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Information-based detection of nonlinear Granger causality in multivariate processes via a
nonuniform embedding technique
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We present an approach, framed in information theory, to assess nonlinear causality between the subsystems
of a whole stochastic or deterministic dynamical system. The approach follows a sequential procedure for
nonuniform embedding of multivariate time series, whereby embedding vectors are built progressively on the
basis of a minimization criterion applied to the entropy of the present state of the system conditioned to its
past states. A corrected conditional entropy estimator compensating for the biasing effect of single points in the
quantized hyperspace is used to guarantee the existence of a minimum entropy rate at which to terminate the
procedure. The causal coupling is detected according to the Granger notion of predictability improvement, and is
quantified in terms of information transfer. We apply the approach to simulations of deterministic and stochastic
systems, showing its superiority over standard uniform embedding. Effects of quantization, data length, and noise
contamination are investigated. As practical applications, we consider the assessment of cardiovascular regulatory
mechanisms from the analysis of heart period, arterial pressure, and respiration time series, and the investigation
of the information flow across brain areas from multichannel scalp electroencephalographic recordings.
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I. INTRODUCTION

Quantification of the direction and strength of the coupling
among simultaneously observed systems from the analysis of
time series recordings is an important topic currently under
investigation in many fields of science. In the study of physio-
logical systems, a huge number of theoretical and experimental
studies have been published in recent years, with typical
examples regarding cardiovascular and cardiorespiratory in-
teractions [1], and synchronization of neural signals [2]. The
mathematical formulation of the concept of causality given by
Wiener [3] and formalized by Granger in the context of linear
regression models of stochastic processes [4] has become
a reference approach for identifying directional interactions
between coupled systems. Even though its original formulation
was based on measuring predictability improvements in
bivariate linear autoregressive models, Granger causality was
successfully extended to multivariate linear models [5], as
well as to nonlinear systems [6]. While they have been proven
useful in addressing specific issues of cardiovascular or neural
interactions, model-based approaches are often of difficult
generalization as they may suffer from the shortcomings of
model mis-specification.

As an alternative to linear or nonlinear parametric models,
information-theoretic methods [7] constitute a valid, model-
free approach to assess nonlinear causality for both determin-
istic and stochastic systems. The key for assessing causality
within the information-theoretic framework is to incorporate
the flow of time into the desired measure through the utilization
of conditional probabilities. According to this concept, Porta
et al. [8] exploited the definition of conditional entropy [9]
to measure causality in bivariate systems as the amount of
information carried by one process when the past of the
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other process is known. Further developing this idea through
independent approaches, Schreiber [10] and Palus et al. [11]
defined the concepts of transfer entropy and conditional mutual
information, which have been shown to be equivalent later
on [12]. These measures allow us to quantify the amount of
information exchanged between two systems separately for
both directions and, when desired, conditional to common
signals. The assessment of causality based on information
transfer is framed in different terms with respect to the Granger
approach, the first involving the concept of uncertainty and
the second the concept of predictability. Nevertheless, the
relation between transfer entropy and Granger causality is
known [11,13], and analytical equivalence has been very
recently demonstrated [14], bridging information-theoretic
approaches to the classical predictability-based approaches for
the evaluation of causality.

Even though various measures have been proposed in the
past [15], the practical application of information-theoretic
concepts to the evaluation of Granger causality on multivariate
experimental time series is not a trivial task. One major issue is
related to how to perform proper conditioning, i.e., to choose
which and how many past states of the considered processes
have to be considered for the estimation of conditional
entropy. This problem can be seen in terms of performing
suitable multivariate embedding of the considered set of time
series [16]. The large majority of approaches applied so far
implicitly follow uniform multivariate embedding schemes
where the components to be included in the embedding
vectors are selected arbitrarily or separately for each time
series [15,17,18]. The obvious arbitrariness and redundancy
introduced by this strategy are likely to cause problems
such as overfitting and detection of false causalities [12,13].
Another issue is related to the estimation of entropies them-
selves. While several estimators designed for multidimen-
sional spaces can be applied for conditional entropy estimation
[7], a common problem is the bias that increasingly affects
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conditional entropy estimates at augmenting dimensionality
of the embedding vectors. These issues become critical when
factors typical of practical applications, such as the data length
and the signal-to-noise ratio, decrease to the values commonly
encountered in experimental short-term time series analysis.

In this work, we focus on applicability of information theo-
retic methods for the evaluation of nonlinear Granger causality
on multivariate deterministic and/or stochastic coupled pro-
cesses. Taking inspiration from the ideas outlined in Refs. [16]
and [8,19], we propose an information-theoretic approach
to assess causality among multiple time series measured
from coupled dynamical systems, which integrates together a
sequential procedure for nonuniform multivariate embedding
for allowing proper conditioning, and a corrected estimate
of the conditional entropy allowing bias compensation. The
method is described in detail in Sec. II, tested on several
simulations of deterministic and stochastic systems in Sec. III,
and applied on physiological time series from cardiovascular
and brain systems in Sec. IV. Summary results are discussed
in Sec. V.

II. METHODS

A. Assessment of nonlinear Granger causality through
conditional entropy estimation

Let us consider M physical processes X1,...,XM , as interact-
ing subsystems of a whole observed stochastic or deterministic
system. Given the M time series of length N,{xm,n},m =
1,...,M,n = 1,...N , generated from the processes, we treat
them as short, and possibly noisy, descriptors of the states
assumed by the subsystems over time; the state xm,n visited by
Xm at time n is associated with the probability p(xm,n).

In order to describe the dynamics of one of the processes,
say Xi , we need to define composite processes consisting
of words, or embedding vectors. For instance, Xi may
be characterized through a uniform univariate embedding
procedure whereby the k past states of the process, collected
in the embedding vector x(k)

i,n = (xi,n−1, . . . ,xi,n−k) with joint

probability p(x(k)
i,n), are exploited to describe the current state

xi,n. The dynamical state of the process is reflected in the
transition probabilities p(xi,n|x(k)

i,n), measuring the probability
for Xi to be in the state xi,n at time n when the preceding
states at times n − 1, . . . ,n − k are xi,n−1, . . . ,xi,n−k . The
uncertainty of a transition into a new state is quantified through
the conditional entropy [9]:

H
(
xi,n|x(k)

i,n

) = −
∑

n

p
(
xi,n,x

(k)
i,n

)
ln p

(
xi,n|x(k)

i,n

)
, (1)

where the sum extends over all states visited by Xi . The
conditional entropy may be expressed as H (xi,n|x(k)

i,n) =
H (xi,n,x

(k)
i,n) − H (x(k)

i,n), where H(·) denotes the entropy of a
vector variable measuring the amount of information carried
by the variable. As a result, the conditional entropy in Eq. (1)
may be interpreted as the residual information carried by the
present of the ith process when its past is known up to a lag k.

