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We consider the occurrence of record-breaking events in random walks with asymmetric jump distributions.
The statistics of records in symmetric random walks was previously analyzed by Majumdar and Ziff [Phys.
Rev. Lett. 101, 050601 (2008)] and is well understood. Unlike the case of symmetric jump distributions, in
the asymmetric case the statistics of records depends on the choice of the jump distribution. We compute the
record rate Pn(c), defined as the probability for the nth value to be larger than all previous values, for a Gaussian
jump distribution with standard deviation σ that is shifted by a constant drift c. For small drift, in the sense
of c/σ � n−1/2, the correction to Pn(c) grows proportional to arctan(

√
n) and saturates at the value c√

2σ
. For

large n the record rate approaches a constant, which is approximately given by 1 − (σ/
√

2πc)exp(−c2/2σ 2)
for c/σ � 1. These asymptotic results carry over to other continuous jump distributions with finite variance.
As an application, we compare our analytical results to the record statistics of 366 daily stock prices from the
Standard & Poor’s 500 index. The biased random walk accounts quantitatively for the increase in the number of
upper records due to the overall trend in the stock prices, and after detrending the number of upper records is in
good agreement with the symmetric random walk. However the number of lower records in the detrended data
is significantly reduced by a mechanism that remains to be identified.
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I. INTRODUCTION

The random walk is a paradigmatic model of statistical
physics, which combines utmost conceptual simplicity with a
surprising richness of emergent behaviors [1,2]. Among the
many interesting features of random walks, recent research
has focused in particular on its extremal properties, exploring
quantities such as the height and position of the globally max-
imal excursion of a one-dimensional walk of a given number
of steps, and the statistics of records of this process [3]. Here a
record is defined as an entry in a discrete, real valued time series
that is larger (upper record) or smaller (lower record) than all
previous entries. While the mathematical theory of records
is well developed for time series of independent, identically
distributed random variables [4–6], little has been known about
the record statistics of correlated processes. It is therefore
remarkable that records of a large class of one-dimensional
random walks can be characterized in considerable detail, as
was shown in recent work by Majumdar and Ziff (MZ) [7].
Specifically, they considered the random process defined by

Xn = Xn−1 + ξn, (1)

where X0 = 0 (say) and the step sizes ξn are independent,
identically distributed random variables drawn from a prob-
ability density φ(ξ ) that is required to be continuous and
symmetric, but is otherwise arbitrary. We say that an upper
record occurs at time n if Xn = max{X0, . . . ,Xn}. Based on
the Sparre Andersen theorem for the survival probability of the
random walk [8–11], MZ show that the probability �(m,n) for
the nth event to be the mth record is given by

�(m,n) =
(

2n − m + 1

m

)
2−2n+m−1 (2)

for m � n + 1. The first moment of this distribution with
respect to m yields the mean number of records after n steps,
which equals mn ≈ 2√

π

√
n for large n, and the probability Pn

for the nth event to be a record (henceforth referred to as the
record rate) decays like Pn ≈ 1√

πn
. In the present paper we aim

to generalize these results to random walks with asymmetric
jump distributions. In the first part of the paper (Sections II
and III) we study records generated by random walks with a
symmetric jump distribution that have an additional constant
drift c, such that (1) generalizes to

Xn = Xn−1 + ξn + c (3)

with a symmetric jump distribution φ(ξ ). For the special case of
a Cauchy distribution this problem was considered previously
in [12]. Here, we derive approximate results for the case of a
Gaussian jump distribution that apply also more generally to
distributions with a finite variance.

