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Traffic flow in the Biham-Middleton-Levine model with random update rule
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A stochastic version of the Biham-Middleton-Levine model with random update rule is studied. It is shown
that under periodic boundary condition, the system exhibits a sharp transition from moving phase to jamming
phase. Under open boundary condition, the coexistence of moving phase and jamming phase can be observed. We
have presented a mean-field analysis for the moving phase, which successfully takes into account the correlation
and produces good agreement with simulation results.
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Traffic flow has attracted a lot of attention in recent years
[1–3]. The Biham-Middleton-Levine (BML) model was the
first cellular automaton model to simulate urban traffic flow [4]
and has served as a theoretical underpinning for physicists to
model urban traffic.

In the original BML model, the cars are updated in parallel
(hereafter BML-P model) [4]. It has been generally believed
that there exists a sharp transition from free-flow to jamming
phase in the model, separated by a critical density ρc. In
the free-flow phase, the cars self-organize into a pattern
with ordered stripes of alternating eastbound and northbound
cars (see Fig. 1(a) in Ref. [5]), and the average velocity of
cars is v = 1. Efforts have been devoted to investigating ρc

analytically [6]. However, recent study shows that the model
exhibits an intermediate stable phase apart from the free-flow
phase and jamming phase [5]. Benyoussef et al. have studied
a version of the BML model with the random sequential
update rule [7]. It is shown that in the free-flow phase,
the average velocity of cars is still v = 1 as in the BML-P
model.

This Brief Report studies another stochastic version of
the BML model with random update rule (hereafter BML-R
model). It is shown that different from the previous two BML
models, the average velocity v decreases with the increase of
density in the moving phase in the BML-R model.

On the other hand, recently the asymmetric exclusion
process (ASEP) has become a paradigm in nonequilibrium
statistical physics [8]. In the 1D ASEP with random update
rule, the correlation is absent so that the average velocity
v = 1 − ρ (ρ is global density). The BML-R model is actually
a version of 2D ASEP. However, it is different from the 1D
ASEP in that the correlation is nontrivial. We have presented a
mean-field analysis for the moving phase which considers the
correlation and gives very good agreement with the simulation
results.

The initial settings of the BML-R model are the same
as in the BML-P model. There are two species of cars,
eastbound and northbound, initially distributed randomly
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on a two-dimensional square lattice with size L × L. The
eastbound (northbound) cars are not allowed to change either
their direction or row (column).

Under periodic boundary conditions, the following steps are
repeated L2 times in one Monte Carlo step (MCS): (i) One site
is selected randomly; (ii) if the selected site is empty, nothing
happens; (iii) otherwise, if the selected site is occupied, the car
moves to the next site unless the target site is occupied. Under
open boundary conditions, the eastbound (northbound) cars
are injected with probability α on the west (south) boundary
and removed with probability β on the east (north) boundary.
At the southwest corner, both eastbound cars and northbound
cars are injected with probability α/2.

Figure 1 shows the average velocity 〈v〉 versus the car
density ρ under periodic boundary conditions. The results
are averaged over 100 runs. In each run, v is obtained after
discarding the first 106 MCSs (as transient time) and then
averaged in the next 106 MCSs. It can be seen that the system
exhibits sharp transition between two phases. When the density
ρ < ρc, the system is in a moving phase. Figure 2 shows a
typical configuration of this phase, where the self-organized
space arrangement of the BML-P model disappears and the
cars are distributed quite homogenously in the space. When
the density ρ > ρc, the system is in a jamming phase and the
average velocity 〈v〉 = 0.

We would like to point out that in the BML-R model, the
intermediate stable phase identified in the BML-P model does
not exist. This is because, as pointed in the last paragraph
in Ref. [5], the dynamics in the BML-R model is not fully
deterministic. As a result, it is believed that the phase transition
from moving phase to jamming phase is of first order in the
BML-R model. With the increase of system size, ρc decreases.
Nevertheless, as in the BML-P model, currently we are not
able to determine whether ρc converges to finite value or to
zero in the infinite system limit.

Next we present mean-field analysis for the average velocity
in the moving phase. The key point of the mean-field analysis
is as follows. If we randomly select a site, then the probability
that the site is empty is 1 − ρ. However, if we have selected
a site occupied by an eastbound (northbound) car, then
the probability that its east (north) site is empty equals to
the average velocity v rather than 1 − ρ. In this way, the
correlation has been naturally taken into account.
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FIG. 1. (Color online) The average velocity 〈v〉 against the car
density ρ for different lattice sizes L under periodic boundary
condition. The solid line is the mean-field result [Eq. (2)].

Assuming an eastbound car is chosen at the current time
step, we study the probability p that it could move when the
car is chosen again. Obviously, this probability should equal
the average velocity v.

To calculate the probability p, we need to consider the nine
situations as shown in Fig. 3. The →, ↑, filled box, and empty
box represent, respectively, an eastbound car, a northbound car,
a car, and an empty site. The dashed arrow ��� is the target
eastbound car. The left side of each subfigure is the existence
probability of the corresponding situation at the current time.
The right side is the moving probability of the eastbound car
when it is chosen again.

We explain the subfigures A1, A3, and B3 in detail. Other
situations could be obtained similarly. On the left side of
subfigure A1, (1 − v) is the probability that the east site of
��� is occupied so that ��� could not move in the current time
step, and (1 − ρ) is the probability that the southeast site of
��� is empty. On the right side of subfigure A1, 1/2 is the
probability that the car in the east site is chosen before ��� is
chosen again, and v is the probability that the car in the east
site could move.

