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Real-space renormalization group for the transverse-field Ising model in two and three dimensions
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The two- and three-dimensional transverse-field Ising models with ferromagnetic exchange interactions are
analyzed by means of the real-space renormalization-group method. The basic strategy is a generalization of
a method developed for the one-dimensional case, which exploits the exact invariance of the model under
renormalization and is known to give the exact values of the critical point and critical exponent ν. The resulting
values of the critical exponent ν in two and three dimensions are in good agreement with those for the classical
Ising model in three and four dimensions. To the best of our knowledge, this is the first example in which a
real-space renormalization group on (2 + 1)- and (3 + 1)-dimensional Bravais lattices yields accurate estimates
of the critical exponents.
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I. INTRODUCTION

The real-space renormalization-group framework was de-
veloped some time ago and is often considered a crude approx-
imation in practice because the truncation that is necessarily
involved for tractability usually leads to unreliable estimates
of critical exponents [1]. Standard approaches on the basis
of the block-spin transformation for quantum systems [2–7]
succeeded in describing qualitative properties but still had
difficulties in quantitatively accurate calculations. For the one-
dimensional transverse-field Ising model, which is equivalent
to the two-dimensional classical Ising model, Fernandez-
Pacheco [8] modified the block construction of the standard
block-spin transformation [2] to preserve the high symmetry of
the model and could reproduce the exact values of the critical
point and critical exponent ν. Although current activities in
real-space renormalization-group approaches to quantum sys-
tems are often focused on numerically accurate evaluations, by
using, for instance, the density-matrix renormalization group
[9] or the multiscale entanglement renormalization ansatz [10],
it is important to develop analytical or quasianalytical methods
applicable to higher dimensions since numerical methods are
not always suitable for the calculation of critical properties.

The present paper reports on our successful generalization
of the one-dimensional method of Fernandez-Pacheco [8] to
two and three dimensions. Although it is not possible to
yield exact solutions for those higher-dimensional systems
corresponding to three and four dimensions in the classical rep-
resentation, the results for the critical exponent ν are at the very
least impressive, given that quantitatively reliable real-space
renormalization-group methods in three- and four-dimensional
classical models have not necessarily been established; see,
e.g., [5–7] and [11–13].

In Sec. II, we explain the application of the real-
space renormalization-group method to the one-dimensional
transverse-field Ising model and calculate the transition point
and the critical exponents analytically. The main results of
the paper are presented in Secs. III and IV. Here, we explain
how to extend the real-space renormalization-group method to
higher spatial dimensions. Our study is concluded in Sec. V.

II. REAL-SPACE RENORMALIZATION GROUP FOR
THE ONE-DIMENSIONAL TRANSVERSE-FIELD

ISING MODEL

Let us first review the one-dimensional scheme proposed
in [8] and generalize it to the case with a longitudinal field,

H = −J

N−1∑
i=1

σ z
i σ z

i+1 − hx

N∑
i=1

σx
i − hz

N∑
i=1

σ z
i , (1)

where free boundary conditions are assumed. The system is
composed of S = 1/2 spins, and σ z

i , σx
i are the Pauli matrices.

We consider ferromagnetic interactions J > 0 and assume that
hx and hz are not negative without loss of generality. This
model is known to be exactly solvable when hz = 0, in which
case the system is self-dual [1].

We start by dividing the lattice into blocks of two spins,
as shown in Fig. 1. The Hamiltonian is also split into the
intrablock and the interblock parts,

Hintra,I = −Jσ z
i σ z

i+1 − hxσ
x
i − hzσ

z
i , (2)

Hinter,(I,I+1) = −Jσ z
i+1σ

z
i+2 − hxσ

x
i+1 − hzσ

z
i+1, (3)

where spins i and i + 1 belong to block I , and spin i + 2
belongs to block I + 1. Most importantly, this particular block
partition is suited to preserve the form of the Hamiltonian under
the renormalization-group transformations.