Similar to our earlier work [13,14] on the related problem of
records from independent random variables with drift [12,15],
our strategy will be to analyze the limiting cases of small and
large drift, respectively, as quantified by the ratio c/σ of the
drift speed to the standard deviation σ of the jump distribution
φ(ξ ). For the Gaussian random walk we find that in the limit
of c

σ
� 1√

n
the mean number of records and the record rate

are given by

mn(c) ≈ 2
√

n√
π

+ c

σ

√
2

π
(n arctan(

√
n) − √

n), (4)

Pn(c) ≈ 1√
πn

+ c

σ

√
2

π
arctan(

√
n). (5)

In the limit of c
σ

� 1√
n

the record rate Pn(c) approaches a
constant value. If in addition c

σ
� 1, this constant is given

approximately by

lim
n→∞ Pn ≈ 1 − c√

2πσ
e
− c2

2σ2 . (6)

In Section IV we apply our results to fluctuations in stock
prices, arguably one of the most important (and ancient)
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applications of random walk theory [16–18]. The basic model
of a stock price is the geometric random walk Sn = eXn with
an upward bias reflecting long-term economic growth. Our
analysis of record events in the Standard & Poor’s 500 index
shows a corresponding surplus of upper record events, which
is consistent with the theoretical expectation. However, an
asymmetry between upper and lower records remains even
when the bias has been (approximately) removed [19], a
feature that may be related to the gain-loss asymmetry reported
in previous analyses of stock market fluctuations [20–23]. We
conclude with a summary and a discussion of some open
problems.

II. SURVIVAL PROBABILITIES AND FIRST
PASSAGE TIMES

The record statistics of a random walk can be analyzed
by considering the generating functions of the survival and
first passage probabilities of the process [3,7,12]. In [7] it was
shown that the generating function of �(m,n) is of the form

∞∑
n=m−1

�(m,n)zn = f̃ m−1
− (z)q̃−(z), (7)

where q̃±(z) is the generating function of the positive (neg-
ative) survival probability q±(n) of the random walk. The
latter is defined as the probability that the process stays
above (below) the origin up to the nth step. Similarly f̃±(z)
is the generating function of the positive (negative) first-
passage probability f±(n) of the random walk, with f±(n) =
q±(n − 1) − q±(n). In the case of the symmetric random
walk considered in [7] we have q−(n) = q+(n) = q(n) and
f−(n) = f+(n) = f (n) and both q(n) and f (n) are completely
universal for all continuous jump distributions.

Since we want to study asymmetric random walks, we
need to distinguish between positive and negative survival
probabilities and first passage times, and consider the functions
q±(n) and f±(n). As in [7] a theorem by Sparre Andersen will
play a key role in our considerations. In [8,11] it was shown
that

q̃±(z) =
∞∑

n=0

q±(n)zn = exp

( ∞∑
n=1

p±(n)

n
zn

)
, (8)

where p±(n) is the probability for the walker to be above
or below the origin at the nth step. This quantity can be
easily computed from p± = ∫ ∞

0 G(±x,n)dx, where G(x,n)
is the positional probability density of a random walk of
n steps that started at the origin. Details on the computation
of G(±x,n) and p±(n) can be found in [3] and [10]. In
the case of a symmetric random walk we simply have
p±(n) = 1

2 independent of n and we find that in this case

q̃±(z) = (1 − z)−
1
2 and q±(n) = ( 2n

n
)2−2n [7]. These results

eventually lead to Eq. (2) [7].
In the case of an asymmetric random walk the situation gets

a bit more complicated. We compute q±(n) and its generating
function for a Gaussian random walk with drift c. Here, the
jump distribution of the symmetric random variable ξ in (3) is

of the form φ(ξ ) = 1√
2πσ

e
− ξ2

2σ2 with standard deviation σ . It is
easy to show that the probability density G(x,n) of the random

walk after n steps is given by G(x,n) = 1√
2πσn

exp(− (x−nc)2

2σ 2n
)

and p±(n) = 1
2 (1 ± erf(

√
n
2

c
σ

)). We start with the case of a
small linear drift with c � σ√

n
such that p±(n) ≈ 1

2 ± √
n

2π
c
σ

.
Now we can employ Eq. (8). Expanding up to first order in c

we find

q̃±(z) ≈ 1√
1 − z

(
1 ± c√

2πσ

∞∑
n=1

zn

√
n

)
. (9)

With
√

1 − z
−1 = ∑∞

n=0( 2n

n
)2−2nzn and making use of the

Cauchy formula for products of infinite sums we obtain the
following expression for q̃±(z):

q̃±(z) ≈ 1√
1 − z

± c√
2πσ

∞∑
n=0

n∑
k=0

(
2k

k

)
2−2kzn+1

√
n − k + 1

.

