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Numerical simulation of asymptotic states of the damped Kuramoto-Sivashinsky equation
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The damped Kuramoto-Sivashinsky equation has emerged as a fundamental tool for the understanding of the
onset and evolution of secondary instabilities in a wide range of physical phenomena. Most existing studies about
this equation deal with its asymptotic states on one-dimensional settings or on periodic square domains. We utilize
a large-scale numerical simulation to investigate the asymptotic states of the damped Kuramoto-Sivashinsky
equation on annular two-dimensional geometries and three-dimensional domains. To this end, we propose
an accurate, efficient, and robust algorithm based on a recently introduced numerical methodology, namely,
isogeometric analysis.We compared our two-dimensional results with several experiments of directed percolation
on square and annular geometries, and found qualitative agreement.
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I. INTRODUCTION

A thermodynamical system far from equilibrium may ex-
hibit primary instabilities which drive it into a inhomogeneous
asymptotic state. In many relevant systems, these asymptotic
states consist of spatially and temporally ordered cellular
structures. In the past decades, there has been increasing
interest in the so-called secondary instabilities [1], which may
destroy the ordered cellular state, giving rise to disordered
states both in space and time. Prime examples of phenomena
where secondary instabilities exist are, for instance, the
Rayleigh-Benard convection [2,3], directional solidification
[4,5], Faraday waves [6,7], or directed percolation [8–13]. The
transition from a homogeneous stationary state to asymptotic
cellular states through primary instabilities may be success-
fully analyzed by using a linear stability analysis, but more
sophisticated methods are necessary to understand secondary
instabilities [14]. Remarkably, one of the most successful tools
for the understanding of secondary instabilities has turned
out to be the study of the asymptotic states of the damped
Kuramoto-Sivashinsky equation [15], which has emerged as
a fundamental universal model describing the onset and
evolution of secondary instabilities [14]. As a consequence,
there is significant interest in the study of the asymptotic states
of the damped Kuramoto-Sivashinsky equation. The main
difficulty to achieve this goal is that the damped Kuramoto-
Sivashinsky equation is not a gradient system [16]. Thus,
there is no known Lyapunov functional for the equation. This
fact significantly limits our capacity to study its asymptotic
states using analytical techniques, so a numerical simulation
appears as a very attractive alternative. At this point, the
one-dimensional equation is fairly well understood [15,17].
In past years, significant progress has been made in the
understanding of the two-dimensional equation [18], but the
results are limited to periodic square domains. Given the strong
dependence of the asymptotic states on the geometry and the
dimensionality of the domain [18,19], the understanding of
the late-time states on nonsquare two- and three-dimensional
domains is considered a very relevant research topic. This is
precisely one of the objectives of this work. To investigate the
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asymptotic states we use a numerical simulation. Thus, we
propose an effective, accurate, and robust numerical scheme
for the damped Kuramoto-Sivashinsky equation, which is
another contribution of this work.

The numerical simulation of the damped Kuramoto-
Sivashinsky equation presents several challenges. This is the
reason why most calculations available in the literature are
restricted to one-dimensional settings [8,20–24] and only
very recently were two-dimensional simulations on square
domains available [18,25–27]. We do not know of any three-
dimensional simulation nor we are aware of two-dimensional
calculations on nonsquare domains (although we know of
numerical solutions to a modified Kuramoto-Sivashinsky
equation on a disk [28–30]). We feel that one of the main
reasons for this is that the damped Kuramoto-Sivashinsky
equation includes a fourth-order partial-differential operator.
The numerical resolution of higher-order partial-differential
equations is significantly less developed than that of second-
order problems. For example, in the context of finite-element
methods, the use of conforming discretizations for fourth-order
partial-differential spatial operators requires utilizing glob-
ally C1-continuous basis functions. There exist some three-
dimensional finite elements possessing global C1 continuity,
but they introduce a number of additional degrees of freedom
and severely restrict the geometrical complexity of the domain.
Thus, in the finite-element context, the standard approach is
to use a mixed method, which for a fourth-order problem
doubles the number of global degrees of freedom compared
to the primal variational formulation. As a consequence, the
most widely used numerical methodologies for fourth-order
partial-differential equations are either finite differences or
pseudospectral collocation methods, whose applicability to
complicated three-dimensional geometries is limited. Thus,
we feel that there is no totally satisfactory solution to the
higher-order operator problem, yet fourth-order equations are
becoming ubiquitous, primarily due to the fast development of
phase-field modeling [31,32].

