PHYSICAL REVIEW E 83, 051110 (2011)

Universal features of the free-energy functional at the freezing transition for repulsive potentials
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The free-energy difference between coexisting solid and liquid phases is studied in the context of classical
density functional theory (DFT). A bridge function is used to represent the higher-order (n > 2) terms in the
perturbative expansion of the excess Helmholtz free energy, and the values of this bridge function within the
solid lattice are determined by inversion using literature Monte Carlo simulation results. Four potential models,
specifically hard-sphere and inverse twelfth-, sixth-, and fourth-power repulsive, are studied. The face-centered
cubic (fcc) solid is considered for the hard-sphere and inverse twelfth- and sixth-power potentials, while the
body-centered cubic (bec) solid is considered for the inverse sixth- and fourth-power potentials. For a given solid
structure there is a remarkable similarity among the bridge functions for different potentials that is analogous
to the universality in the sum of elementary diagrams, or bridge functions, of liquid-state theory as originally
observed by Rosenfeld and Ashcroft [Phys. Rev. A 20, 1208 (1979)]. In further analogy with liquid-state theory,
the bridge functions in the present problem are plotted as functionals of the second-order convolution term in the
perturbative expansion. In each case, the plot indicates a unique functionality in the dense regions of the solid
near the lattice sites but a scattered and nonunique behavior in the void regions. Interestingly, knowledge of the
functional relationship in the unique region near the lattice sites seems to be sufficient to quantitatively model the
solid-fluid phase transition. These qualitative observations are true for both fcc and bece solid phases, although
there are some quantitative differences between them. The findings suggest that pursuit of a closure-based DFT

of solid-fluid transitions may be profitable.
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I. INTRODUCTION

The prediction of solid-fluid phase equilibrium from an
interparticle potential model is an important problem in
condensed matter theory [1,2]. Classical density functional
theory (DFT) [3] is auseful tool in this regard because of its low
computational cost as compared to particle-based simulation.
The key ingredient in DFT is an accurate model for the
excess Helmholtz free energy as a functional of the density
distribution. DFT approaches may be categorized by the
approach to constructing the functional. The nonperturbative
approaches comprising the weighted and effective liquid
theories [4-10] approximate the free energy by mapping
the inhomogeneous state onto an effective homogeneous
state determined by imposing structural and thermodynamic
constraints on the free-energy functionals. The perturbative
approaches, on the other hand, employ a truncated series
expansion for the free energy in terms of direct correlation
functions of the liquid phase. Recently, we proposed [11]
the idea of resumming the higher-order (n > 2) terms in
the perturbative expansion into a bridge function, in analogy
with the approach used by Zhou and Ruckenstein [12] for
inhomogeneous fluids near interfaces. The purpose of this
paper is to study the bridge function for various interaction
potentials at their freezing transition and identify further useful
analogies with liquid-state theory.

The next section presents key aspects of the theory,
especially the role of bridge functions and how they are
extracted from literature simulation data. The results and
discussion section is split into two parts, with the fcc and bec

*ford@ecs.umass.edu

1539-3755/2011/83(5)/051110(6)

051110-1

PACS number(s): 05.20.Jj, 64.70.dm

solid phases presented sequentially. Finally some conclusions
are given.

II. THEORY

Formally the difference in excess Helmholtz free energy
F,, between the solid and liquid states may be represented
with a functional integration as

ps(r) SBF
BEp e~ BFLIm) = [ dr /p 0 3o el
where B = 1/kgT with kp the Boltzmann constant and 7' the
coexistence temperature, p is the number density of the liquid,
and p,(r) is the number density of the coexisting solid phase.
The density of the homogeneous liquid is simply a constant.
The density of the ordered solid is commonly represented by
a sum of isotropic Gaussian functions centered at the lattice
points, i.e., ps(r) = ﬁZf:{v‘ exp[—(r — Ri)z/lz] where [
is the Gaussian width that serves as an order parameter,
N, 1is the total number of particles in a fixed volume of
the solid phase, and the R; are the Bravais lattice vectors,
which are determined by the lattice type and the average solid
density p;.