(10)

The binomial coefficient can be approximated by
( 2k

k
) ≈ 4k/

√
πk and with this we can approximate the

sum over k by an integral,
n∑

k=0

1√
πk

zn+1

√
n − k + 1

≈ 1√
π

∫ n

0

dkzn+1

√
k
√

n − k + 1

≈ √
πzn+1. (11)

We thus obtain a simple result for the generating function of
the survival probability,

q̃±(z) ≈ 1√
1 − z

± c√
2σ

∞∑
n=1

zn, (12)

and finally the following expression for the survival probability
q±(n) under a small linear drift:

q±(n) ≈ 1√
πn

± c√
2σ

. (13)

The first term on the right hand side is the result for the
symmetric random walk discussed in [7], which is now
supplemented by a correction linear in c

σ
. Although this

particular result for q±(n) will not be needed in our derivation
of the record statistics, we found it useful to test it against
numerical simulations. The results are shown in Fig. 1. For
small c, Eq. (13) is in good agreement with the simulations.

For the sake of completeness we also provide the small
c expansion of f̃±(z) that will become important later. With
f̃±(z) = 1 − (1 − z)q±(z) we find

f̃±(z) ≈ 1 − √
1 − z

(
1 ± c√

2πσ

∞∑
n=1

zn

√
n

)
. (14)

From this we obtain, by methods very similar to those used
above to derive q±(n), the result

f±(n) ≈ 1

2
√

π
n− 3

2 ± c√
2πσ

n− 1
2 . (15)

Next we consider the case of large drift, c
σ

� 1. Here we
will only discuss q−(n), as this is the quantity needed for the
computation of the record rate; q+(n) has a different behavior
in this regime. In the limit of c

σ
� 1 we find that p−(n) ≈

σ (2πnc2)−1/2e
− c2n

2σ2 . Using this we find that for large n, q̃−(z)
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FIG. 1. Relative effect of the drift on the positive survival
probability q+(n,c) of a Gaussian random walk with σ = 1. The
effect of the drift is represented by 1

c
(q+(n,c) − q+(n,0)) for different

drift speeds c. We simulated 107 realization of a random walk with
n = 100 steps for each drift speed. The dotted line represents the
analytical results obtained in Eq. (13). For small drift c = 0.001 and
c = 0.01 we find good agreement with this approximation.

and q−(n) are of the form

q̃−(z) ≈ 1 +
∞∑

n=1

σ

c
√

2πn3
e
− c2n

2σ2 zn, (16)

q−(n) ≈ σ

c
√

2πn3
e
− c2n

2σ2 . (17)

These particular results were already reported in [12]. At this
point it is important to notice that all results concerning the
first-passage and survival probabilities in the large n limit
are easily transferable to other jump distributions as long
as these have a finite variance. Because of the central limit
theorem, G(±x,n) and therefore p±(n) will approach the same
expressions for large n as were derived here for the Gaussian
jump distribution.