This work proposes a numerical formulation based on
isogeometric analysis [33], which is a generalization of
finiteelement analysis with several advantages [34–41]. Isoge-
ometric analysis is based on developments of computational
geometry and consists of using nonuniform rational B splines
(NURBS) as basis functions in a variational formulation. For
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FIG. 1. (Color online) Numerical solution to the damped Kuramoto-Sivashinsky equation on the domain [0,100]2 at time t = 15 000 for (a)
α = 0.225, (b) α = 0.210, and (c) α = 0.195. Boundary conditions are periodic. The computational mesh is composed of 1282 C1-quadratic
elements. For α = 0.225 we observe a hexagonal pattern. The solution for α = 0.210 corresponds to the so-called breathing hexagonal state.
For α = 0.195 we observe a disordered state consistent with a chaotic behavior.

an introduction to NURBS, the reader is referred to Refs. [42]
and [43]. Among the advantages of isogeometric analysis over
finiteelement analysis [44], we mention precise geometrical
modeling, simplified mesh refinement, superior approximation
capabilities, and, most importantly for the present work, C1

continuity or higher on nontrivial geometries.
In addition to space discretization, the other key difficulty in

the simulation of the damped Kuramoto-Sivashinsky equation

is time integration. Since the Kuramoto-Sivashinsky equation
is nonlinear, noncontractive, and essentially a nongradient
system, a fundamental question emerges. What would be
an adequate notion of stability for the time integrator to
satisfy? In the absence of a clear notion of stability, we use
an A-stable method that has proved very effective for the
Kuramoto-Sivashinsky equation in our numerical simulations,
namely, the generalized-α method [45,46]. We also make use
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FIG. 2. (Color online) Time evolution of the L2 energy for the damped Kuramoto-Sivashinsky equation on the square [0,100]2. Boundary
conditions are periodic. The black, red, and blue lines correspond to α = 0.195, α = 0.210, and α = 0.225, respectively (the lines are also
labeled with the value of α to which they correspond). We represent three subplots that show to the evolution of the L2 energy in the time
period t ∈ [12000,13000].
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Ė

(a)

1591 1592 1593 1594 1595 1596 1597
−1

−0.5

0

0.5

1

E

Ė

E

Ė
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FIG. 3. (Color online) L2 energy phase planes for the damped Kuramoto-Sivashinsky equation on the square [0,100]2 for (a) α = 0.225,
(b) α = 0.210, and (c) α = 0.195. Note that the vertical scales of the three subplots are different. The solid squares in the plots indicate where
the phase planes start.

of an adaptive time-stepping algorithm to impose control over
local errors [47].

Our space and time discretization schemes render an
effective, accurate, and robust methodology. We present two-
dimensional numerical examples on nonsquare geometries and
three-dimensional simulations.

II. THE DAMPED KURAMOTO-SIVASHINSKY EQUATION

Here we state an initial and boundary-value problem for the
damped Kuramoto-Sivashinsky equation over the time interval
[0,T ]. Let � ⊂ R3 be an open set. We denote � the boundary of
�, which is assumed to have a continuous unit outward normal
vector n. The problem is stated as follows: Given u0 : � �→ R,
find u : � × [0,T ] �→ R such that

∂u

∂t
= −�u − �2u − αu + |∇u|2 in � × (0,T ), (1)

u(x,0) = u0(x) in �, (2)

with adequate boundary conditions. Periodic boundary con-
ditions are the standard choice in square domains. On more
complex geometries the boundary conditions,

∇(u + �u) · n = 0, (3)

∇u · n = 0, (4)

may be utilized. In a variational formulation, Eqs. (3) and
(4) may be thought of as natural boundary conditions for the
damped Kuramoto-Sivashinsky equation.

Although the dynamics of the Kuramoto-Sivashinsky equa-
tion [48,49] is very complex, the four terms on the right-hand
side of Eq. (1) have a clear meaning in their own right. The first
term is destabilizing in the sense that it increases the L2 energy
in the system. Using the same terminology, we would qualify
the second and third terms as stabilizing. Finally, the last term
is an energy-transfer operator. It transfers energy from lower
to higher frequencies [50].

