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Thermal lattice Boltzmann method based on a theoretically simple derivation
of the Taylor expansion
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We propose an approach to derive the thermal lattice Boltzmann method that is based on the Taylor expansion
in variables of temperature as well as velocity and a direct calculation upon the Gaussian quadrature based
hypothesis. This enables us to overcome the isothermal limitation and the low-order accuracy simultaneously. A
systematic framework is explained for constructing numerically stable lattice Boltzmann models. The stability
of this one-dimensional lattice Boltzmann model is demonstrated with a shock tube simulation.
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I. INTRODUCTION

Fluids can be simulated by various methods based on the
governing equations such as the Euler, the Navier-Stokes, and
the Boltzmann equations. The continuum hypothesis is needed
to use the Navier-Stokes equations for a liquid or for a not too
rarefied gas. However, a rarefied gas violates the continuum
hypothesis. In this case, we can simulate it by considering
the Boltzmann equation, which describes the distribution of a
single particle in a fluid with respect to phase space and time.
In addition, for a not too rarefied gas, we can obtain the Euler
equations or the Navier-Stokes equations from the Boltzmann
equation by the Chapman-Enskog expansion, which is an
approximation procedure. The classical shock tube problem
is one of the famous problems in the continuum regime and it
can be solved by use of the Euler equations.

The lattice Boltzmann method (LBM) was originally
developed from lattice gas cellular automata and later it was
recognized that the LBM can be obtained by discretization
of the Boltzmann equation with the Bhatnagar-Gross-Krook
(BGK) collision term [1]. Therefore, the LBM is a solver for
the Navier-Stokes equations and, in addition, can solve for the
flows in the rarefied gas regime. The isothermal LBM is well
established at a low Mach number and from it we can recover
the Navier-Stokes equations [2–4]. Recently, Chikatamarla
and Karlin [5,6] developed a theory of isothermal lattice
Boltzmann models based on the relation between entropy
construction and the roots of Hermite polynomials.

The thermal LBM (TLBM) was developed from the
isothermal LBM by including thermal effects. There are
two major approaches, the multispeed [7–9] and the double-
population one [10]. These methods have problems such as
numerical instability, a limited temperature variation, and their
unavailability for compressible flows. A recently proposed
TLBM [11], based on a so-called consistent LBM [12], is
applicable to simulation of thermal flows. Shan et al. presented
an interesting framework in which to derive the TLBM using
Hermite polynomials and the Hermite-Gauss quadrature [13].
They provided some models applicable to regular lattices
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without using the Hermite-Gauss quadrature. However, their
systematic formulation procedure does not provide a higher-
order model having rational number ratios between different
amplitudes of nonzero discrete velocities because their ratios
have those of the Hermite-Gauss quadrature abscissas. This
fact prohibits the possibility of using regular lattices. The work
of Philippi et al. [14] and Siebert et al. [15] uses the Taylor
expansion in terms of temperature to obtain the TLBM. In fact,
they use a mixture of the Taylor expansion and the Hermite
expansion for the temperature and the velocity, respectively.
Therefore, their derivation is complicated. Their framework is
different from ours which will be presented. We use the symbol
D for D-dimensional space for our equilibrium distribution;
however, Philippi et al. restricted their final development of
the equilibrium distribution to two-dimensional space. In the
specific case of D = 2, some terms are common but their result
is more similar to the Hermite expansion.

In this paper, we propose a theoretically simple approach
to derive the isothermal lattice Boltzmann models obtained
by Chikatamarla and Karlin. Moreover, we show that our
framework easily gives the thermal lattice Boltzmann models.
With use of this TLBM, we show a simulation of a shock tube
problem to illustrate the stability of our model.