III. GAUSSIAN RANDOM WALKS WITH DRIFT

A. Record rate for small c/σ and n � (σ/c)2

With the small c expansions in Eqs. (9) and (14) we have all
ingredients needed to derive the record statistics for a Gaussian
random walk with a small linear drift. We start by computing
the mean number of records mn expected up to the nth step. For
the generating function m̃(z) = ∑∞

n=0 mnz
n of this quantity it

was found in [12] that m̃(z) = 1/((1 − z)2q̃−(z)), a result that
can be obtained by computing the first moment of Eq. (7). We
can now evaluate this expression making use of the generating
function for q−(n) given in Eq. (9). In the limit of small c

σ
this

yields

m̃(z) ≈ 1
√

1 − z
3

(
1 + c√

2πσ

∞∑
n=1

zn

√
n

)
. (18)

Using the series expansion of
√

1 − z
−3

and employing once
again the Cauchy formula for infinite sums and the Stirling

approximation, we find

m̃(z) ≈ 1
√

1 − z
3 +

√
2c

πσ

∞∑
n=1

zn

n−1∑
k=0

√
k√

n − k + 1
. (19)

If n is not too small, the sum over k can be replaced by an
integral and we finally obtain an approximate expression for
the generating function of mn,

m̃(z) ≈ 1
√

1 − z
3 +

√
2c

πσ

∞∑
n=1

zn(n arctan(
√

n) − √
n). (20)

The mean number of records of the random walk with a
small linear drift c is therefore approximately given by

mn ≈
(

2n

n

)
2n + 1

22n
+

√
2c

πσ
(n arctan(

√
n) − √

n). (21)

Making use of the Stirling approximation this yields the
previously announced expression (4) for mn(c) and, by taking
a derivative with respect to n, the record rate Pn(c) in the large
n limit as given in Eq. (5). The leading order correction of the
record rate due to the drift is seen to increase with arctan(

√
n)

and for larger n it approaches a constant value. For large n (but
still in the regime c

σ
� 1√

n
) we find the simple result

Pn(c) ≈ 1√
πn

+ c√
2σ

. (22)

We compared Eq. (5) to simulations and found good agreement
in the regime c

σ
� 1√

n
(Fig. 2). We also compared this result

with numerical simulations of the record rate for random walks
with step sizes drawn from a uniform distribution (Fig. 3).
The results for the Gaussian and the uniform distribution are
very similar to each other already for small n, reflecting the
convergence expected from the central limit theorem.
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FIG. 2. Relative effect of the drift on the record rate Pn(c) of a
random walk with a Gaussian jump distribution (σ = 1). The effect
is represented by 1

c
(Pn(c) − Pn(0)) for different drift speeds c. Again,

we simulated 107 realizations of a random walk with n = 100 steps
for each drift speed. The line represents the analytical results obtained
in Eq. (5). For small drift speeds c = 0.001 and c = 0.01 we find good
agreement with the approximation, but for c = 0.1 the approximation
is no longer accurate.
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FIG. 3. Relative effect of the drift on the record rate Pn(c) for a
random walk with a uniform jump distribution with standard deviation
σ = 1. The parameters of the simulation are the same as in Fig. 2.
Even though the expression (5) was derived for a Gaussian jump
distribution, it is in a good agreement with the numerical results for
small c.

B. Asymptotic record rate for large n

Next we consider the limit of strong drift, c
σ

� 1. Applying
the same method as above and making use of our result (16)
for q̃−(z) in the regime of large c/σ , we find that the number
of records increases linearly with time according to

mn(c) ≈ n

(
1 − σ√

2πc
e
− c2

2σ2

)
. (23)

Correspondingly the record rate Pn is independent of n in this
case. In fact, simulations show that the record rate approaches
a finite, nonzero limit P (c) ≡ limn→∞ Pn(c) for n → ∞ for
any positive value of the drift (Fig. 4). This can be understood,
on the basis of the general relation (7) between the distribution
of record events and the negative first passage probability,
to be a consequence of the fact that the negative mean first
passage time of a random walk with positive drift is finite [9,
10]; roughly speaking, one expects that the asymptotic record
rate P (c) is proportional to the inverse of the negative mean
first passage time. The result (23) implies that the asymptotic
record rate behaves as

P (c) ≈ 1 − σ√
2πc

e
− c2

2σ2 (24)

for large c/σ (see inset of Fig. 4). Furthermore, since the
negative mean first passage time diverges as c−1 for c → 0
[9,10], the asymptotic record rate should behave as P (c) ∼
c for small c. This is confirmed by the simulations, which
indicate that P (c) ≈ 1.39 (c/σ ) for c/σ � 1.