The integrand in Eq. (1) is frequently represented more
compactly as the negative of a first-order direct correlation
function (DCF), i.e., % = —c(r; p). Furthermore, the
starting point for many DFTs is a functional Taylor series
expansion of this DCF about the liquid state, as
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The coefficients in this expansion are the DCFs of the liquid
phase, as denoted by the subscript 0. The zeroth- and first-order

terms are relatively straightforward to compute because c(()l) is

trivially related to the excess chemical potential and 062) may
be obtained with high accuracy from Ornstein-Zernike (OZ)
liquid-state theory or simulation. However, the rest of the terms
involve three-body and higher correlations that are much more
challenging to obtain. The idea behind perturbative DFT is
to progressively compute these higher-order terms until they
become negligible, although previous work on hard spheres
has shown that this is not likely to be profitable [13]. We
propose to represent the entire summation of these higher-
order terms as a bridge function whose characteristics are yet
to be determined. Use of p,(r) as the upper limit in the Taylor
series of Eq. (2) yields

¢D(r; pg) = ¢ (po) + y(r) + B(x), 3)
where
y(r) = / dryc§ (.13 po)[ o5 (F2) — pol 4)

and B(r) is the bridge function. Equations (1)—(4) show
that this DFT constructs an excess Helmholtz free-energy
functional from the liquid-phase properties (excess chemical
potential and second-order DCF) and the bridge function.
Setting B(r) = 0 recovers the original DFT of Ramakrishnan
and Yussouff [14].

There are some analogies between this DFT of solid-fluid
equilibrium and the liquid-state theory. The convolution term
y(r) is analogous to the indirect correlation function 7(r)
in OZ theory. Similarly B(r) is analogous to the OZ bridge
function b(r) that represents the summation of elementary
diagrams. In liquid-state theory, specification of the bridge
function is referred to as a closure. Sometimes the specification
is done directly on the function b(r), as in the modified-
hypernetted-chain (MHNC) [15] and variational modified-
hypernetted-chain (VMHNC) [16] closures. In other cases b is
represented as a functional of the indirect correlation function,
as b[t(r)], as in the Percus-Yevick (PY), Verlet-modified
(VM), and Martynov-Sarkisov (MS) closures [17]. However,
with the exception of our previous work on the hard-sphere
potential [11], the nature of the closure in the solid-fluid
equilibrium has not been explored yet.

The focus of this work is on repulsive interactions of the
type u(r) = e(%)” for which simulation data on solid-fluid
equilibrium are readily available. Specifically hard spheres
(n = 00) and three common soft repulsion models, n = 12,
6, and 4, are employed. Literature studies [18] have shown
that the stable solid phase is fcc for large n and bec for
small n, with the dividing point being just above n = 6. We
consider the stable solid phase for each potential, and we
also study the metastable fcc phase for n = 6. Four pieces
of information at coexistence are needed to calculate the
bridge function: lattice type, solid density, liquid density, and
Gaussian width parameter /, which is related to the root mean
square displacement of solid particles about their lattice sites.
Table I summarizes the data and sources.

To generate B(r) from these data for a given poten-
tial, a pointwise equality of the total chemical potential
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TABLE I. Coexistence data for repulsive potentials. For the soft
potentials e = 10.

n Ps 0o [ Structure Ref.
%) 1.0409 0.9435 0.1139 fcc [19]
12 0.6804 0.6557 0.1459 fcc [20]
6 0.7494 0.7399 0.1513 fce [20]
6 0.7339 0.7247 0.1876 bce [20]
4 1.0225 1.0185 0.1591 bce [20]

in the solid and liquid phases is enforced [11]. Denoting
the total Helmholtz free energy as F = F;; + F,, with
BFia = f drp(r) ln(p(rfw), and using the definition of chemi-
cal potential u© = ‘36‘; Ef)] , the equality of the chemical potentials

in combination with Eq. (3) yields

B(r)=1In (” pi?) — (). )

This is the key equation for extracting B(r) from the simulation
data given in Table 1. The solid density p,(r) is modeled
with the sum of Gaussian functions described above, using
the lattice type, py, and [. The value of y(r) as defined in
Eq. (4) is evaluated using the liquid-state DCF from a highly
accurate VMHNC calculation at the density pg. Since y (r) and
ps(r) are periodic in the three-dimensional solid lattice, these
quantities were evaluated in the smallest repetitive unit cell of
the solid.