The Boltzmann equation can be written as Eq. (1) with use
of the BGK collision term and the assumption of no external
force:

∂tf + V · ∇f = −(f − f eq)/τ. (1)

The infinitesimal quantity f dxdV is the number of particles
having velocity V in an infinitesimal element of phase
space dxdV at position x at time t . The symbol τ , a
constant relaxation time, adjusts the attitude to approach the
Maxwell-Boltzmann (MB) distribution f eq due to collision.
The macroscopic physical properties are obtained from

n =
∫

f dV, (2)

nU =
∫

Vf dV, (3)

2ne =
∫

‖V − U‖2f dV, (4)
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where n is the number density, U is the macroscopic velocity,
and e is the energy per unit of mass. We can relate e to the
temperature by e = DkT/(2m) where D is the dimension of
space, k is the Boltzmann constant, T is the temperature, and
m is the molecular mass. The MB distribution is

f eq = n(π �)−D/2 exp(−‖V − U‖2/�), (5)

where � is defined by � = 2kT /m = 4e/D, and where n, U,
and � satisfy Eqs. (2), (3), and (4).

The LBM is the discretized version of Eq. (1) in phase space
and time. We can obtain the time discretization which is done
in the paper [16]. The essential work of the discretization is to
find the discretized f eq , on which we will now focus.

II. DISCRETIZATION OF THE EQUILIBRIUM
DISTRIBUTION

We use a lightface type for the amplitude of a vector
expressed by a boldface symbol. The second-order Taylor
expansion (TE) of Eq. (5) with respect to U = U0 = 0 and
� = �0 in D-dimensional space is

f
eq(2)
TE = n(π �0)−D/2 exp(−v2)[ψ + ϕ], (6)

where

ψ = 1 + 2v · u + 2(v · u)2 − u2 (7)

and

ϕ = σ (−D/2 + v2)︸ ︷︷ ︸
ϕ1

+ σ [−(2 + D) + 2v2](v · u)︸ ︷︷ ︸
ϕ2

+ σ 2[(2D + D2)/4 − (2 + D)v2 + v4]/2︸ ︷︷ ︸
ϕ3

. (8)

Note that v = V/
√

�0, u = U/
√

�0, σ = θ − 1, and θ =
�/�0, and we omit the Lagrange remainder for the TE in
Eq. (6). We emphasize that f

eq(2)
TE satisfies Eqs. (2), (3), and

(4). In addition, it is important to remark that u and σ are
infinitely small quantities of the same order.

If the infinitely small quantities u and
√|σ | are

taken as the same order instead of the previous choice,
we obtain the result obtained by Shan et al. using the
Hermite expansion and Hermite-Gauss quadrature [13].
They obtained the second- and the third-order Hermite
expansions, respectively, f

eq(2)
HE = λ[ψ + ϕ1] and f

eq(3)
HE =

λ[ψ + 4(v · u)3/3 − 2u2(v · u) + ϕ1 + ϕ2], where λ =
n(π �0)−D/2 exp(−v2), and ϕ1 and ϕ2 are indicated in Eq. (8).
The second-order Hermite expansion (HE) does not possess
ϕ2 and ϕ3 of Eq. (8). For the case of the third-order HE, the
third-order term of u appears in ψ ; however, ϕ3 disappears.
The expansions following the Hermite polynomials are
obtained by selecting v as an expansion variable. We realized
that the HEs correspond to the TEs with the infinitely small
quantities u and

√|σ | of the same order.
Let f

eq

i be a discrete f
eq
TE with respect to v defined by

f
eq

i (vi) = Wiλ(vi){ψ(vi) + ϕ(vi)}, (9)

where Wi or pi defined by pi = Wi λ(vi)/n for simplicity
is a weighting coefficient. We expressed the argument vi to
emphasize the discretization with respect to v in Eq. (9).

We want to find Wi which satisfies θ
D/2
0

∫
P (v)f eq(v) dv =∑

i P (vi)f
eq

i (vi), where P (v) is a polynomial in variables
of the components of v. Note that �

D/2
0 dv = dV; therefore,

we use dV for simplicity. We neglect the TE error, i.e., the
Lagrange remainder, so we have∫

P (v)f eq
TE (v) dV =

∑
i

P (vi)f
eq

i (vi). (10)

When P (v) = 1, v, and ‖v − u‖2, if we apply Eq. (10), we
get the constraints

n =
∫

f
eq
TE (v) dV =

∑
i

f
eq

i (vi), (11)

nu =
∫

v f
eq
TE (v) dV =

∑
i

vi f
eq

i (vi), (12)

Dnθ

2
=

∫
‖v − u‖2f

eq
TE (v) dV =

∑
i

‖vi − u‖2f
eq

i (vi).