The time scale n∗(c) at which the saturation of the record
rate occurs can be estimated by comparing the two terms in
Eq. (22), which shows that

n∗ ∼
(σ

c

)2
(25)

for small c. Not surprisingly, this is also the time scale at which
the drift begins to dominate the mean square displacement of
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FIG. 4. Record rate for a biased Gaussian random walk with
standard deviation σ = 1. The figure illustrates the convergence of
Pn(c) to the asymptotically constant record rate P (c) for n → ∞.
The inset shows that the large drift result (24) becomes accurate
for c/σ > 1, and the bold dotted line shows that P (c) ≈ 1.39 c

σ
for

c → 0.

the random walk. Together with the linear behavior of the
asymptotic record rate, this suggests the scaling form

Pn(c) = c

σ
g((c/σ )2n) (26)

for small c/σ and arbitrary n, where the limiting behaviors of
the scaling function are g(x → 0) ≈ 1√

πx
and g(x → ∞) ≈

1.39. This relation is well fulfilled by the numerical data shown
in Fig. 5.

IV. RECORD STATISTICS OF STOCK PRICES
IN THE S&P 500

A prominent application of the random walk process can
be found in the financial sciences. Originally introduced by
Bachelier in 1900 [16], the geometric random walk is the
standard model used to describe the evolution of stock prices.
In the application of this model to actual data, trends are
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FIG. 5. Illustration of the conjectured scaling collapse (26) of the
record rate Pn(c) for Gaussian random walks with σ = 1 and various
drift speeds c � 0.1.
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always an issue, which in the simplest case are described
by a linear drift in the logarithm of the stock price. In this
section we present an empirical analysis of record events in
historical stock prices taken from the Standard & Poor’s 500
index, and compare the results to the theoretical predictions
derived above. The observational data we used consist of daily
recordings of 366 stocks that were contained in the index from
January 1990 to March 2009, resulting in 366 time series of
length n = 5000 [24]. We first analyzed the recordings without
any detrending and then considered detrended data in which
a fitted linear trend was subtracted from the logarithms of the
stock prices.

In the raw stock data the number of upper records after
n = 5000 trading days is considerably larger than the expected
number of 2

√
5000/π ≈ 79.79 for a symmetric random walk.

At the end of the observation period, we found an average
number of 166.56 upper records in the stocks, but only 22.33
lower records. The rate of upper records was roughly constant
over the entire period, whereas the rate of lower records was
almost zero already after 300 days. Apparently a positive
trend had a very strong effect on the record statistics of the
analyzed stocks. To quantify the trend, we performed a linear
regression analysis on the logarithms of the individual stock
prices, determining the drift ci and the standard deviation of
increments σi for each stock i = 1, . . . ,366. The normalized
drift ci/σi was then averaged over all stocks, yielding the
estimate 〈ci/σi〉 ≈ 0.025. At n = 5000 we are thus well
outside the regime in which the pertubative result (4) should
be valid. Still, inserting the estimated normalized drift c/σ =
0.025 into (4) we obtain a record number of 166.59, in very
close agreement with the observed value. The comparison with
Monte Carlo simulations of biased random walks with the
same drift shows that this accuracy is actually fortuitous, but
the description of the stock market data by the biased random
walk model is nevertheless quite reasonable (Fig. 6).

Next we detrended the data by subtracting the fitted linear
trend from the logarithmic stock prices, and counted the
number of records in the detrended time series. We found
an average number of 75.79 upper records after 5000 steps,
in close agreement with the result for a symmetric random
walk. However, the number of lower records was only 53.65,
which is significantly smaller than expected. This residual
asymmetry between upper and lower records persists if, instead
of subtracting an overall linear trend, the data are detrended by
normalizing each stock by the index [19]. To further explore
this phenomenon we split the time series into 50 shorter series
each lasting 100 trading days. We detrended each of the shorter
time series individually by subtracting a linear trend, counted
the number of upper and lower records, and then averaged the
record numbers over the whole ensemble of 50 × 366 series of
length 100. The results are shown in Fig. 7. It appears that while
the number of upper records is in very good agreement with the
symmetric random walk model, the number of lower records is
still suppressed. This effect was found for different choices of
the lengths of the time series and appears to be independent of
this choice.