Additional insight about primary instabilities of the equa-
tion may be obtained by using a linear stability analysis

(a) (b)

FIG. 4. (Color online) Numerical solution to the damped Kuramoto-Sivashinsky equation on the square [0,512]2 at time t = 15 000 for (a)
α = 0.225 and (b) detail of the solution. The plot on the right-hand side corresponds to the area marked with a box on the left-hand side. The
plots highlight the appearance of the penta-hepta defects experimentally observed in a pattern of two-dimensional jets [9].
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FIG. 5. (Color online) On the left-hand side we plot the evolution of the L2 energy from a chaotic initial state to a stable state of constant
energy for seven values of α and different chaotic initial conditions. On the right-hand side we plot α vs the reciprocal of the average time
before the system achieves a stable state of constant energy. The data fits a straight line with a coefficient of determination 0.9982.

[14]. It may be shown that the homogeneous constant state
u = 0 is linearly stable for α > 0.25. Additionally, it is
known that for α = 0 the Kuramoto-Sivashinsky equation
leads to spatiotemporal chaotic states [51,52]. For intermediate
values of α, the asymptotic states may be different. One
of the most significant developments in past years is due
to Paniconi and Elder [18], who identified three asymptotic
states of the damped Kuramoto-Sivashinsky equation on
a square domain for different values of α, namely, the
hexagonally ordered (0.2176 < α < 0.2500), the so-called
breathing hexagonal state (0.2070 < α < 0.2176), and the
spatiotemporally chaotic (weakly turbulent) state (0 � α <

0.2070). Given the strong dependence of late-time states

on the dimensionality and topology of the domain, we
aim at generalizing those results by performing numerical
simulations on two-dimensional nonsquare geometries and
three-dimensional calculations. The next section shows our
proposed numerical formulation to achieve this goal.

III. NUMERICAL FORMULATION

In this section we present our numerical formulation for
the damped Kuramoto-Sivashinsky equation. We first derive
a semidiscrete formulation and then use an adaptive time-
stepping method to advance the solution in time.

(a) (b) (c)

FIG. 6. (Color online) Numerical solution to the damped Kuramoto-Sivashinsky equation on an annular surface at t = 15000 for (a)
α = 0.225, (b) α = 0.210, and (c) α = 0.195. Boundary conditions are defined in Eqs. (3) and (4). The computational mesh is composed
of 256 elements in the circumferential direction and 64 in the radial direction. For α = 0.225 we observe a hexagonal pattern. The solution
for α = 0.210 corresponds to the so-called breathing hexagonal state. For α = 0.195 we observe a disordered state consistent with a chaotic
behavior.
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FIG. 7. (Color online) Time evolution of the L2 energy for the damped Kuramoto-Sivashinsky equation on an annular surface. The black,
red, and blue lines correspond to α = 0.195, α = 0.210, and α = 0.225, respectively (the lines are also labeled with the value of α to which
they correspond). We represent three subplots corresponding to the evolution of the L2 energy in the time interval t ∈ [12 000,13 000].

A. Semidiscrete formulation

Our starting point is the weak formulation of the continuous
problem. At this point we assume periodic boundary condi-
tions in all directions. Let us call V the space of trial and
weighting functions which are assumed to be the same. We
suppose V ⊂ H2, where H2 is the Sobolev space of square
integrable functions with square integrable first and second
derivatives. The problem may be stated as follows: Find u ∈ V
such that for all w ∈ V

B(w,u) = 0, (5)

where

B(w,u) =
(

w,
∂u

∂t

)
− (∇w,∇u)

+ (�w,�u) + (w,αu − |∇u|2), (6)

and (·,·) is the L2-inner product with respect to the
domain �.

To perform the space discretization of (5) we make use
of the Galerkin method. We approximate (5) by the following
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FIG. 8. (Color online) L2 energy phase planes for the damped Kuramoto-Sivashinsky equation on an annular surface for (a) α = 0.225, (b)
α = 0.210, and (c) α = 0.195. Note that the vertical scales of the three subplots are different. The solid squares in the plots indicate where the
phase planes start.
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FIG. 9. (Color online) Numerical solution to the damped
Kuramoto-Sivashinsky equation on an annular domain. Boundary
conditions are defined in Eqs. (3) and (4). This example shows
qualitative agreement with an experiment of directed percolation
presented in Ref. [11].

finite-dimensional problem over the finite-element spaceVh ⊂
V: find uh ∈ Vh such that, for all wh ∈ Vh,

B(wh,uh) = 0. (7)

In Eq. (7) uh takes on the form

uh(x,t) =
nb∑

A=1

uA(t)NA(x), (8)

where nb is the dimension of the discrete space, the NA’s are
the basis functions of the discrete space, and the uA’s are the
coordinates of uh on Vh.