The eigenvalues of Hintra are

ε1 = −
√

(J + hz)2 + h2
x, ε2 = −

√
(J − hz)2 + h2

x, (4)

ε3 =
√

(J − hz)2 + h2
x, ε4 =

√
(J + hz)2 + h2

x. (5)

The corresponding eigenvectors are

|1〉=a1,1|↑↑〉+a−1,1|↓↑〉, |2〉=a1,−1|↓↓〉+a−1,−1|↑↓〉,
(6)
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FIG. 1. Construction of block spins in one dimension.

|3〉=a−1,−1|↓↓〉−a1,−1|↑↓〉, |4〉=a−1,1|↑↑〉−a1,1|↓↑〉,
(7)

where

ab,c =

√√√√√1

2

⎛
⎝1 + b

J + c hz√
(J + c hz)2 + h2

x

⎞
⎠, (8)

and {|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉} is the orthonormal basis in the σ z

basis, i.e., σ z|↑〉 = |↑〉, σ z|↓〉 = −|↓〉.
We next keep the two lowest-lying energy eigenstates |1〉

and |2〉, and drop the others, |3〉 and |4〉. This procedure is
expected to be effective for the study of the ground state. We
then replace each block with a single spin representing the |1〉
and |2〉 states. To this end, we define the projector onto the
coarse-grained system as

P =
N/2⊗
I=1

PI , (9)

where PI is the projector,

PI = (|1〉〈1| + |2〉〈2|)I . (10)

The resulting coarse-grained Hamiltonian is PHP , and the
renormalized intrablock Hamiltonian is represented as

PIHintra,I PI = 1
2 (ε1 + ε2) 1I + 1

2 (ε1 − ε2) σ z
I . (11)

The corresponding projection of the terms in the interblock
Hamiltonian is written as

PI

(
1i ⊗ σ z

i+1

)
PI = σ z

I , (12)

PI+1
(
σ z

i+2 ⊗ 1i+3
)
PI+1 = 1

2

(
a2

1,1− a2
1,−1−a2

−1,1+a2
−1,−1

)
1I+1

+ 1
2

(
a2

1,1+a2
1,−1−a2

−1,1

− a2
−1,−1

)
σ z

I+1, (13)

PI (1i ⊗ σx
i+1)PI = (a1,1a−1,−1 + a1,−1a−1,1)σx

I . (14)

The renormalized Hamiltonian is expressed as

PHP =
N/2∑
I=1

ε1 + ε2

2
1I −J̃

N/2−1∑
I=1

σ z
I σ z

I+1

− h̃x

N/2∑
I=1

σx
I − h̃z

N/2∑
I=1

σ z
I , (15)

where

J̃ = J

2

(
a2

1,1 + a2
1,−1 − a2

−1,1 − a2
−1,−1

)
, (16)

TABLE I. The transition point kc,x , and the exponents yx (related
to hx) and yz (related to hz) of the linearized renormalization-
group transformation for the one-dimensional transverse-field Ising
model. The critical exponents ν and η are determined from ν = 1/yx

and η = d − 2yz + 2, where d (= 2) is the spatial dimension
of the corresponding classical system. The exact solution is for
the two-dimensional classical Ising model, which is equivalent
(through a quantum-classical mapping [1]) to the one-dimensional
transverse-field Ising model.

kc,x yx yz ν η

Exact solution 1 1 1.875 1 0.25
Renormalization group 1 1 1.543 1 0.914

h̃x = hx(a1,1a−1,−1 + a1,−1a−1,1), (17)

h̃z =−1

2
(ε1−ε2)+J

2

(
a2

1,1−a2
1,−1−a2

−1,1+a2
−1,−1

)+hz.

(18)

Note that our transformation preserves the form of the
Hamiltonian. Other choices of the intra- and interblock
Hamiltonians lead to more inconvenient transformations that
do not preserve the form of the Hamiltonian. In other words,
our method does not generate additional coupling constants
under renormalization.

Equations (15)–(18) have a nontrivial fixed point at
(kx,kz) = (1,0), where kx denotes hx/J and kz is for hz/J ,
which is the exact critical point of the transverse-field Ising
model in the absence of longitudinal fields. Keeping the
Hamiltonian for hz = 0 self-dual through the transformations
would account for this outstanding result. We can also calcu-
late the eigenvalues of the linearized renormalization-group
transformation, and we determine the critical exponents ν and
η. The results are shown in Table I. It is remarkable that the
exponent ν is exact, since real-space renormalization-group
calculations seldom yield exact results. However, the other
exponent η, which is related to the longitudinal field, is not
exact. The longitudinal field disturbs the spectral symmetry
essential to obtain exact values for the critical exponents. It is
natural to think that the key to obtaining the exact transition
point is the existence of self-duality, while the property
essential for an accurate determination of critical exponents
may not always coincide with the self-dual character of the
problem. The construction of block Hamiltonians described
above leads to a good estimation of the critical exponent ν and
preserves the self-duality in one dimension when hz = 0. The
same construction is effective also in the higher-dimensional
transverse-field Ising model, which is not self-dual. This fact
is discussed in the subsequent sections.