III. RESULTS AND DISCUSSION

A. fcc lattice structure

Plots of B(r) for two different two-dimensional slices
through the tetrahedral unit cell of the fcc lattice are shown in
Fig. 1, for the n = o0, 12, and 6 potentials. The most striking
feature of this figure is that B(r) is qualitatively similar across
the three potentials. The results for the bottom plane show that
higher (less negative) values are found at the lattice sites, which
even become slightly positive for the hard spheres, while lower
(more negative) values are found in the voids. The results for
the middle section show relatively lower values of B because
of the larger amounts of void space, but with high values seen
in the corners because of their proximity to the lattice sites
above and below.

The qualitative similarity of B(r) across the three potentials
is reminiscent of observations by Rosenfeld and Ashcroft
on the bridge function of liquid-state theory [15]. They
observed that b(r) had roughly the same shape across a wide
range of interaction potentials and thermodynamic conditions
(density, temperature) and was thus deemed to “constitute the
same universal family of curves.” Remarkably, an analogous
universality also appears to hold for B(r) at solid-fluid
equilibrium for an fcc lattice, at least for the three repulsive
potentials studied here. Rosenfeld and Ashcroft [15,16] and
Lado et al. [21] were able to exploit the universality of b(r) in
a quantitative way by using known bridge functions for hard
spheres at different packing fractions bygs(r;n) as reference
data. For any interaction potential, one could employ b(r) ~
bys(r;n*) with the effective packing fraction n* chosen
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FIG. 1. (Color online) Location of the subcell of interest in the
fce lattice (top). Plots of the values of B(r) in planar slices along the
bottom (left column) and middle (right column) of the unit cell. A
plot of the top plane would just be a 90° rotation of that for the bottom
plane.

to satisfy thermodynamic consistency or minimize the free
energy, under the conditions of interest. The VMHNC closure
of this type is among the most accurate in predicting liquid
structure. However, it is difficult to extend this approach to the
present problem of solid-fluid equilibrium. Since solid-fluid
coexistence for hard spheres occurs at one thermodynamic
state point, there is no natural parametric set of hard-sphere
bridge functions {Byg(r)} to employ. Furthermore, even if
such a set were available, there are no a priori thermodynamic
consistency criteria that could be applied in choosing the best
one.

As mentioned above, another common approach to the
bridge function in liquid-state theory is to represent it as
a functional of the indirect correlation function, so that
b = b[t(r)]. The analogy for solid-fluid equilibrium is B =
B[y (r)]. Equation (5) can be readily used to generate a
parametric plot of B[y] with data points taken throughout
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FIG. 2. (Color online) Parametric plots of B[y ] for three different
interaction potentials with an fcc solid.

the subcell, as seen in Fig. 2. A figure of this type is often
called a Duh-Haymet plot in liquid-state theory. Presenting
the data in this form again illustrates the qualitative similarity
in the bridge functions across the three different potentials. For
each potential there is a region of unique B[y ] functionality
at high values of y but large scatter and nonuniqueness at
lower values of y. Further insight can be gained by creating
a parametric plot of y(r) with respect to p,(r)/pp as seen in
Fig. 3. Now it is clear that high values of y(r) correspond
to regions of high density in the lattice, which occur in the
vicinity of lattice sites (particle cores). Looking back at Fig. 2
we conclude that for each potential there is a unique B[y]
functionality in high-density regions near the lattice sites but
no such functionality in the void regions. This observation also
has an analogy in liquid-state theory, where Duh-Haymet plots
show unique b[7] functionality near the particle core (at the
first peak region) but scatter outside [22].

Figure 2 begs the question of whether some analytical
form of B[y] would suffice as a closure. For each interaction
potential, we proposed the simple quadratic form B[y] =
ay? + by + c. The values of the coefficients were determined
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FIG. 3. (Color online) Plot showing y vs ps(1)/po for the three
potentials with an fcc solid. Note that high values of y occur at high
density ratio which happens at the lattice sites.
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FIG. 4. (Color online) B[y] for n = oo {B[y] = —0.0665y2 —
0.0663y +2.4689}, n =12 {B[y]= —0.0712y%+0.1669y +
0.6385} and n = 6 {B[y] = —0.0796y% + 0.3005y — 0.3024}.

by iteratively solving the solid-fluid coexistence problem using
the DFT model in Eqgs. (1)—(4) until a set of values {a,b,c} that
satisfied the known properties (Table I) was found; details of

bec lattice

¥ i

Bottom section Middle section

FIG. 5. (Color online) Location of the subcell of interest in the
bece lattice (top). Plots of the values of B(r) in planar slices along
the bottom (left column) and middle (right column) of the unit cell.
A plot of the top plane would just be a 90° rotation of that for the
bottom plane.
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Bly(r)]