Note that the condition Vh ⊂ V mandates our discrete
space to be H2 conforming. This condition is satisfied by
C1-continuous NURBS basis functions.

B. Time integration

The time integration of the Kuramoto-Sivashinsky equation
constitutes a significant challenge. Explicit methods have
to face severe limitations on the time step due to the
fourth-order spatial derivatives. Semi-implicit methods may
be attractive because the fourth-order term is linear. Thus,
treating implicitly this term and explicitly the rest may permit
taking somewhat larger time steps, while avoiding the use
of a nonlinear solver. However, we favor the use of a fully
implicit algorithm, namely, the generalized-α method. The
reason for this is that using the fully implicit algorithm we
were able to take significantly larger time steps compared to
the semi-implicit scheme. This is due to the fact that the most
straightforward semi-implicit methods are only first-order
accurate and, as a consequence, may be inaccurate for large
time steps. Another reason to use the fully implicit method is
that our numerical examples showed a very fast convergence
of the nonlinear solver.

To define our time integration scheme, we introduce the
following residual vector,

R = {RA}, (9)

RA = B(NA,uh). (10)

Let us call U and U̇ the vector of global degrees of freedom
of the scalar field u and its time derivative, respectively. The
time-stepping algorithm may be described as follows: Given
Un, U̇n, find Un+1, U̇n+1 such that

R(U̇n+αm
,Un+αf

) = 0, (11)

where

U̇n+αm
= U̇n + αm(U̇n+1 − U̇n), (12)

Un+αf
= Un + αf (Un+1 − Un), (13)

Un+1 = Un + �tU̇n + γ�t(U̇n+1 − U̇n). (14)

Note that, although U and U̇ are independently treated in the
algorithm, Un+1 and U̇n+1 are related through Eq. (14) and
thus they are not independent unknowns.

FIG. 10. (Color online) Numerical solution to the Kuramoto-Sivashinsky equation at time t = 3 500 for α = 0.225. The computational
domain is [0,128]3 and boundary conditions are periodic in all directions. The computational mesh is composed of 1283 C1-quadratic elements.
The left-hand side shows isosurfaces of the solution, while the right-hand side presents slices along several planes.
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FIG. 11. (Color online) Numerical solution to the Kuramoto-Sivashinsky equation at time t = 3 500 for α = 0.210. The computational
domain is [0,128]3 and boundary conditions are periodic in all directions. The computational mesh is composed of 1283 C1-quadratic elements.
The left-hand side shows isosurfaces of the solution, while the right-hand side presents slices along several planes.

To complete the description of the method, it remains
to define αm, αf , and γ . These are real-valued parameters
that define the accuracy and the stability properties of the
algorithm. Jansen et al. [46] proved that, for a linear model
problem, second-order accuracy is attained if

γ = 1
2 + αm − αf , (15)

while unconditional A stability requires

αm � αf � 1/2. (16)

We are interested in second-order accurate unconditionally
A-stable methods, so we will take values of αm, αf , and γ

that satisfy Eqs. (15) and (16) simultaneously. One of the key
features of the generalized-α method is that αm and αf can
be parametrized in terms of ρ∞, the spectral radius of the
amplification matrix that controls high-frequency dissipation
[46]. Thus,

αm = 1

2

(
3 − ρ∞
1 + ρ∞

)
, αf = 1

1 + ρ∞
. (17)

As a consequence, if we set ρ∞, and then select αm and αf

using (17) and calculate γ utilizing (15), we have a family
of second-order accurate unconditionally A-stable methods
with optimal control over high-frequency dissipation. The
details of the implementation of the generalized-α method
for a nonlinear problem may be found in Ref. [47].

