propose to exploit
these properties of the system for indirect control of transport
properties of the second particle by manipulating the first
particle only. The interaction between two particles constitutes
a crucial ingredient of the model: Without coupling, the second
particle is not transported at all, while the first particle can be
transported only in the direction of the dc bias. The system
can be manipulated in other ways. The source of energy, the
driving I1(t) = I1 + a1 cos(ωt), can be replaced by another
source of energy such as, e.g., an unbiased multiharmonic
force or, in biological systems, chemical reactions. The model
can be generalized to more than just two particles or by taking
into account inertial effects. Finally, it is a promising topic
which can stimulate experimentalists to perform measure-
ments testing our findings in systems of two coupled Josephson
junctions, where the coupling can be precisely controlled by
an external resistance and, moreover, to plan experiments for
other systems.
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