III. GENERALIZATION TO TWO DIMENSIONS

We next generalize the method to the two-dimensional
transverse-field Ising model on the square lattice. For sim-
plicity, we set hz = 0, and the Hamiltonian becomes

H = −J
∑
〈i,j〉

σ z
i σ z

j − hx

∑
i

σ x
i , (19)
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FIG. 2. Construction of block spins in two dimensions. This
block partition preserves the form of the Hamiltonian under
renormalization-group transformations.

where spins interact with their nearest neighbors 〈i,j 〉. The
key idea consists of performing renormalization-group trans-
formations that preserve the form of the Hamiltonian by a
projective isometry that preserves the bond algebra (i.e., the
algebra realized by the operators σ z

i σ z
j and σx

i ). The method
to construct blocks and block Hamiltonians is especially
crucial. Exploiting our experience in one dimension, we divide
the lattice into blocks just as in one dimension (Fig. 2).
Furthermore, we combine the one-dimensional block method
in horizontal and vertical directions to restore the symmetry of
the lattice: If we iterate the renormalization in the same way
as in one dimension, the system will be rescaled in only one
direction. To renormalize the system also in the other direction,
we iterate the renormalization in two directions: first in the
horizontal direction and then in the vertical direction.

In the first step of the renormalization (in the horizontal
direction), we can replace each block with a single spin using
the same procedure as in the one-dimensional case. For hz = 0,
Eqs. (4) and (8) are

ε1 = ε2 = −
√

J 2 + h2
x, (20)

ab,1 = ab,−1 =
√√√√1

2

(
1 + b

J√
J 2 + h2

x

)
, (21)

and the equations corresponding to Eqs. (12), (13), and (14)
are

PI

(
1i ⊗ σ z

i+1

)
PI = σ z

I , (22)

PI+1
(
σ z

i+2 ⊗ 1i+3
)
PI+1 = J√

J 2 + h2
x

σ z
I+1, (23)

PI

(
1i ⊗ σx

i+1

)
PI = hx√

J 2 + h2
x

σ x
I . (24)

We find that the z component of the spin on the right spot in
a block becomes the z component of the block spin, but the
z component of the spin on the left spot in a block becomes
the z component of the block spin multiplied by J/

√
J 2 + h2

x .
Now, let us redefine the coupling constants for the horizontal
direction and the vertical direction as Jh and Jv to distinguish
these two quantities in this scheme. The renormalized coupling
constants and transverse field are then written as

J̃h = J 2
h√

J 2
h + h2

x

, (25)

J̃v = Jv

(
J 2

h

J 2
h + h2

x

+ 1

)
, (26)

h̃x = h2
x√

J 2
h + h2

x

. (27)

In Eq. (26), JvJ
2
h /(J 2

h + h2
x) is derived from the coupling of

two spins on the left spot in each block, and the rest is derived
from the one on the right spot in the blocks.

Next, the system is renormalized in the vertical direction
in the same way as the horizontal direction to recover the
symmetry. The coupling constants and the transverse field are
now

˜̃J h = J̃h

(
J̃ 2

v

J̃ 2
v + h̃2

x

+ 1

)
, (28)

˜̃J v = J̃ 2
v√

J̃ 2
v + h̃2

x

, (29)

˜̃hx = h̃2
x√

J̃ 2
v + h̃2

x

. (30)

From these equations, the following renormalization-group
equations are generated:

˜̃kh =
k3
hkv

√(
1 + k2

h

) {(
2 + k2

h

)2 + k2
hk

2
v

(
1 + k2

h

)}
2
(
2 + k2

h

)2 + k2
hk

2
v

(
1 + k2

h

) , (31)

˜̃kv = k2
hk

2
v

(
1 + k2

h

)
(
2 + k2

h

)2 . (32)

These equations can be represented as

˜̃k
2

h = f
(
k2
h,

˜̃kv

)
, (33)

˜̃kv = f
(
kv,k

2
h

)
, (34)

f (x,y) = x2 y(1 + y)

(2 + y)2
. (35)

These renormalization-group equations are still asymmetric
in kh and kv . To render the renormalization symmetric, we
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TABLE II. The critical point kc, eigenvalues of the renormalization-group transformation λ,
critical exponent ν, the slope of the dominant eigenvector φ1, and the scalar product of two
eigenvectors φ1 · φ2 from the real-space renormalization group with symmetrization on the square
lattice.