C. Time-step adaptivity

The undamped Kuramoto-Sivashinsky equation is known to
amplify exponentially small perturbations in finite time inter-
vals. For small values of the linear stabilizing term, the damped
equation retains this feature. Thus, accurate time integration
is key to perform reliable long-time computations. We feel
that these arguments recommend the use of adaptive time-step
control. We employ a recently proposed adaptive algorithm
that can be used in conjunction with the generalized-α method.
The details of this algorithm may be found in Ref. [47].

IV. NUMERICAL SIMULATIONS

In this section we present some two- and three-dimensional
numerical examples. The purpose of these examples is three-
fold: First, we aim at illustrating the effectiveness and ro-
bustness of our numerical formulation; second, we investigate
the asymptotic states of the damped Kuramoto-Sivashinsky
equation on nonsquare domains in two dimensions and on
cubic three-dimensional domains; third, we compare our
simulations with directed percolation experiments.

Throughout this paper, for the computation of the asymp-
totic states, we take as initial condition a random perturbation
of the homogeneous state u = 0. The perturbations are directly
applied to control variables and are uniformly distributed on
[−0.05,0.05]. For the comparison with experiments we may
take different initial conditions that will be specified in each
case.

For the space discretization we employ C1 quadratic
NURBS for all the numerical examples.

A. Numerical simulations on a periodic square

1. Asymptotic states

Here we present the numerical solution to the damped
Kuramoto-Sivashinsky equation on the domain � = [0,100]2.
We use periodic boundary conditions and a computational
mesh composed of 1282 C1-quadratic elements. Following
Refs. [18] and [25], we present simulations for α = 0.225,
α = 0.210, and α = 0.195. Our results show the hexagonal
(α = 0.225), breathing hexagonal (α = 0.210), and disordered
(α = 0.195) states found by Paniconi and Elder [18]. The
hexagonal state is a spatially ordered stationary solution of the
damped Kuramoto-Sivashinsky equation found for relatively
large values of α. The breathing hexagonal state is an unsteady
solution characterized by a quasiperiodic oscillation of the
hexagonal pattern in which each cell oscillates out of phase
with its closest neighbor. In Fig. 1 we plot the numerical
solutions at time t = 15 000 for (a) α = 0.225, (b) α = 0.210,
and (c) α = 0.195. To further illustrate the difference between
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FIG. 12. (Color online) Numerical solution to the Kuramoto-Sivashinsky equation at time t = 3500 for α = 0.195. The computational
domain is [0,128]3 and boundary conditions are periodic in all directions. The computational mesh is composed of 1283 C1-quadratic elements.
The left-hand side shows isosurfaces of the solution, while the right-hand side presents slices along several planes.

these three types of asymptotic states, we make use of the L2

energy, defined as

E = ||u||2 = (u,u)1/2. (18)

The L2 energy has been identified as a fundamental quantity
to understand the dynamics of the Kuramoto-Sivashinsky
equation [52–54]. In Fig. 2 we plot the time evolution of
the L2 energy for α = 0.225, α = 0.210, and α = 0.195. In
the same figure, we also depict three subplots corresponding
to the evolution of the L2 energy during the time interval
t ∈ [12000,13000]. These subplots show the complexity of
the evolution of the L2 energy and illustrate the difference
between the steady state (α = 0.225), the breathing hexagonal
state (α = 0.210), and the chaotic state (α = 0.195). Thus,
for α = 0.225, the L2 energy is constant in time, which is
consistent with a stationary solution. For α = 0.210, the
L2 energy exhibits a two-scale behavior. The small-scale
component is quasiperiodic and its frequency approximately
coincides with the temporal frequency of the oscillating
pattern. Finally, for α = 0.195, we observe a complex
evolution consistent with a chaotic state.

Additional insight may be obtained by plotting the L2

energy phase plane, which is the set of points (E,Ė) for a
given time interval (here Ė denotes the time derivative of E).
The L2 energy phase plane is regarded as a fundamental tool
for the understanding of the damped Kuramoto-Sivashinsky
equation [52,53]. In Fig. 3 we plot the L2 energy phase plane
for (a) α = 0.225, (b) α = 0.210, and (c) α = 0.195. Note
that the vertical scales of the three subfigures are different. For
α = 0.225 we observe a typical phase plane of a stationary
solution. For α = 0.210 and α = 0.195 we plot the phase
planes during the time interval t ∈ [14 900,15 000], which
corresponds to the last 100 units of time of the simulation.
We observe that for α = 0.195, Ė takes values one order of
magnitude larger than those achieved for α = 0.210. This is
a consequence of wilder and rougher variations of the L2

energy, which are consistent with a more chaotic behavior.
We also observe that the phase plane for α = 0.210 reveals
a quasiperiodic structure that manifests itself through ordered

loops. This behavior is consistent with the breathing hexagonal
state, and thus it is not present in the phase plane that
corresponds to α = 0.195.