According to the Granger notion of predictability improve-
ment [4], causality from the process Xj to the process Xi is
assessed comparing the entropy of Xi conditioned on its own
past and the past of all processes except Xj , and its entropy

conditioned on the past of all processes, including Xj . The
two steps require us to design procedures for multivariate
embedding where components from different processes are
included into the embedding vectors. In the classical uniform
embedding framework, the embedding vectors are

x(Kj ) = (
x(k1)

1,n , . . . ,x(kj−1)
j−1,n,x

(kj+1)
j+1,n, . . . ,x

(kM )
M,n

)
,

(2)
x(K) = (

x(k1)
1,n , . . . ,x(kM )

M,n

)

with dimensions

Kj =
M∑

m=1
m�=j

km

and K = ∑M
m=1 km, respectively. These vectors are used as

conditioning vectors to calculate the entropies H (xi,n|x(Kj ))
and H (xi,n|x(K)), which are in turn combined to assess the
resolution of uncertainty (i.e., increase of predictability or
decrease of information) of the present of Xi yielded by
consideration of the past of Xj :

Cj→i = 1 − H (xi,n|x(K))

H (xi,n|x(Kj ))
. (3)

The index Cj→i ranges between 0 and 1, and its magnitude
reflects the coupling strength as a measure of the amount of
information carried by Xi which is explained exclusively by
the past of Xj . This quantity can be taken as a normalized
version of the transfer entropy proposed by Schreiber [10]
when more than two processes are considered.

The estimation of the quantity in Eq. (3) from multiple
time series poses problems related to appropriateness of the
embedding procedure. As a matter of fact, the traditional
procedures for uniform embedding, yielding the embedding
vectors in Eq. (2), introduce issues of arbitrariness and
redundancy that may become critical in the assessment of
causality. While in linear Granger causality appropriate order
selection methods may be implemented [20], in nonlinear
extensions like ours the selection of the embedding dimensions
ki , and of the relation between the overall dimensions Kj

and K, is not straightforward. In addition, even with a proper
selection of the embedding dimension, the uniform scheme
may include redundant terms that bring overlapping informa-
tion, with possible consequences in the causality estimates.
From a theoretical standpoint, in deterministic systems an
exhaustive embedding based only on components from Xi

(with dimension k � 2d + 1, where d is the dimension of the
manifold where the observed motion develops [21]) would
be sufficient for explaining the dynamics of Xi , and thus
predicting its states; in this case, the index Cj→i would be
indeterminate regardless of the strength of coupling exerted
from Xj to Xi . From a practical standpoint, an uncontrolled
inclusion of components into the embedding vectors would
easily lead to overfitting and detection of false causalities [13].
Another aspect is related to the known bias affecting estimation
of the conditional entropy, which leads to entropy values
becoming more and more underestimated at increasing the
dimension of the embedding vectors [8,19]. The modifications
to the traditional procedures for embedding formation and
conditional entropy estimation proposed in the following
section aim at addressing these critical issues.
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B. Nonuniform multivariate embedding and corrected
conditional entropy

We propose to assess causality through a procedure for
nonuniform multivariate embedding in which the form of the
embedding vectors is not imposed a priori like in Eq. (2), but
is determined in a sequential way selecting progressively the
terms that contribute most to the description of the observed
dynamics. These terms are taken from a set of candidate
terms which includes the past states of the processes under
analysis, X1,...,XM . As reported above, to quantify causality
from Xj to Xi we need to compare the entropy of Xi measured
either after conditioning on the past of all processes, or
after conditioning on the past of all processes except Xj .
To this end, two different sets of initial candidate terms are
defined, respectively including and excluding the past states
of Xj : � = {xi,n−l|i = 1, . . . ,M; l = 1, . . . ,L} and �−j =
{xi,n−l|i = 1, . . . ,M,i �= j ; l = 1, . . . ,L} (L is the maximum
lag at which the past of each process is investigated; it may
vary across processes). Given the candidate set, the procedure
starts with an empty embedding vector x(0), and then proceeds
as follows:

(i) for each k � 1, form the candidate vector (x,x(k−1))
where x is an element of the candidate set not already present
in x(k−1);

(ii) compute the entropy of Xigiven the considered candi-
date vector, H [xi,n|(x,x(k−1))];

(iii) repeat steps (i) and (ii) for each x belonging to the
candidate set and not already selected, and then retain the
candidate x̃, which minimizes the conditional entropy, i.e., set
x(k) = (x̃,x(k−1)) such that x̃ = argx min H (xi,n|(x,x(k−1)));

(iv) if a minimum of the conditional entropy is found,
i.e., the condition H (xi,n|x(k)) > H (xi,n|x(k−1)) holds, exit the
algorithm; otherwise increase k and go back to step (i).

After exiting the algorithm, the selected embedding vector
is the one which minimizes the conditional entropy, i.e., x(K)

such that K = k − 1. The corresponding entropy is taken
as a measure of the amount of information carried by Xi ,
which is not explained by the set of candidate terms; taking
either � or �−j as the initial set of candidates, the entropies
H (xi,n|x(K)) and H (xi,n|x(Kj )) are computed and used as in
Eq. (3) to quantify causality from Xj to Xi . As it selects
progressively the candidate that minimizes conditional entropy
[at step (iii)] and the length of the embedding vector that again
minimizes conditional entropy [at step (iv)], the procedure
described above optimizes the embedding of the multivariate
time series in order to better explain the dynamics of the
considered process starting from the considered set of initial
candidate terms. We note that the criterion for candidate
selection is based on information reduction rather than on
temporal ordering. Hence it may happen that a past term is
selected before a more recent one; however, this does not affect
the resulting measure, as joint probabilities are insensitive to
the ordering of components within vector variables. Another
observation is that the sequential procedure described here
does not guarantee convergence to the absolute minimum of
conditional entropy. However, it was preferred to an exhaustive
exploration of all possible combinations of candidate terms,
which would become computationally intractable still at low
embedding dimensions.

To yield conditional entropy estimates, which do not
decrease monotonically at increasing the length of the
conditioning vector, but exhibit a well defined minimum,
we followed the strategy proposed in [8,19]. This strategy
is based first on performing uniform quantization of the
observed time series to compute conditional entropy, and
then on introducing a corrective term to compensate the
bias occurring in entropy estimation. Each original time
series xm,n is first normalized to have zero mean and unit
variance, and then coarse grained spreading its dynamics
over Q quantization levels of amplitude r = (xmax

m − xmin
m )/Q,

where xmax
m and xmin

m represent the minimum and maximum
values of the normalized series. The resulting quantized series,
denoted as ξm,n, take discrete values within the alphabet
of Q symbols A = {0,1, . . . ,Q − 1}. As a result, uniform
quantization applied to a given embedding vector x(k) builds
a uniform partition of the k-dimensional state space into Qk

disjoint hypercubes of size r; all vectors falling within the
same hypercube are associated with the same quantized vector
ξ (k) and are thus indistinguishable within the tolerance r.
The entropy of x(k) is approximated with the entropy of its
discrete version ξ (k): H (ξ (k)) = −∑

ξ (k)∈Ak p(ξ (k)) ln p(ξ (k)),

where p(ξ (k)) is an estimate of the joint probability p(x(k))
obtained as the frequency of occurrence of ξ (k) within Ak .
Then, an estimate of the conditional entropy H (xi,n|x(k)) is
given by

H (ξi.n|ξ (k)) = H (ξi.n,ξ
(k)) − H (ξ (k)). (4)

As pointed out in [8,19], when the conditional entropy is es-
timated from time series of limited length, it always decreases
towards zero with increasing the embedding dimension k. This
effect results from the fact that, letting k increase, an increasing
number of vectors x(k) will be found alone within a hypercube
of the k-dimensional space and, as a consequence, also the
vectors (xi,n,x(k)) will be alone in the (k + 1)-dimensional
space. Therefore their contribution to H (xi,n|x(k)) is null, and
a bias towards a reduction of the entropy rate is introduced. To
counteract this bias, we use the following corrected conditional
entropy measure:

Hc(ξi,n|ξ (k)) = H (ξi,n|ξ (k)) + n(ξ (k))H (ξi,n), (5)

where n(ξ (k)) is the fraction of k-dimensional quantized vectors
found only once in Ak[0 � n(ξ (k)) � 1]. With this correction,
in the presence of a single point inside a hypercube, its
null contribution is substituted with the maximal amount of
information carried by a white noise with the same marginal
distribution of the observed process Xi [i.e., H (ξi,n)].