FIG. 2. (Color online) A typical configuration of moving phase
below the transition. The system size is 100 × 100 and ρ = 0.1. The
northbound cars are indicated by red (dark gray) and the eastbound
cars by yellow (light gray).

FIG. 3. The illustration of the mean-field method.

On the left side of subfigure A3, (1 − v) is the same as in
A1, and ρ/2 is the probability that the southeast site of ��� is
occupied by a northbound car. On the right side of subfigure
A3, 1/2 and v are the same as in A1, the other 1/2 is the
probability that the northbound car in the southeast site is not
chosen between the car in the east site is chosen and ��� is
chosen again.1

On the left side of subfigure B3, v is the probability that the
east site of ��� is empty so that ��� could move in the current
time step, (1 − ρ) is the probability that the east-east site of
��� is empty, and ρ/2 is the probability that the southeast-east
site of ��� is occupied by a northbound car. In the right side
of subfigure B3, 1/2 is the probability that the northbound car
is not chosen before ��� is chosen again.

The moving probability p equals the sum of the product of
the probabilities in the nine subfigures, which yields

p = v
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By solving Eq. (1), we obtain the average velocity:

v = 1 − 2.75ρ + 0.5ρ2

1 − 1.25ρ + 0.25ρ2
. (2)

1It is probably that the northbound car could move twice after the
car in the east site moves forward and before ��� is chosen again.
This probability is relatively small and is ignored in our mean-field
analysis. Other similar probabilities are also ignored.
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FIG. 4. (Color online) Phase diagram of the model under open
boundary condition for the lattice size 100 × 100 and 200 × 200.

Figure 1 compares the simulation result with the mean-field
result. One can see that the analytical result is in good
agreement with the simulation result, which validates our
analysis.

Now we investigate the BML-R model under open bound-
ary conditions. Figure 4 shows the phase diagram of the
system. Roughly speaking, there are still two phases: the
moving phase and jamming phase. Here by “roughly,” we
means that there is a coexistence of the jamming phase and
moving phase in the vicinity of the boundary, see the following
text for details.

The phase diagram is different from that of the ASEP model
[8], in which the transition from low density to high density
occurs at α > β and α < 1/2. Moreover, the maximum current
appears when α > 1/2 and β > 1/2. This is obviously due to
the mutual blockage of cars moving in different directions in
the BML-R model.

FIG. 5. The global density, the average velocity, and the flow in
the moving phase.

(a)

(b)

(c)

FIG. 6. (Color online) (a), (b) Coexistence patterns under differ-
ent system sizes; the parameters α = 0.046,β = 1.0. (c) Schematic
configuration of the system in the jamming phase for α = 1,β = 1.

We study the global density ρ, the average velocity v, and
the flow J in the moving phase. Because of the conservation
of flow, the flow in the bulk equals the inflow; i.e.,

J = ρ

2
v = α(1 − ρ). (3)
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(a)

(b)

FIG. 7. (Color online) Two unexpected patterns (a) α =
0.03,β = 0.01; (b) α = 0.03,β = 0.03.

Plugging Eq. (2) into Eq. (3), we obtain

ρ ≈ 2α(1 + α + 12α2) (4)

by ignoring higher order terms. Substituting Eq. (4) into
Eq. (2), the average velocity can also be obtained by ignoring
higher order terms:

v ≈ 1 − 3α − 9α2. (5)

The flow thus can be calculated:

J = ρ

2
v ≈ α(1 − 2α). (6)

The analytical results are shown in Fig. 5 and are in good
agreement with the simulation results.

Next we study the jamming phase. In the vicinity of the
phase boundary, the coexistence of jamming phase and moving
phase is observed as shown in Figs. 6(a) and 6(b). Depending
on the random seed, the moving phase appears as a rectangle or
square, and it remains dynamically stationary [9]. The size of
the moving phase is roughly the same under different system
sizes [Figs. 6(a) and 6(b)]. When the system size is close to or
smaller than the size of the moving phase, coexistence cannot
be maintained and the system transits into the moving phase.
This helps to understand why the phase boundary shifts toward
the right with the decrease of system size in the phase diagram
in Fig. 4.

With the increase of α, the size of the moving phase in
the coexistence pattern decreases. When α = 1, only cars very
near the exit boundaries can move [Fig. 6(c)] [9].

Finally, we would like to mention that when both α and β are
small, some unexpected patterns might appear. For example,
Fig. 7(a) shows a pattern with a vast blank in the center area;2

Fig. 7(b) shows a pattern with eastbound cars dominating [9].
To summarize, this Brief Report has studied a version of the

BML model with random update rule. A sharp transition from
moving phase to jamming phase is observed under periodic
boundary conditions, which is believed to be of first order.
The intermediate stable phase observed in the BML-P model
is absent in the BML-R model since the dynamics is not
fully deterministic in the latter model. Under open boundary
conditions, the coexistence of moving phase and jamming
phase can be observed. Another contribution of this report is
that we have developed a mean-field analysis for the moving
phase, which successfully takes into account the correlation
and produces good agreement with simulation results.
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2It might be that after a sufficiently long time, the vast blank
disappears and one type of car dominates as shown in Fig. 7(b).
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