(13)

Note that the values n, nu, and Dnθ/2 are calculated directly
from the integral of the MB distribution. Equations (11), (12),
and (13) define the satisfaction of the equalities of mass,
momentum, and energy between the continuous and discrete
velocity fields, respectively.

We find f
eq

i (vi) which satisfies the constraints of
Eqs. (11), (12), and (13) for one-dimensional space. The vector
vi becomes a scalar vi and we let vi = ri . We define the
hypothesis ∫ ∞

−∞
e−r2

P (r)dr =
k∑

α=1

wαP (rα). (14)

We define
∑

wαrd
α = �(d). If we apply the hypothesis on Eqs.

(11), (12), and (13), we obtain seven equations that we present
in two groups, GI and GII ,

GI :

{
�(0) = √

π, �(1) = 0, �(2) = √
π/2,

�(3) = 0, �(4) = 3
√

π/4, �(5) = 0,

GII : �(6) = 15
√

π/8.

(15)

Note that the GII in Eq. (15) is obtained because of the
second -order term in σ of Eq. (8), which is different from the
third-order HE of Shan et al. According to the Hermite-Gauss
quadrature [17] with k = 3 of Eq. (14), we can obtain r1 = 0,
r2,3 = ±√

6/2, and w1 = 2
√

π/3, w2,3 = √
π/6. These solu-

tions are identical to the solutions of obly the GI of Eq. (15).
Therefore, we try to find the solutions of Eq. (14) for the regular
lattice geometry with k = 5 using GI , GII , and the symme-
try conditions {r1 = 0, r2 = −r3, r4 = −r5, r4/r2 = p/q}
where p and q are relatively prime. Note that the case of
k = 5 gives the five-velocity model while the case of k = 3
gives the three-velocity model. When p = 2 and q = 1, there
is no solution. When p = 3 and q = 1, we have two solution
sets, SI and SII ,

SI : r1 = 0, w1 = 4(4 −
√

10)
√

π/45,

r2,3 = ±
√

(5 −
√

10)/6, w2,3 = 3(8 +
√

10)
√

π/80, (16)

r4,5 = ±3r2, w4,5 = (16 + 5
√

10)
√

π/720.
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SII : r1 = 0, w1 = 4(4 +
√

10)
√

π/45,

r2,3 = ±
√

(5 +
√

10)/6, w2,3 = 3(8 −
√

10)
√

π/80, (17)

r4,5 = ±3r2, w4,5 = (16 − 5
√

10)
√

π/720.

Note that the solution SII is similar to the solution of the
Hermite-Gauss quadrature with k = 3 because of the small
values of w4 and w5. Chikatamarla and Karlin found the
solution SII in Eq. (16) of their paper [6]; however, they
could show an isothermal shock tube simulation. Eventually,
with the solution SI of Eq. (16), we can construct the
one-dimensional five-velocity model by use of f

eq

i (vi) =
(nwi/

√
π ){ψ(vi) + ϕ(vi)}.

Henceforth, we find two-dimensional hexagonal models.
We introduce polar coordinates for convenience to deal
with the hexagonal model. Let v = (r cos φ,r sin φ) and u =
(u cos δ,u sin δ). Then we have∫

P (v)f eq
TE (v)dV = n

π

∫ 2π

0

∫ ∞

0
Pe−r2{ψ + ϕ}rdrdφ, (18)

where P = P (r, φ), ψ = ψ(u, δ, r, φ), and φ = φ(θ, u, δ,

r, φ) [18]. We define the hypothesis

∫ ∞

0
re−r2

P (r)dr =
k∑

α=0

wαP (rα) (19)

where r0 = 0. This hypothesis is similar to the Laguerre
quadrature [17] but not the same. Our objective is to find wα

and rα . We apply this hypothesis, i.e., Eq. (19), to Eq. (18).
Then ∫

P (v)f eq
TE (v)dV

= n

π

k∑
α=0

wα

∫ 2π

0
P (rα){ψ(rα) + ϕ(rα)}dφ. (20)

We calculate the right-hand side integral of Eq. (20) when
P (v) = 1, v, and ‖v − u‖2. Then we compare the results with
Eqs. (11), (12), and (13), respectively. Consequently, we obtain
a system of equations which satisfy simultaneously Eqs. (11),
(12), and (13),∑

wα = 1/2,
∑

wαr2
α = 1/2,

(21)∑
wαr4

α = 1, and
∑

wαr6
α = 3.