2. Comparison with experiments

The breathing hexagonal state has been experimentally
observed in a pattern of two-dimensional jets [9], obtained by
way of a directed percolation experiment. In the same work,
the authors observe a stationary hexagonal state with several
topological defects. They identify the so-called penta-hepta
defect which consists of a spot surrounded by seven (rather
than six) dots and a neighbor of it enclosed by five. Here we
aim to show that our simulations of the damped Kuramoto-
Sivashinsky equation reproduce this topological defect. For
this purpose, we performed a simulation for α = 0.225 on a
significantly larger domain, namely, � = [0,512]2. Figure 4
shows a snapshot of the solution with several penta-hepta
defects marked (a) and a detailed view of the area where the
penta-hepta defects are located (b).

As an additional comparison, we perform a statistical
study of the average time before the system reaches a stable
state of constant energy from a chaotic initial condition. The
initial conditions correspond to different realizations of a
chaotic asymptotic state calculated using α = 0.195. Then,
we suddenly increase the value of α and measure the time
before the system reaches a stable state of constant energy.
We sampled seven values of α, which lead to stationary
solutions from α = 0.225 to α = 0.240. For each value of
α, we performed 11 calculations corresponding to different
chaotic initial conditions. Figure 5(a) shows the evolution of
the L2 energy from a chaotic state to a stable state for several
values of α and different initial conditions. From these curves
we calculated the average time before stabilization 〈τ 〉. In
Fig. 5(b) we plot α vs 〈τ 〉−1. The data fits a straight line
with a coefficient of determination 0.9982. The behavior is the
qualitatively the same as that found in a experiment of directed
percolation [13], where the same scaling has been measured.
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FIG. 13. (Color online) Time evolution of the L2 energy for the damped Kuramoto-Sivashinsky equation on the cube [0,100]3. Boundary
conditions are periodic in all directions. The black, red, and blue lines correspond to α = 0.195, α = 0.210, and α = 0.225, respectively (the
lines are also labeled with the value of α to which they correspond). We represent three subplots corresponding to the evolution of the L2

energy in the time period t ∈ [2 500,2 800].

We remark that this scaling has also been observed in statistical
studies of relaminarization in pipe or shear flows [55].

B. Numerical simulations on an annular surface

1. Asymptotic states

In this example we calculate the numerical solution to
the damped Kuramoto-Sivashinsky equation on an annular
surface. This geometrical setting has been very recently
analyzed under the assumption of radial symmetry [19]. Here
we remove this hypothesis. This example also shows that our
numerical formulation can be applied to nonsquare geometries,
while maintaining its accuracy, stability, and robustness. Our
study suggests that the hexagonal, breathing hexagonal, and
disordered states found in the periodic square also exist in this
geometrical setting.

The exterior radius of the annular surface is re = 50.0,
while the interior is ri = 12.5. On the boundary, we impose
the conditions (3) and (4). We construct the computational
mesh joining four NURBS patches. Each of these patches
corresponds to a quarter of the annular surface and is composed
of C1 quadratic NURBS elements. The patches are joint as to
maintain C1 continuity of the solution over the whole domain.
This can be accomplished by applying linear restriction
operators to the solution and weighting functions spaces. The
resulting mesh (comprising four patches) is composed of a total
of 256 elements in the circumferential direction and 64 in the

radial direction. We note that our formulation achieves exact
geometrical modeling of this problem. The reason for this is
that NURBS can represent all conic sections exactly [33].