The application of the procedure for nonuniform embed-
ding, with utilization of the corrected conditional entropy
estimator described above, leads to the conditional entropy
estimates Hc(ξi,n|ξ (K)) and Hc(ξi,n|ξ (Kj )), respectively, when
� and �−j are taken as the initial set of candidate terms. These
measures are combined as in Eq. (3) to obtain an estimate of
the causal coupling from Xj to Xi :

Cc
j→i = 1 − Hc(ξi,n|ξ (K))

Hc(ξi,n|ξ (Kj ))
. (6)
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III. SIMULATED SYSTEMS

This section reports the evaluation of the proposed approach
on numerical examples reproducing different conditions of
interaction among multiple subsystems. We consider both non-
linear deterministic and linear stochastic simulated systems,
with varying number of interacting processes and coupling de-
grees. The effect of relevant factors such as time series length,
level of noise contamination, and number of quantization levels
used for entropy estimation are investigated.

In order to perform reliable detection of causality from
one process to another, we use a statistical approach for
the detection of the significance of each specific estimated
value of causal coupling. The approach performs a comparison
between the original value of the considered measure and the
distribution of such a measure under the null hypothesis of
absence of coupling over the assigned causal direction. As the
analytic null distribution of the proposed causality measure
is not available, we exploit a method based on surrogate data
to reproduce it empirically. First, we use the technique of
time shifted surrogates [16,18,22] to generate multiple (S =
40 in this study) realizations of the input process Xj , which
share the statistical structure of the original time series xj,n,
but are not causally coupled to the output time series xi,n.
The technique simply shifts the original series (xj,1,...,xj,n)
of a randomly selected lag l (l > 20) to yield the surrogate
series (xj,l+1, . . . ,xj,N ,xj,1,...,xj,l

). The causal coupling from
Xj to Xi is then computed both for the set of original time
series {x1,n, . . . ,xM,n} and for the S sets of series in which
xj,n is substituted by one of the surrogate series. As the null
distribution of the causal coupling is hardly symmetric, we
perform the test for significance on the basis of rank ordering.
According to the distribution-free plotting position formula
devised in [23], we estimate the type-I error probability as
α = 1 − (i − 0.326)/(S + 1 + 0.348), where i is the position
taken by the original causal coupling within the ascending
ordered sequence of original and surrogate causal coupling
values (the test is one-sided); for instance, if the statistic for the
original series is the second largest (i = 40), the null hypothesis
of absence of causality can be rejected with significance
α = 0.0405. We remark that the significance levels set in
this way are appropriate for testing causality over the assigned
selected direction, while a correction for multiple comparisons
would be necessary if one had to test for the presence of
causality within the whole observed system (according to
the null hypothesis of absence of coupling in at least one
direction).

A. Coupled Rössler-Lorenz system

The first considered example is the unidirectionally coupled
Rössler-Lorenz map (with M = 2 subsystems) [24], where an
autonomous Rössler system,

ż1(t) = −6[z2(t) + z3(t)],

ż2(t) = 6[z1(t) + az2(t)], (7a)

ż3(t) = 6[b + z1(t)z3(t) − dz3(t)],

with parameters a = 0.2, b = 0.2, d = 5.7, drives a Lorenz
system, in which the equation for the variable y2 is augmented

by a driving term involving the variable z2 with coupling
parameter C:

ẏ1(t) = 10[−y1(t) + y2(t)],

ẏ2(t) = 28y1(t) − y2(t) − y1(t)y3(t) + Cz2
2(t), (7b)

ẏ3(t) = y1(t)y2(t) − (8/3)y3(t).

We denote the Rössler and Lorenz systems as X1 and X2,
and consider z2 and y2 as driving and driven variables, which
we denote as x1 and x2, respectively. The differential equations
were iterated using an explicit Runge-Kutta method with a
time step of 0.01. After discarding the first 105 iterations to
eliminate transients, time series x1,n and x2,n of length N =
10 000 were generated. The coupling strength was varied in
the range C = {0, 0.5, 1, 1.5, 2, 2.5, 3}; for each value of
C, 100 realizations of the processes were generated varying
the initial conditions for the two subsystems. Moreover, to
investigate dependence of the results on data size, the analysis
was repeated for shortened versions of the time series obtained
cutting the original series to the reduced lengths N = 100, 300,
500, 750, 1000, or 5000.

A representative example of the analysis is reported in
Fig. 1. The sequential procedure for nonuniform embedding
applied to the Lorenz system starting from a set of initial
candidates excluding terms from the Rössler system [Fig. 1(a);
x2,n is described from �−1 = {x2,n−1, . . . ,x2,n−10}] terminates
at the step K1 = 3, yielding the embedding vector x(K1) =
(x2,n−1,x2,n−2,x2,n−8) and the corresponding minimum cor-
rected conditional entropy Hc(ξ2,n|ξ (K1)) = 0.708. When
Rössler terms are included in the set of initial candidates
[Fig. 1(b), � = {x1,n−1, . . . ,x1,n−10,x2,n−1, . . . ,x2,n−10}], the
procedure selects the same terms for the first two steps, but
includes x1,n−6 in place of x2,n−8 at the third step; this leads
to a reduction in the minimum corrected conditional entropy,
which is now Hc(ξ2,n|ξ (K)) = 0.653, and consequently to a
positive causal coupling Cc

1→2 = 0.078. The significance of
this value is assessed, repeating the analysis after substitution
of the input series x1,n with a set of time-shifted surrogates.
This alters the procedure executed with � as the initial
candidate set: as shown in Fig. 1(b), the minimum corrected
conditional entropy values estimated for the surrogates are
always higher than that estimated for the original series, so
that the original causal coupling is the largest of the sequence
of original and surrogate causal coupling values, and the test
is rejected with significance α = 0.0163. When the coupling
over the opposite causal direction (from Lorenz to Rössler)
is investigated, exclusion or inclusion of terms of the Lorenz
system X2 from the set of initial candidates used to describe
the Rössler system X1 does not alter the procedure. Indeed,
the selected embedding vectors in Figs. 1(c) and Fig. 1(d)
are the same, x(K2) = x(K) = (x1,n−5,x1,n−6,x1,n−1,x1,n−4); as
a consequence, the minimum corrected conditional entropy
does not change and Cc

2→1 = 0. The same embedding vector
is found also for the surrogate time series [all lines overlap
in Fig. 1(d)], and thus the coupling is not significant over this
direction.

051112-4



INFORMATION-BASED DETECTION OF NONLINEAR . . . PHYSICAL REVIEW E 83, 051112 (2011)

FIG. 1. Example of application of the sequential procedure for
nonuniform multivariate embedding for the simulation with a Rössler
system (X1) driving a Lorenz system (X2). Plots depict the corrected
entropy conditioned to the optimal candidate vector x(k), estimated at
each step k of the procedure, for X2 when the set of initial candidate
terms is �−1 (a) or � (b), and for X1 when the set is �−2 (c) or � (d).
The candidate term selected at each step is indicated in the plot, and
the horizontal dotted line indicates the minimum estimated corrected
conditional entropy. Multiple lines plotted in gray represent results
of the analysis performed on different sets of surrogate time series.
Analysis parameters: coupling strength C = 1.5, time series length
N = 500, number of quantization levels Q = 6, maximum lag of the
terms included in the initial sets of candidates L = 10.