A AB ABBA ABBABAAB Three-dimensional classical

kc,h 1.544 1.793 1.828 1.835 3.4351 [14]
kc,v 2.383 1.897 1.855 1.848
λ1 3.083 9.377 87.901 7731.18
λ2 1.297 1.706 2.912 8.477
ν1 0.61555 0.61935 0.61941 0.61936 0.6301(4) [15]
ν2 2.66356 2.59466 2.59372 2.59443
slope of φ1 1.758 1.059 1.026 1.002
φ1 · φ2 0.644 0.140 0.071 0.050

renormalize the system in the reverse order, vertical and
then horizontal. We define the order of the renormalization
in the horizontal direction and then in the vertical direction
as the order A, and the reverse order as B (Fig. 3). Hence,
the new step is represented as AB. The renormalization-group
transformation with order A is established by Eqs. (33) and
(34), while that with order B is

˜̃k
2

v = f
(
k2
v,

˜̃kh

)
, (36)

˜̃kh = f
(
kh,k

2
v

)
. (37)

The transformation with order AB is obtained from the
substitution of ˜̃kh, Eq. (33), for kh in Eq. (37) and ˜̃kv ,
Eq. (34), for kv in Eqs. (36) and (37). Although B relaxes the
asymmetry in A, the renormalization-group equations with
AB are still asymmetric. The symmetrization procedure is
therefore repeated as ABBA and ABBABAAB.

If we regard the renormalization map in the order
ABBABAAB of scaling factor 28 as a single transforma-
tion, the eigenvalues of the linearized renormalization-group
transformation are 7731.18 [= (28)1.614 56] and 8.477 [=
(28)0.385 441]. One of the eigenvalues is much larger than the
other, and hence we may be justified in ignoring the smaller

A

B

FIG. 3. The order of the renormalization in the horizontal and
vertical directions. With A, we renormalize the system in the
horizontal direction and then in the vertical direction. B has the
reverse order.

eigenvalue. The value of the critical exponent ν derived from
the larger eigenvalue is 0.619 36, which is very close to the
reliable numerical result 0.6301 [15].

The effectiveness of the symmetrization scheme is clearly
seen in Table II. With only A, kc,h and kc,v are very different,
and both eigenvalues of the linearized renormalization-group
transformation are relevant. The introduction of reverse order
relaxes the asymmetry of the fixed point. In addition, in the
space of kh and kv , the slope of the dominant flow approaches 1,
and the other flow becomes perpendicular to the dominant one
(Fig. 4). These changes suggest that the larger eigenvalue is
the reliable one, and we may ignore the other. The latter seems
to be an artifact of the approximation.

We can also study the case with a longitudinal field, hz �= 0.
With the same scheme as for hz = 0, we obtain the eigenvalues
of the linearized renormalization-group transformation and
critical exponents as listed in Table III. The exponent yz, or the
critical exponent η, is not very close to the numerical result of
the classical Ising model in three dimensions [15], a situation
similar to the one-dimensional case. Moreover, this value is not
improved by the symmetrization process. This property may
give an important clue for the study of the relation between
the symmetry of a model and the symmetry of a method.

IV. THREE DIMENSIONS

Next, we generalize the scheme to a cubic lattice in
three dimensions. Let us again restrict ourselves to the

k c,t

k c,l

k t

k l

k c,t

k c,l

k t

k l

symmetrization

FIG. 4. The renormalization-group flow near the fixed point in
the space of kh and kv . With the symmetrization procedure, kc,h and
kc,v become close to each other, the slope of the dominant flow (the
thicker line) approaches 1, and the subdominant direction becomes
perpendicular.
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A

B

FIG. 5. The order of renormalization in three dimensions. With A, we renormalize the system in the horizontal, then vertical, and finally in
the third direction. B realizes the reverse order.

system without longitudinal field for simplicity. We have to
renormalize the three-dimensional system in three directions.
The order A is defined as horizontal, then vertical, and finally
along the third direction. The order B is the reverse of A

(Fig. 5). We now define the coupling constant for the third
direction as Jt in addition to Jh and Jv for the horizontal and
vertical directions.