Note that if we calculate Eq. (20) for P (v) = v2v and
P (v) = ‖v − u‖4, respectively, we have the equation sets
{∑wαr4

α = 1,
∑

wαr6
α = 3} and

∑
wαr8

α = 12. The former
is consistent with Eq. (21) but the latter is a spurious constraint
from the point of view of physical property conservation. This
also means that the solution sets of Eq. (21) satisfy the third
momentum of v.

We can achieve the discretization of φ by

∫ 2π

0
cosn φ sinm φ dφ= π

3

6∑
β=1

cosn

(
βπ

3

)
sinm

(
βπ

3

)
, (22)

where n + m � 5 and n,m are zero or natural numbers. It is
easy to verify this identity by direct calculations for each case
of n and m. Therefore, we can rewrite Eq. (20) as∫

P (v)f eq
TE (v)dV

= n

3

k∑
α=0

6∑
β=1

wαP (rα,φβ){ψ(rα,φβ) + ϕ(rα,φβ)} (23)

where φβ = βπ/3. Note that the limitation of n + m � 5 is
sufficient up to the case of P (v) = ‖v − u‖4.

We define the discrete 13 velocities by

vi =
⎧⎨
⎩

(0,0) for i= 0,

c(cos(πi/3), sin(πi/3)) for i= 1 to 6,

2c(cos(πi/3), sin(πi/3)) for i= 7 to 12,

(24)

where c is a constant determined later. Equation (23) with
k = 2 matches the 13-velocity model if we put r0 = 0, r1 = c,
and r2 = 2c with which we can solve Eq. (21). We have two
solution sets, SI and SII ,

SI : w0 = 1/8, w1 = 1/3, w2 = 1/24, c = 1, (25)

SII : w0 = 7/36, w1 = 8/27,
(26)

w2 = 1/108, c =
√

3/2.

From Eq. (23) with Eqs. (25) and (26), we finally obtain the
discrete MB distributions f

eq

i (vi) = npi{ψ(vi) + ϕ(vi)} with
Eq. (24) and

pi =
⎧⎨
⎩

1/4 for i = 0,

1/9 for i = 1 to 6,

1/72 for i = 7 to 12,

with c = 1 (27)

or

pi =
⎧⎨
⎩

7/18 for i = 0,

8/81 for i = 1 to 6, with
1/324 for i = 7 to 12,

c =
√

3

2
. (28)

Note that the values of pi are obtained from Eqs. (11),
(12), and (13) and can be easily obtained from the so-
lution sets (25) and (26) after the normalization of wi

while considering the number of discrete velocities having
the same amplitudes. It is emphasized again that Eqs.
(27) and (28) satisfy

∑
f

eq

i (vi) = n,
∑

vif
eq

i (vi) = n u, and∑ ‖vi − u‖2f
eq

i (vi) = n θ . These 13-velocity models can be
used for the thermal lattice Boltzmann method. The advantage
is that we can choose θ0 to obtain a better approximation.
Note that the two-dimensional, hexagonal, 19-velocity model
was also studied in this framework [18]. In addition, these 13-
and 19-velocity models were used to simulate microchannel
isothermal and thermal flows [18,19]. Pavlo et al. wrote in their
paper [20] that the hexagonal lattice exhibits better stability
properties than the square lattice, but it does not exhibit
sufficient isotropy to eliminate the spurious cubic deviations in
the macroscopic conservation equations. And they suggested
octagonal models which are not applicable to regular lattices.