Figure 2 summarizes the results of the analysis performed at
varying the coupling strength C. As imposed by the procedure,
the embedding vectors contain only terms of the studied system
when terms of the other system are excluded from the set of
initial candidates [in Figs. 2(a) and 2(d), all terms are from X2

and from X1, respectively]. When the procedure is repeated
starting from the most comprehensive set of initial candidate
terms (� = {x1,n−1, . . . ,x1,n−10,x2,n−1, . . . ,x2,n−10}), terms
from the input system may enter the embedding vector describ-
ing the output system. Specifically we note that, increasing the
coupling parameter C, an increasing number of terms from
X1 enter the embedding vector describing X2 [Fig. 2(b)]; this
greater importance of the input terms is reflected by increasing
values of the causal coupling from X1 to X2 [Fig. 2(c), black
squares]. On the contrary, the embedding vector describing X1

keeps containing exclusively terms from X1 even when terms
from X2 could be selected [Fig. 2(e)]; as a consequence, no
variations in the minimum corrected conditional entropy are
observed and the causal coupling from X2 to X1 is uniformly
zero [Fig. 2(f)]. A slight exception to this behavior occurs for

the largest values of the coupling parameter, when a small
percentage of realizations contain one term from X2 [Fig. 2(e)
with C = 2.5 and C = 3] and this results in slightly positive
values of Cc

2→1 [Fig. 2(f)]. A possible explanation of this trend
is in the fact that for C > 2 the systems tend to approach a state
of generalized synchronization [25] in which �−1 and �−2

contain common information; in this condition, behaviors such
as the increase of coupling over the uncoupled direction, or the
decrease of coupling over the coupled direction, observed in
Ref. [16], are likely to occur. The dimension of the embedding
vector is estimated around 4 for both systems and both sets of
initial candidate components. This value is larger than the true
embedding dimension, which is known to be 3 for individual
uncoupled Rössler and Lorenz systems. Slight variations in the
number of components selected as a function of C are observed
for X2, reflecting the fact that the presence of a driving term
may alter the dimension of the system. On the contrary, both K2

and K do not vary with C for the system X1, correctly indicating
that the dynamics of the driving system is not affected by the
coupling strength.

Figure 2(c) reports also the causal coupling evaluated when
a uniform embedding procedure, implemented selecting the
terms through progressive increase of the lags and alternation
between the two series, was used to estimate the causal
coupling (white squares). The comparison with the proposed
nonuniform embedding evidences the inability of the uniform
embedding to detect coupling below C = 2, and the weaker
coupling detected for C � 2.

With the parameter setting of Eq. (7a), which corresponds to
that commonly chosen for studying directional coupling in the
Rössler-Lorenz system [16,24], the driving Rössler system is
in a phase-coherent regime exhibiting a chaotic attractor with
a relatively simple topology. To investigate coupling detection
in the presence of a more complex topological structure, we
set a = 0.25, b = 0.1, d = −8.5 in Eq. (7a), so that the
Rössler attractor becomes a funnel attractor [26]. The results
reported in Figs. 2(c) and 2(f) show that the causal coupling
(black circles) was detected also in this case with the driving
system in the funnel chaotic regime, often even with a better
performance (larger coupling detected) than during the phase-
coherent regime. Hence it appears that the evolution of the
driving system over more complex chaotic manifolds is not
detrimental for the detection of nonlinear Granger causality
towards the driven system.

The dependence of the procedure on the length of the
considered time series is analyzed in Fig. 3. As seen in
Fig. 3(a), the procedure yields a causal coupling from the
Rössler to the Lorenz system increasing progressively with
the coupling parameter C even for time series as short as N =
100 samples. The values of causal coupling tend, with some
exceptions, to be higher for longer time series. Moreover,
the procedure is able to detect the unidirectional nature of
the coupling for all time series length, as coupling on the
opposite direction remains very low [Fig. 3(b)]. Figures 3(c)
and 3(d) report the estimated number of realizations (out of
100) in which the causal coupling was detected as significant
according to the adopted statistical test (the criterion adopted
here takes as significant up to the third largest coupling,
corresponding to a significance level α = 0.0647). The plot
in Fig. 3(c) reflects that of the causal coupling, with a
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FIG. 2. Composition of the embedding vectors and corresponding causal coupling yielded for the simulation with a Rössler system (X1)
in the phase-coherent regime driving a Lorenz system (X2). Left and middle panels depict the dimension of the embedding vectors for the
description of X2 when the set of initial candidate terms is �−1 (a) or � (b), and for the description of X1 when the set of initial candidate terms
is �−2 (d) or � (e). Each bar is partitioned with two colors indicating the number of terms from X1 (black) and from X2 (gray) forming the
embedding vector. Right panels depict the corresponding causal coupling estimated from X1 to X2 (c) and from X2 to X1 (f) (black squares).
Panel (c) includes also coupling values obtained by uniform embedding (white squares), while panels (c) and (f) include coupling values
obtained for the parameter setting of a funnel regime for the Rössler system (black circles). All values in the plots are the average over 100
realizations of the simulation and are expressed as a function of the coupling strength C. Analysis parameters: N = 500, Q = 6, L = 10.

percentage of rejection of the null hypothesis of uncoupling
which increases with the imposed coupling strength and with
the time series length. While the coupling is hardly detected
for C = 0.5 (n1→2 is ∼50% for N = 1000 and lower
for shorter series), the percentage of detection is substantial
(>80%), e.g., for {C � 1,N � 750}, {C � 1.5,N � 500}, and
{C � 2,N � 300}. As perceived in Fig. 2, Figs. 3(b) and 3(d)
show that the coupling over the uncoupled direction starts to
be nonzero and significant for C � 2.5. Again, this result may
be ascribed rather than to the presence of spurious causality to
the emergence of generalized synchronization, which favors
the detection of bidirectional interactions [25].

B. Multivariate coupled Henon maps

As a second example, we consider M = 3 discrete-time
deterministic systems interacting in accordance with the
equations

x1,n = 1.4 − x2
1,n−1 + 0.3x1,n−2 + 0.08

(
x2

1,n−1 − x2
2,n−1

)
,

x2,n = 1.4 − x2
2,n − 1 + 0.3x2,n − 2 + 0.08

(
x2

2,n − 1 − x2
1,n − 1

)
,

x3,n = 1.4 − [C x1,n−1 + (1 − C)x3,n−1]x3,n−1 + 0.1x2,n−2.

(8)

The time series x1,n and x2,n describe two bidirectionally
coupled Henon systems [27] X1 and X2 with identical coupling
strength of 0.08, while the time series x3,n describes a Henon
system X3, which is driven both by X1, through the coupling
parameter C, and by X2. After setting the value of C in
the range 0 to 1, step 0.1, 100 realizations of Eq. (8) were

generated varying the initial conditions and discarding the
first 105 iterations as transients. To study the deterioration
of the method performance in the presence of noise, we
performed the analysis for the clean time series (N = 300) and
after contamination with additive white noise; the noise level
was varied to obtain a signal-to-noise ratio of 25, 20, 15, and
10 dB.