In the first step of order A, which is the renormalization in
the horizontal direction, the parameters change as

J̃h = J 2
h√

J 2
h + h2

x

, (38)

J̃v = Jv

(
J 2

h

J 2
h + h2

x

+ 1

)
, (39)

J̃t = Jt

(
J 2

h

J 2
h + h2

x

+ 1

)
, (40)

h̃x = h2
x√

J 2
h + h2

x

. (41)

Note that the coupling constants of vertical and third directions
are changed under the same rule. In general, when the system

TABLE III. The exponents yx and yz for the linearized
renormalization-group transformation and the critical exponents ν

and η for the square lattice, derived from symmetrization.

A AB ABBA ABBABAAB

Three-
dimensional
classical [15]

yx 1.62456 1.61459 1.61445 1.61456
yz 2.39774 2.38895
ν 0.61555 0.61935 0.61941 0.61936 0.6301(4)
η 0.20452 0.22209 0.0364(5)

is renormalized in the direction α and another direction is
represented as β, the parameters are transformed as

J̃α = J 2
α√

J 2
α + h2

x

, (42)

J̃β = Jβ

(
J 2

α

J 2
α + h2

x

+ 1

)
, (43)

h̃x = h2
x√

J 2
α + h2

x

. (44)

Carrying out the three steps of the scheme with these relations,
we can obtain the parameters of the system renormalized in
the three directions.

The symmetrization with the combinations of A and B as
in the two-dimensional system improves the result (Table IV).

The value of ν with A is 0.494 74 and with AB is 0.497 72.
In the classical mean-field Ising model, which corresponds to
the three-dimensional transverse-field Ising model, the value
of ν is 1/2. Our procedure yields almost the exact value of
ν, and the symmetrization is an effective way to improve the
results just as in the two-dimensional case.

The result of the exponent related to a longitudinal field in
three dimensions is also shown in Table IV. The value of η is
not as good as the result for ν, a situation similar to the one-
and two-dimensional cases.

TABLE IV. The exponents yx and yz for the linearized
renormalization-group transformation and the critical exponents ν

and η for the cubic lattice, derived from symmetrization.

A AB Classical mean field

yx 2.0213 2.0092 2
yz 3.1507 3.1428 3
ν 0.49474 0.49772 1

2
η −0.30145 −0.28553 0
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V. CONCLUSIONS

In this paper, we proposed a real-space renormalization-
group procedure for the transverse-field Ising model in finite
dimensions. The procedure is based on the block-spin trans-
formation, and the preservation of the form of the Hamiltonian
under the transformation is essential to successfully extract the
critical point and the critical exponents. A remarkable feature
of the method is that it yields exact results in one dimension [8].
We have generalized this idea to higher dimensions. The
one-dimensional block method is also effective in higher
dimensions, and we have combined the method in horizontal,
vertical, and the third directions to restore the symmetry
of the lattice. Our results demonstrate the utility of the
block Hamiltonian we have adopted. Although the results
fall short of the exact solutions as in the one-dimensional
case, they still represent important steps because the real-
space renormalization group rarely gives accurate estimates
of critical exponents in three and four dimensions.

There are several points to be clarified concerning the
present method. We are particularly interested in establishing

the reasons why the one-dimensional case yields exact results
since the answer may give an important hint as to how to
improve the higher-dimensional cases. The exact result in one
dimension strongly suggests that one of the key points is the
fact that the one-dimensional transverse-field Ising model is
self-dual. Since the critical exponent ν has been estimated
to good accuracy in two and three dimensions, where there
is no self-duality, additional factors should have contributed,
such as the preservation of the bond algebra embedded in
our construction of the block Hamiltonian. It is necessary
to clarify what has been the essential ingredient for further
developments. It is also a topic of interest to generalize
our technique to other systems, including the Potts model
and disordered systems. The latter is important due to the
lack of reliable analytical approaches to three-dimensional
systems.
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