FIG. 6. (Color online) Parametric plot of B vs y(r) for two
different interaction potentials with a bec solid.

this calculation are given in our previous publication [11].
Figure 4 shows the quadratic polynomials thus obtained and
how they compare to the parametric data. Strikingly, each
polynomial matches its corresponding parametric plot at high
values of y, where there is a unique functionality in the
parametric data, but not in the low-y scattered region. Thus
the thermodynamic properties at the phase transition appear
to be governed by the behavior of the bridge function in the
high-density regions of the solid lattice and rather insensitive
to its behavior elsewhere. This observation also has an analogy
in liquid-state theory, where the behavior of the bridge function
at particle-particle separations close to the location of the first
peak in the radial distribution function has the greatest impact
on the thermodynamic properties [15], and the behavior inside
the core is largely irrelevant [21].

B. bcc lattice structure

A similar analysis was carried out for the bee solid-fluid
equilibrium for the n = 6 and 4 potentials. The plots of B(r)
for different slices through the unit cell are shown in Fig. 5.
There is clearly a similarity in the bridge functions of these
two potentials. However, these plots are qualitatively different
from those for the fcc solids in Fig. 1 because of the differences
in lattice geometry. While high values of B(r) still occur in the
vicinity of a lattice site, now the highest values occur slightly
off center, forming a split peak arrangement.

The parametric B[y] plots in Fig. 6 also indicate that the
bridge functions of the bcc solids have a slightly different
character from those of the fcc solids. The bce plots show
two distinct sets of branches (as compared to one set for fcc)
within their envelope, causing them to appear wider (although
they actually span a smaller range of y). We investigated in
more depth how the different regions of the lattice contributed
to the parametric plot. The points lying along the top left
boundary of the envelope are obtained by moving along a
particle-containing edge of the subcell (as shown in Fig. 5)
of the bec lattice, while the points along the bottom right
boundary are obtained by moving along a line joining two
lattice sites (i.e., a Bravais lattice vector). We observed the
same to be true for the fcc case as well. Therefore the different
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FIG. 7. (Color online) Plot of y vs p,(r)/ p, for the two potentials
with a bee solid.

character of the bcc and fcc parametric plots is a reflection of
the different lattice geometries.

Figure 7 shows that high values of y occur at the high-
density regions in the bcc lattice, so that the sharp region at
high y in Fig. 6 corresponds to the sites in the bcc lattice,
analogous to our observations for the fcc structure. As in the
case of the fcc solids, quadratic polynomials were found that
exactly reproduced the solid-fluid coexistence properties given
in Table I. As seen in Fig. 8, these polynomials pass through
most of the unique functionlike region of the parametric data
at the largest y, but they are concave up and follow the data
in a tangential fashion, in contrast to the direct overlap seen in
Fig. 4 for the fcc case.

IV. CONCLUSION

We have constructed a DFT of the solid-fluid transition
wherein the higher-order terms in the perturbative excess
free-energy expansion are represented with a bridge function.
We have empirically calculated this bridge function for four
different repulsive potentials, and two different lattice types,
by inverting their known coexistence properties as determined
by simulation. For a given solid lattice structure (fcc or
bcee), the bridge functions for different potentials, whether
observed directly as B(r) or parametrically as B[y (r)], show
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FIG. 8. (Color online) B[y] for n =6 {B[y]=0.0206y2 +
0.2454y —0.5045} and n =4 {B[y]=0.0522y+0.2524y —
1.4305}.

a similarity in shape that is reminiscent of the universality
observed for the bridge functions b of liquid-state theory.
There are significant differences between the bridge functions
found for the two different solid structures, however. On a
practical note, quadratic representations of B[y] that exactly
reproduce the known solid-fluid coexistence properties were
found for each potential. Although these closures are purely
empirical in nature, the nature of the findings suggests that
more fundamental methods of closure development would
be worth pursuing. In particular, analysis of B[p] using
the formalism of graph theory [17] might generate useful
approximate closures. A successful development program
along these lines would lead to a situation like the current one in
liquid-state theory, where reasonably accurate thermodynamic
property predictions may be made across a wide variety of
potential interactions by choosing judiciously from a small set
of closures.
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