Figure 4 depicts the results obtained, for the clean time
series, when the procedure is performed to quantify causality
from X1 to X3 at varying the coupling parameter C. As shown
in Figs. 4(a) and 4(b), the dimension of the embedding vectors
is very close to 3 for all values of C. While for C > 0 this is the
correct embedding dimension derived from the third equation
in Eq. (8), for C = 0 the procedure selects one term from X2 and
two terms from X3 for the description of X3 [Fig. 4(a)], thus
overestimating the expected dimension which is known to be 2.
However, the selection of one term in excess from X3 does not
affect the evaluation of causality, since the same embedding
vectors are selected also when terms of X1 are included in
the initial set of candidates [with C = 0, Fig. 4(b) indicates
the same composition of the embedding vectors as Fig. 4(a)]
and, as a consequence, the causal coupling from X1 to X3 is
equal to zero [Fig. 4(c)]. With C > 0, the composition of the
embedding vectors always varies when candidate terms from
X1 are allowed in the procedure (i.e., moving from �−1 to � as
the initial set of candidates). Specifically, while starting from
the set �−1 no terms from X1 are selected by construction
[Fig. 4(a)]; starting from the set � a given percentage of
realizations contain a term from X1 [black part of the bars in
Fig. 4(b)]. Such an inclusion determines a deeper minimum in
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FIG. 3. Dependence on time series length for the simulation with
a Rössler system (X1) driving a Lorenz system (X2). Plots depict the
average causal coupling over 100 realizations estimated from X1 to
X2 (a) and from X2 to X1 (b), and the percentage of realizations of
the simulation for which the two causal couplings were significant
according to the test based on surrogate data (c),(d), expressed as a
function of the coupling parameter C for different values of the series
length N. Analysis parameters: Q = 6, L = 10.

the estimated corrected conditional entropy and thus a positive
value for the causal coupling index [Fig. 4(c), black squares].
While the percentage of realizations in which an input term
is selected is very small for C = 0.1 (and in this case also
the causal coupling is very low), it grows for higher imposed
coupling strengths; for C � 0.3, all realizations contain at
least one input term and the estimated causal coupling
takes significant positive values. When C approaches 1, the
composition of the embedding vectors resembles the imposed
one (i.e., one term from each of the three systems is selected)
and the corresponding causal coupling estimates stabilize at
∼0.24. The comparison with the coupling index estimated
through uniform embedding [Fig. 4(c), white squares] indi-
cates the better ability of the proposed nonuniform embedding
to detect the causality relation imposed in the simulated
scheme.

FIG. 4. Composition of the embedding vectors and corresponding
causal coupling yielded for the simulation with three coupled Henon
systems. Upper and middle panels depict the dimension of the
embedding vectors for the description of X3 when the set of initial
candidate terms is �−1 (a) or � (b). Each bar is partitioned with
three colors indicating the number of terms from X1 (black), from
X2 (gray) and from X3 (white) forming the embedding vector. The
corresponding causal coupling estimated from X1 to X3 is in panel
(c) (black squares), which includes also coupling values obtained by
uniform embedding (white squares). All values in the plots are the
average over 100 realizations of the simulation, and are expressed as
a function of the coupling parameter C. Analysis parameters: N =
300, Q = 6, L = 5.

Figure 5 illustrates the effects of observational noise on
the procedure for nonuniform embedding and causal coupling
estimation. As clearly seen in Fig. 5(a), increasing levels
of noise lead to decreasing values of the estimated causal
coupling from X1 to X3. For all noise values except 10 dB,
this decrease seems not problematic, as the percentage of
realizations in which the causal coupling was detected as
significant [Fig. 5(b), imposed significance of the test α =
0.0647] remains zero for uncoupled dynamics (C = 0) and
follows with good approximation the values obtained for the
clean data for coupled dynamics (C > 0). With this series
length, results appear deteriorated for a signal-to-noise ratio
of 10 dB, as a probability of false rejection of 8% is revealed
with C = 0 and the percentage of coupling detection does not
rise above 80% for any value of C > 0.
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FIG. 5. Dependence on noise contamination for the simulation
with three coupled Henon systems. Plots depict the average causal
coupling over 100 realizations estimated from X1 to X3 (a), and
the percentage of realizations of the simulation for which the causal
coupling was significant according to the test based on surrogate data
(b), expressed as a function of the coupling parameter C for different
levels of additive noise. Analysis parameters: N = 500, Q = 6,
L = 5.

C. Coupled map lattice

The third example consists of a ring lattice of M = 10
unidirectionally coupled tent maps [10,17]:

xm,n+1 = f [Cxm−1,n + (1 − C)xm,n],

m = 1, . . . ,M(x0 = xM ), (9)

with f (x) = 1 − 2|0.5 − x|. The strength of the unidirectional
coupling between each pair of adjacent maps of the lattice is
varied from C = 0 to C = 0.5, step 0.05. Figure 6 (circle
symbols) shows the causal coupling along the directions
xm−1 → xm,xm → xm−1, and xm−2 → xm, averaged for each
possible value of m. As expected, Cc

m−1→m is positive and
increases with the coupling strength [Fig. 6(a)], whereas
Cc

m→m−1 is uniformly zero regardless of the coupling strength
[Fig. 6(b)], thus detecting the unidirectional nature of the
coupling. Note that the coupling is also absent over the
direction xm−2 → xm [Fig. 6(c)], reflecting the fact that the
proposed multivariate approach measures exclusively direct
coupling between two sites of the lattice.

The comparison with a bivariate approach (Fig. 6, square
symbols), in which the same analysis is performed considering
only the two time series identifying the direction of interaction,
shows that spurious coupling from xm−2 to xm may be detected
as a consequence of the indirect effect involving the series

FIG. 6. Causal coupling estimated by means of a multivariate
approach (circles) and a bivariate approach (squares) for the sim-
ulation of a coupled map lattice along the directions xm−1 → xm

(a), xm → xm−1 (b), and xm−2 → xm (c), averaged over 20 simulation
runs, starting from random initial conditions and discarding 104 points
as transients. Analysis parameters: N = 300, Q = 6, L = 5.

xm−1 [Fig. 6(c)]. Moreover, for low values of C the bivariate
approach may not be able to detect the unidirectional coupling
between adjacent sites, as some degree of information transfer
is measured also over the uncoupled direction [Fig. 6(b)].
These results show how the utilization of a multivariate
approach using the all of the information coming from high-
dimensional systems may be recommended to rule out spurious
causal effects due to latent variables.