Qualitatively, a reduced number of lower records indicates
that the positive first-passage times are increased compared to
the corresponding negative first passage times. An asymmetry
between first passage times to a prescribed (positive or
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FIG. 6. Mean number of records averaged over 366 stocks
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in the data set. The expected number of records mn(0) = 2√
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√
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for a symmetric random walk is shown by the thin dotted line.
Also shown are the predictions of the biased random walk model
with effective normalized drift c/σ = 0.025 obtained from Monte
Carlo simulations as well as from the approximate expression
mn(c) = mn(0) + c√

2σ
n (thin full line).

negative) return level has in fact been observed in previous
analyses of stock market data, and is known as the gain-
loss asymmetry [20–23]. However, this phenomenon differs
in several important respects from the one reported here.
First, in most (though not all [23]) cases the sign of the
asymmetry is opposite to that suggested by the asymmetry
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FIG. 7. Mean number of records in subsequences of the time
series taken from the S&P 500 index. The entire data set of 5000 con-
secutive daily values was split into 50 subsequences of length 100. For
each of the subsequences a linear detrending of the logarithm of the
daily values was performed and the upper and lower record numbers
were determined from the detrended data. The results, averaged over
all stocks and all subsequences, are given by the thick black line (up-
per records) and the thick dashed line (lower records). The thin dashed
line shows the analytical prediction for a symmetric random walk
mn(0) = 2

√
n/π . The number of upper records is in good agreement

with mn(0), but the number of lower records is significantly reduced.

051109-5



GREGOR WERGEN, MIRO BOGNER, AND JOACHIM KRUG PHYSICAL REVIEW E 83, 051109 (2011)

in the record statistics, in that first passage times for crossing
a prescribed level from below are larger than for crossings
from above [20,22]. Second, the asymmetry vanishes when
the prescribed return level tends to zero, which is the relevant
limit for the analysis of records. Finally, in contrast to the
asymmetry between upper and lower records reported here,
the gain-loss asymmetry is a property of entire stock indices
which does not occur in individual stocks [21,22]. Indeed,
a preliminary analysis of first-passage times to the origin in
the detrended S&P 500 data shows an asymmetry between
positive and negative excursions only when the starting point
of the excursion is conditioned to be a record event [25].
An explanation of the observed residual asymmetry between
upper and lower records must therefore be left to future
work.

V. SUMMARY

In conclusion, using the methods introduced in [7] and a
more general form of the Sparre Andersen Theorem [3,8],
we were able to describe the effect of a linear drift on the
record statistics of a Gaussian random walk in two regimes.
For short times n � ( σ

c
)2 we find that the correction to the

record rate Pn(c) − Pn(0) increases proportional arctan(n) and
then saturates at a value of c√

2σ
. On the other hand, for large n

the record rate saturates at a constant limiting value P (c),
which is linear in c for c/σ � 1 and approaches unity for
large c/σ according to Eq. (24). The transition between the
two regimes is described by the scaling form (26).

We applied our results to the statistics of records in 366
stocks contained in the S&P 500 index from 1990 to 2009.
We found that, after detrending, the number of upper records
in the stocks is basically identical to that predicted for the
symmetric random walk. The fact that the number of lower
records appears to be systematically decreased is interesting
and needs to be examined more thouroughly in the future.
On the theoretical side, a possible topic for future research is
the record statistics of asymmetric random walks with a more
complicated asymmetry than just a constant drift. The issue of
asymmetric random walks with discrete jump distributions is
also still open for further investigations.
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