III. SIMULATION RESULT

We show in Fig. 1 the simulation result of the one-
dimensional shock tube problem performed using the
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FIG. 1. (Color online) Simulation results of the one-dimensional shock tube problem by our one-dimensional five-velocity model (thick
green line) and the analytical solution of the Riemann problem (thin black line) after 100 time steps. The vertical axis labels N, p, θ , and u

represent the normalized density, pressure, temperature, and velocity, respectively. The horizontal axis label Z represents the location number.

one-dimensional five-velocity model of our framework, pre-
cisely the solution SI of Eq. (16), and we compare it with the
analytical solution of the Riemann problem. It is important to
notice that our framework provides higher-order solutions such
as a five-velocity model, which is applicable to a regular lattice
because the ratio |r2,3/r4,5| is rational (3) in Eqs. (16) and (17).

The problem is one-dimensional, and we take a lattice with
1000 points along the tube. The initial conditions are CL =
{N = p = 3, θ = 1, u = 0} for Z < 500 and CR = {N =
p = θ = 1, u = 0} for Z � 500. The boundary conditions
are CL at Z = 1 and CR at Z = 1000. We used τ = 1 for
the relaxation time of Eq. (1). If we decrease τ , the viscosity
increases in the flow and the gradients of the physical quantities
decrease. We show the normalized pressure profiles with
respect to the variation of τ in Fig. 2.

Our result shows clearly a shock wave on the right side
and an expansion wave on the left side for density, pressure,
temperature, and velocity. Moreover, between the shock and
the expansion waves, a discontinuity of temperature and a
constant pressure are shown. We remark that a peak appears
on the summit of the velocity profile, which is not expected
from the Euler equations. The height of the peak decreases
as time passes. The physical values of the simulation result
are well matched with those obtained by solution of the

Euler equations. We can convert the normalized velocity to
the real velocity via U = √

�0u = √
2kT0/mu. The speed of

the shock wave is about 100 m/s at room temperature for

250 300 350 400 450
Z1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

p

FIG. 2. (Color online) Normalized pressure profiles in the ex-
pansion shock wave region with respect to the variation of τ = 1
(thick black line), τ = 0.5 (thick gray line), and τ = 0.3 (thin orange
line) after 100 time steps. The vertical axis label p represents the
normalized pressure and the horizontal axis label Z represents the
location number.
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TABLE I. Comparison of plateau values in profiles of density,
pressure, temperature, and velocity between analytical solution of
Riemann problem and our TLBM simulation obtained by one-
dimensional five-velocity model.

Physical Normalized distance Analytical TLBM
property from the left end solution simulation

Density z1 ( = 0.43) 2.46 2.43
z2 ( = 0.65) 1.18 1.18

Pressure z2 1.65 1.64
Temperature z1 0.67 0.68

z2 1.40 1.39
Velocity z1 0.22 0.23

z2 0.22 0.22

nitrogen gas. The temperature jump in the shock wave is about
0.7 T0, which is about 200 K at room temperature. Note that the
simulation result of Chikatamarla and Karlin [5,6] shows only
the density distribution of the isothermal problem. Moreover,
the density distribution has three steps in their simulation result
in contrast to the four steps in Sod’s [21] and our results.
However, our result shows the density, pressure, temperature,
and velocity distributions of the thermal problem, and the
results are consistent with the solutions having four steps of
the density distribution obtained by the Euler equations.

We compare our simulation result for the one-dimensional
five-velocity model to the analytical solution of the Riemann
problem [22] in Table I. They are in good agreement; the
differences are less than 1.63% which occurs at the normalized
distance 0.43 from the left end for the density.

IV. CONCLUSION

We conclude this paper. We proposed a framework to derive
the TLBM and derived a one-dimensional five-velocity and a
two-dimensional 13-velocity model. The framework is based
on the TE in variables of temperature as well as velocity
and a direct calculation based upon the Gaussian quadrature
hypothesis. It is possible to enhance the accuracy of the
LBM and TLBM models by obtaining a higher-order TE and
increasing the number of discrete velocities. Our framework
provides higher-order models which are eventually more
accurate in a regular lattice. Also, it provides the extension
to thermal models in the same framework. The simulation of
the one-dimensional shock tube problem shows that our model
is also stable.
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