D. Multivariate coupled stochastic processes

The fourth example involves M = 4 linear stochastic
systems generated with the equations

x1,n = 2ρ1cosϕ1x1,n−1 − ρ2
1x1,n−2 + w1,n,

x2,n = 0.5x1,n−1 + 0.5x4,n−1 + w2,n,
(10)

x3,n = 2ρ3cosϕ3x3,n−1 − ρ2
3x3,n−2 − 0.5x1,n−2 + w3,n,

x4,n = 2ρ4cosϕ4x4,n−1 − ρ2
4x4,n−2 + x1,n−2 + w4,n,

where ρ1 = 0.95, ρ3 = 0.8, ρ4 = 0.9, ϕ1 = 0.628, ϕ3 =
1.256, ϕ4 = 1.884, and wi,n are Gaussian white noises with
zero mean and unit variance. The processes X1,X3, and X4

exhibit autonomous stochastic oscillations generated through
the autoregressive terms: the strength and frequency of the
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FIG. 7. Causal coupling strength and significance assessed for
the simulation with four coupled stochastic systems. Plots depict,
for each pair of processes Xi and Xj (i,j = 1,...,4), the interquartile
range (25th percentile, median and 75th percentile) of the distribution
of causal coupling from Xi to Xj estimated from 100 simulation
runs (a), and the percentage of runs for which the coupling was
significant according to the test based on surrogate data (b; black
bars: significance α = 0.0163; gray bars: significance α = 0.0647).
Analysis parameters: N = 300, Q = 6, L = 10.

oscillation of the series xi,n are controlled respectively by the
parameters ρi and ϕi included in the weights of the terms
xi,n−1 and xi,n−2 (i = 1,3,4). Directional connections at lag k
are then obtained from the process Xj to the process Xi setting
a nonzero weight for the term xj,n−k in the right-hand side of
the equation having xi,n as the left-hand side.

The results summarized in Fig. 7 indicate that the procedure
is able to detect the causal relationship imposed in Eq. (10)
and at the same time avoid the detection of spurious causality
over the uncoupled directions. In fact, the distribution of
causal coupling estimated over the 100 realizations is clearly
larger than zero from X1 to X2, to X3 and to X4, and from
X4 to X2, while the coupling is substantially absent over
the remaining causal directions [Fig. 7(a)]. This behavior is
reflected by the percentage of rejection of the null hypothesis
of uncoupling estimated along the different causal directions.
As depicted in Fig. 7(b), such a percentage is substantial for
the coupled directions, while it is close to the expected type-I
error probability for the uncoupled directions.

E. Limits of applicability

Since the proposed approach is directly based on the
concept of Granger causality, its operational implementation
is subject to restrictions and limitations of the causality
definition, which were made explicit by Granger himself in
his seminal papers [4,28]. One of these restrictions is related
to the necessity of providing a causally complete description

of the observed system, in order to avoid detection of spurious
connections due to common sources or missing variables.
Another axiom for Granger causality implies that any variable
that is a perfect function of one or more other variables
should be excluded from the observation set [28]. This case
involves, e.g., fully synchronized systems, for which it is
known that state space-based methods like transfer entropy
[10] and predictability improvement [17,18] cannot detect the
presence of coupling because the driving and driven systems
are indistinguishable to each other.

Like any other approach grounded on the notion of Granger
causality, the proposed method fails to detect causality when
the present state of the investigated process can be fully
described from its own past states. In this case, the entropy
of the driven process conditioned to its own past would
be zero and thus could not be further reduced using data
from the driving process, preventing the detection of the
drive-response system coupling. To explore this situation
in practical examples, we applied our approach to coupled
deterministic and stochastic systems with different degrees of
self-predictability of the observed dynamics. As deterministic
and stochastic systems, we considered respectively two unidi-
rectionally coupled Logistic maps [29],

x1,n = ρ x1,n−1(1 − x1,n−1),
(11)

x2,n = Cx1,n−1 + (1 − C)[ρ x2,n−1(1 − x2,n−1)],

and two unidirectionally coupled autoregressive (AR) process
fed with independent Gaussian white noises w1 and w2 [30]:

x1,n =
√

2ρ x1,n−1 − ρ2x1,n−2 + w1,n,
(12)

x2,n =
√

2ρ[C x1,n−1 + (1 − C)x2,n−1] − ρ2x2,n−2 + w2,n.

In both simulations, C represents the coupling strength
from x1 to x2, while the parameter ρ was varied to achieve
different behaviors for the dynamical system. Increasing ρ

from 3.5 to 4, the logistic maps in Eq. (11) move from a
periodic and fully predictable regime to a chaotic, non-fully
predictable regime. On the contrary, the AR processes in
Eq. (12) become progressively more and more predictable
when ρ is increased from 0 to 0.98. Results in Fig. 8 show,
for values of C set to get a detectable coupling from x1 to
x2, the minimum corrected conditional entropy estimated for
the driven series x2 either excluding or including terms of
the driving series x1 in the set of initial candidate terms.
Considering the deterministic system [Fig. 8(a)] we note that,
for values of the control parameter preceding the onset of
chaos (ρ < 3.57), the driven system is fully described from
its own past states. In this condition, in which the logistic
maps exhibit permanent oscillations of finite period [29],
the minimum conditional entropy is zero both before and
after consideration of the driving series, so that the causal
coupling could not be determined. As soon as chaos sets in
(ρ > 3.57), the driven system is no longer fully predictable
using only its past terms; in this case, the minimum conditional
entropy decreases when candidates from the driving system are
considered, thus allowing the quantification of a positive causal
coupling. If we consider the stochastic system [Fig. 8(b)], we
see that the entropy of the driven series conditioned only to
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FIG. 8. Minimum corrected conditional entropy estimated, on the
simulation of unidirectionally coupled Logistic maps (a) and AR
processes (b), for the series x2 when the set of initial candidate terms
is �−2 (black squares) or � (white squares). All values in the plots are
the average over 20 realizations of the simulation, and are expressed
as a function of the parameter ρ in Eqs. (11) and (12). Analysis
parameters: C = 0.2 for the Logistic system (a), C = 0.5 for the AR
system (b); N = 1000; Q = 6; L = 10.

its own past never falls to zero, even for values of the control
parameter approaching the condition of maximum regularity
of the dynamics (ρ = 0.98). Correspondingly, the inclusion of
terms from the driving series always leads to a reduction in
the minimum conditional entropy, thus favoring the detection
of the imposed causal coupling.

Another important aspect, which may affect the applicabil-
ity of the proposed approach, is related to the dependence of
the results on the parameters determining entropy estimation
in practical time series of finite length. To assess such a
dependence within the framework proposed in this study, we
studied the effects of varying the number of quantization levels
Q. Theoretically, increasing Q would lead to finer partition of
the state space, better estimates of conditional probabilities,
and ultimately to more accurate coupling estimates. This
observation holds for N → ∞. In real applications the series
length is finite and Q should remain as low as QK ≈ N

to guarantee a reliable approximation of probabilities with
sample frequencies [19]. Figures 9 and 10 show the corrected
conditional entropy and causal coupling estimated as a
function of the coupling strength for different values of Q and
N set for the simulations of Eqs. (11) and (12), respectively. As
a general result, we see that the utilization of finer partitions
yielded by increasing Q brings about an increase of corrected
conditional entropy estimates, as well as a decrease in the gap
between entropies estimated, for the driven series, excluding
and including the driving series in the analysis (Figs. 9 and
10, left columns). This second result leads to estimates of the
causal coupling that decrease progressively at increasing the
number of quantization levels (Figs. 9 and 10, right columns).
As expected, these effects are dependent on the time series
length, in such a way that if N is higher the causal coupling
may be detected for higher values of Q. This result is related
to the fact that probabilities in higher dimensional state spaces
are estimated with progressively increasing accuracy for longer
time series.

FIG. 9. (Color online) Dependence on the number of quantization
levels Q used to estimate conditional entropy for the simulation
of unidirectionally coupled Logistic maps with ρ = 3.8. Plots
depict the minimum corrected conditional entropy for the series x2

when the set of initial candidate terms is �−2 (filled symbols) or
� (empty symbols) (left panels), together with the corresponding
causal coupling (right panels), averaged over 20 simulation runs and
expressed as a function of the coupling parameter C for time series
length N = 300 (a), N = 500 (b), and N = 1000 (c).

IV. EVALUATION ON PHYSIOLOGICAL SYSTEMS

This section describes the evaluation of the proposed
approach for quantifying nonlinear Granger causality in physi-
ological systems where commonly only short time series (few
hundred points) are available due to stationarity constraints.
The considered applications are the study of short-term inter-
actions among cardiovascular and cardiorespiratory variability
series, and the study of propagation of the electrocortical
activity of the brain measured from multichannel electroen-
cephalographic (EEG) recordings. We apply the nonuniform
embedding procedure quantizing the physiological time series
with Q = 6 quantization levels and using L = 10 as maximum
lag for the candidate terms.

A. Cardiovascular and cardiorespiratory interactions

As a first practical application, we study nonlinear
causality in short-term cardiovascular and cardiorespiratory
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FIG. 10. (Color online) Dependence on the number of quantiza-
tion levels Q used to estimate conditional entropy for the simulation
of unidirectionally coupled AR processes with ρ = 0.94. Plots and
symbols are as in Fig. 9.

interactions. The considered dynamical systems are the
respiratory system, the vascular system, and the cardiac
system, which we denote as X1,X2, and X3, respectively.
The acquired signals are noninvasive recordings of
electrocardiogram (ECG, lead II), finger photopletismographic
arterial pressure (Finapres device) and respiratory nasal flow
(by differential pressure transducer) obtained in a young
healthy subject (20 years old) in sinus rhythm and breathing
spontaneously [31]. From these signals, the beat-to-beat time
series of the heart period (x3,n), systolic arterial pressure
(x2,n), and respiratory flow (x1,n) are offline measured,
respectively, as the sequences of the temporal distances
between consecutive R waves of the ECG, the local maxima
of the arterial pressure signal inside each detected heart period,
and the values of the respiratory signal taken at the onset of
each heart period. Two stationary, artifact-free windows of
N = 300 samples, measured synchronously for the M = 3
time series, are considered for the analysis, the first in the
resting supine position and the second in the upright position
assumed by the subject after passive head-up tilting. As the
adopted measurement convention allows instantaneous (i.e.,
not delayed) effects from respiration to systolic pressure and to
heart period, as well as from systolic pressure to heart period,

we include the zero-lag term in the set of initial candidate
components when appropriate; for instance, the set � =
{x1,n, x1, n−1, . . . , x1, n−10,x2,n,x2,n−1, . . . ,x2,n−10,x3,n−1, . . . ,

x3,n−10}, including the zero-lag terms x1,n and x2,n in addition
to the lagged terms, is considered for the analysis of causality
from X1 to X3.

The results of the analysis are reported in Fig. 11. In
each plot, results of the description of the target series xi

are shown for the procedure applied either excluding or
including in the initial set of candidate components the terms
of the input series xj , yielding, respectively, the black and red
(gray triangles) curves. A difference between the two curves
is observed only if some terms from the input system are
selected for the embedding of the target system, leading to
a decrease in the corrected conditional entropy and thus to a
positive value of the causal coupling. In the supine position
[Fig. 11(a)], this situation occurs from X1 to X2 and to X3,
and from X3 to X2, with causal coupling values detected as
significant in accordance with the test based on surrogate data
(S = 40 surrogates, significance α = 0.0163). The opposite
situation, with terms from the input system not selected even
when available in the set of candidates, leads to unaltered
conditional entropy estimates. This occurs from X2 to X1,
from X3 to X1, and from X2 to X3, with coupling equal to zero
(and nonsignificant). The overall picture is in agreement with
behaviors that are well explainable in terms of the known
cardiovascular physiology: The unidirectional interactions
from X1 to X2 and from X1 to X3 document expected
physiological mechanisms whereby respiration affects both
the arterial pressure, through mechanical effects, and the heart
rate, according to the so-called respiratory sinus arrhythmia
phenomenon [32]; moreover, the significance of the coupling
from X3 to X2 and the simultaneous absence of coupling in
the opposite direction from X2 to X3 are in agreement with
the notion that mechanisms operating in the direction from
heart period to arterial pressure may prevail, in the nonsolicited
resting condition of the subject, over the baroreflex mechanism
describing driving effects from systolic pressure to heart
period [33,34]. Results obtained in the upright position after
head-up tilt evidence an alteration of the Granger causal
relationships among the observed systems [Fig. 11(b)]. While
the mechanical effects of respiration on systolic pressure are
still described (the coupling from X1 to X2 is significant,
α = 0.0405), the respiratory sinus arrhythmia mechanism
from respiration to heart period is dampened (the coupling
from X1 to X3 is null) as a consequence of the shift of
the cardiovascular sympathovagal balance toward sympathetic
activation and vagal deactivation provoked by tilt [35]. In
addition, the emergence of a strong coupling from X2 to X3

(significance α = 0.0163), together with the corresponding
decrease of coupling from X3 to X2 (significance α = 0.0647),
document an enhanced regulation over the baroreflex pathway
consequent to the continuous solicitation of the sympathovagal
balance resulting from the assumption of the upright position
[34–36].

B. EEG interactions

As a second practical example, the method is applied on
EEG recordings measured from different cortical locations in
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FIG. 11. (Color online) Application of the procedure for nonuniform multivariate embedding to respiratory flow (x1), systolic arterial
pressure (x2), and heart period (x3) time series measured in the supine position (a) and in the upright position (b). Each plot depicts the corrected
conditional entropy of Xi when the set of initial candidate terms is �−j (black circles) or � [red (gray) triangles], estimated as a function of
the dimension k of the embedding vector. The candidate term selected at each step of the procedure in indicated in the plot.

a young healthy subject (27 years old) resting in the relaxed
awake state, both during eyes closed and eyes open conditions
[37]. We consider multichannel EEG recorded according to
the international 10-20 system (Fpz common reference), with
256-Hz sampling rate. As preprocessing steps, signals are
band-pass filtered (Fast Fourier Transform filter, 0-40 Hz)
and downsampled to 64 Hz. Different cortical areas are
considered selecting appropriate electrode locations (M =
4): X1, posterior area (electrode Pz); X2, left central area
(electrode C3); X3, right central area (electrode C4); X4,
frontal area (electrode Fz). In order to reduce the effects of
the reference electrode location, the signal to be analyzed for
each area is obtained subtracting from the signal measured
at the considered electrode the average signal of its four
nearest electrodes, according to the Hjorth surface Laplacian
technique [38]. Two artifact-free windows of 8 s duration
(N = 512 samples), in the eyes closed and eyes open
conditions, are then selected for the analysis.

Figure 12 reports the causal coupling estimated between
each pair of time series in the two conditions. During eyes
closed, nonzero values of causal coupling are observed from
the posterior area towards all other cortical areas, and from the
left central to the right central areas [Fig. 12(a)]. This pattern
of Cc

i→j values suggests that the EEG activity in this condition
propagates mainly along a back-to-front direction, while
front-to-back propagation is absent. The result is strengthened
by the statistical analysis, showing that the link is significant
over all directions for which the coupling value is nonzero.
This behavior is likely related to the presence of a dominant

α activity in subjects with eyes closed [39]. This activity is
supposed to originate in the occipital visual cortex, located
in proximity of the posterior brain areas, and then to spread
toward the central and anterior brain areas [40]. Another
interesting result is that the stronger coupling is that from the
posterior to the frontal areas, both in absolute value (Cc

1→4 =
0.088) and in statistical significance (the original coupling
value is larger than any surrogate value). The observation that
α activity is more coupled between posterior and anterior
cortical regions than between central and other regions was
reported in early studies [41]. Besides the back-to-front EEG
propagation, a significant interaction from X2 to X3 is also
observed. This observation is in agreement with previous
results [37,42] showing that in the eyes closed condition the
sources of EEG activity are mainly located in the left occipital
areas, and propagate in the forward direction but also toward
the right hemisphere. The results obtained with eyes open,
reported in Fig. 12(b), are less easy to interpret because the
literature is mostly focused on studies of traveling waves of
the α activity, while the αrhythm is known to weaken with the
opening of the eyes. Multivariate embedding procedures like
ours provide a nonlinear measure of Granger causality which is
not restricted to specific frequency bands, but rather reflects the
interaction between the overall dynamics of the two considered
subsystems. Hence the generally low values observed for
causal coupling, with statistical significance reached in only
one causal direction, are likely to indicate the presence of
a pattern of EEG signals in which multiple and/or irregular
rhythms do not exhibit a consistent direction of propagation.
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FIG. 12. Application of the procedure for nonuniform multivari-
ate embedding to EEG signals measured with eyes closed (a) and
with eyes open (b). Each plot depicts the estimated causal coupling
from Xi to Xj evaluated for the original time series (circles) and for
the set of S = 40 surrogate time series (gray crosses). Filled circles
represent causal coupling values detected as statistically significant
(significance: α = 0.0647). X1 = posterior; X2 = left central; X3 =
right central; X3 = frontal.

V. DISCUSSION

We have presented a model-free, information theoretic
tool for the assessment of nonlinear Granger causality from
multiple interacting dynamical systems. Being grounded
on information theory, the method does not make strong
assumptions about the nature of the investigated dynamics,
and thus works both for deterministic and stochastic systems.
This property favors utilization on physiological time series in
which the type of the dynamics cannot be assumed a priori.
The approach was devised to cope with problems typical
of application of information-theoretic tools on multiple
experimental time series, such as the bias affecting estimation
of the conditional entropy at increasing the dimensionality of
the embedding and/or decreasing the length of the available
data.

The main peculiarity of the approach is the procedure
devised for nonuniform embedding of multiple time series.
Such a procedure allows an intuitive selection of the terms
to be included in multivariate embedding, based on the fact
that only the candidate components which contribute most to
the prediction of the target series are allowed to enter—in a
progressive fashion—the embedding vector. Unlike traditional
uniform embedding schemes where components from all
series are included in multivariate embedding vectors, in our
nonuniform embedding scheme the components are selected
only if they are useful for prediction. We have demonstrated
the superiority of nonuniform embedding in the detection

of Granger causality, showing that the arbitrariness inherent
to uniform embedding may mask the detection of weak
coupling conditions. Moreover, this feature allows us to control
overfitting and, ultimately, to limit the rate of false causality
detection. In fact we found that, considering the situations in
which absence of coupling was imposed from one system to
another in our simulation examples, in the large majority of
cases no one component of the input system was included in
the embedding vector, so that the procedure returned causal
coupling equal to zero along the uncoupled directions. Few
exceptions of input components entering the embedding vector
in uncoupled directions were observed for very short or
noisy time series. These situations led to negative or slightly
positive values of the causal coupling that resulted in being
undistinguishable from those obtained for input surrogate time
series where components enter the embedding vector only by
chance.

The second important aspect is the utilization of the
corrected conditional entropy estimator. By compensating the
bias that affects the conditional entropy estimates at increasing
the embedding dimension, the corrected estimator serves to
provide an objective criterion, i.e., the corrected conditional
entropy minimum, for the termination of the embedding
procedure. As also seen in the investigated simulated systems,
the empirical correction proposed here does not guarantee
to retrieve the correct embedding dimension; this appears
too demanding a task to be achieved from short and noisy
data realizations. However, we found that this fact does not
affect remarkably the detection of Granger causality and
the quantification of the coupling strength. In the absence
of coupling, the estimated embedding dimension was small
enough to avoid the inclusion of unwanted input components
which could give rise to spurious causality; in the presence of
coupling, it was large enough to allow inclusion of relevant
input components, which made the causal coupling differ
significantly from zero. As expected, both specificity and
sensitivity degraded with shortening of the available data
sequences and with noise contamination. Nevertheless, the
approach allowed reliable rejection and detection of causality
in the conditions typical of experimental time series (few
hundred points available and limited noise corruption). In these
conditions, both the causal coupling values and the rate of
causality detection were found to increase with the coupling
parameter set in the simulations.

The limits of applicability of the method were investigated
evaluating its ability to detect coupled states either for different
types of dynamical systems, or for different values of the anal-
ysis parameters. In general terms, the approach does not work
whenever the driven process is fully predictable without any
need of using samples from the driving signal. We found that
this is the case for deterministic nonchaotic systems in which
the present state of the driven process is functionally related to
its past states and/or to the past states of processes other than
the driving one. In such a case, no causal interaction could be
detected by any method based on Granger causality because
the full description of the driven system is obtained already
before incorporating information from the driving system.
On the contrary, we showed applicability of the method for
stochastic systems, where the intrinsic nature of the observed
dynamics does not allow the corrected conditional entropy to
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decay to zero, as well as for deterministic chaotic systems,
where the evolution from similar states cannot be fully
predicted. Applicability was demonstrated for a broad range of
simulated deterministic chaotic systems or stochastic systems,
ranging from continuous to discrete systems, from bivariate to
multivariate and spatially extended processes, over realizations
of different length and using different values for the analysis
parameters. We ascribe the ability of the approach to detect
the information transfer in such a broad range of situations
to the progressive nature of the proposed embedding scheme
and to the strict threshold implicitly set by the conditional
entropy estimator, which limits the number of components
selected by the procedure to those effectively important for
the description of the observed dynamics. For instance, in
deterministic systems an embedding scheme working on the
driven variable only would be theoretically as good as a scheme
involving both driven and driving variables, provided that the
embedding dimension is sufficiently high. Since the proposed
procedure prevents the inclusion of redundant components into
the embedding vector, it realizes a parsimonious approach
to the reconstruction of the state space, seeking the lowest
dimension of the reconstructed space that allows the best
predictability of the driven dynamics. This feature is helpful to
improve causality estimation and definitely contributes to the

efficacy of the proposed method. This way to proceed shares
some similarities with a very recently proposed method using
nonuniform embedding and an arbitrary threshold selection
on conditional mutual information for estimating directional
coupling in bivariate deterministic systems [16].

The approach has been shown to be useful in the description
of physiological systems composed of multiple interacting
subsystems, such as the cardiovascular and cardiorespiratory
ones, and of spatially extended physiological systems, such
as the cortical system where EEG activity is supposed to
propagate among different scalp locations. We emphasize
that here a preliminary analysis was performed to verify the
feasibility of the approach in different fields of application,
and that systematic tests performed on extensive databases
should be carried out to corroborate the validity of the results.
Nevertheless, we observed patterns of Granger causality which
agree with known mechanisms of cardiovascular physiology
and neural physiology; significant examples are the emergence
of causality from arterial pressure to heart period variability
with the assumption of the upright position, documenting an
increased activity of the baroreflex regulation of heart rate, and
the presence of causality from the posterior towards the central
and anterior EEG recorded during eyes closed wakefulness,
suggesting a back-to-front propagation of the brain αwaves.
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