In Fig. 6 we plot the solution for α = 0.225, α = 0.210,
and α = 0.195 at time t = 15 000. To better understand the
asymptotic states we make use again of the L2 energy time
evolution (see Fig. 7). The blue, red, and black lines correspond
to α = 0.225, α = 0.210, and α = 0.195, respectively (see
also the labels appended to the lines). The dynamics of the L2

energy is qualitatively similar to the behavior exhibited in the
last example. In the subplots displayed in Fig. 7 we observe
that for α = 0.225 the L2 energy is fairly constant, which
is consistent with a stationary solution. For α = 0.210 we
observe a quasiperiodic behavior, which is the manifestation of
the breathing structure in theL2 energy. Finally, for α = 0.195,
the plot shows a complex behavior consistent with a chaotic
state. This is again confirmed by the L2 energy phase planes,
which are shown in Fig. 8. The phase plane for α = 0.225
clearly corresponds to a stationary solution. For α = 0.210
and α = 0.195 we plot the phase planes in the time interval
t ∈ [14 900,15 000], which corresponds to the last 100 units
of time of the simulation. Observe that the vertical scales are
different for each subfigure. We note that for α = 0.195, Ė
takes values an order of magnitude larger than those taken
for α = 0.210. Also, for α = 0.210 there is a quasiperiodic
structure in the phase plane, which is not present for α =
0.195. We conclude that the snapshots of the solution (Fig. 6)
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Ė
(b)

4800 4850 4900 4950
−15

−10

−5

0

5

10

15

20

E

Ė
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FIG. 14. (Color online) L2 energy phase planes for the Kuramoto-Sivashinsky equation on cube at the time interval t ∈ [3 400,3 500] for
(a) α = 0.225, (b) α = 0.210, and (c) α = 0.195. Note that the vertical scale is the same for all subplots. The solid squares in the plots indicate
where the phase planes start.

and the phase planes (Fig. 8) suggest that the asymptotic states
in the annular surface are the same as those found on the
periodic square, although this result may not hold if we change
the ratio of the exterior to the interior radii.

2. Comparison with experiments

The annular geometry has recently received the attention
from experimentalists both in the context of Rayleigh-Benard
convection [56] and directed percolation [11]. Here we
compare our numerical simulations with the experiements
presented in Ref. [11]. In particular, we show that the damped
Kuramoto-Sivashinsky equation reproduces the transition
from a stationary liquid curtain to a pattern of columns,
as predicted by the experiments. The annular geometry is
defined by an exterior radius re = 61 and a interior radius
ri = 51. This geometry corresponds to one of the experiments
presented in Ref. [11]. The computational mesh is composed
of 256 C1-quadratic elements in the circumferential direction
and 16 elements in the radial direction. Boundary conditions
are defined by Eqs. (3) and (4). We simulate the stationary
liquid curtain by taking a constant initial condition u0(x) = 10.
Then, we let the solution evolve until a pattern of columns
develops. Figure 9 shows the equilibrium arrangement, which
is in agreement with the cellular pattern found in Ref. [11].

C. Asymptotic states on three-dimensional domains

In this section we present the three-dimensional counterpart
of the simulation presented in Sec. IV A 1. The computational
domain is � = [0,100]3 and we employ a uniform mesh
composed of 1283 C1-quadratic elements. In this example
we will not be able to run the calculations until such long
times as in the two-dimensional simulations due to excessive
computational cost. We ran the examples up to t = 3 500,
which required ∼20 000 time steps. We assume that the
asymptotic states are reached before this time. In Figs. 10,
11, and 12 we plot the numerical solutions at time t = 3 500
for α = 0.225, α = 0.210, and α = 0.195, respectively. On the
left-hand side of each figure we plot isosurfaces of the solution,
while on the right-hand side we present slices along several
planes, which clearly show disordered states. We also note that

there are no qualitative differences between the solutions for
different values of α. Figure 13 shows the evolution of the L2

energy for α = 0.225, α = 0.210, and α = 0.195. In all cases
we observe a complex evolution without a clear structure.
Additionally, Fig. 13 shows that the trend in the evolution of
the L2 energy is fairly constant from t = 300 until the end
of the computation. This supports our hypothesis about the
asymptotic states being reached before t = 3500. To further
analyze the evolution of theL2 energy we make use again of the
phase planes, which are shown in Fig. 14. The phase planes
correspond to the last 100 units of time of the simulation.
Unlike in the two-dimensional examples, the vertical scale
is the same for all subplots. We do not observe qualitative
differences between the phase planes for the three values of
α. We conclude that, although further study is warranted, the
snapshots of the solution (Figs. 10–12) and theL2 energy phase
planes (Fig. 14) suggest that the hexagonal and the breathing
hexagonal states may not exist on three-dimensional domains.

V. CONCLUSION

We presented a computational approach to investigate
the asymptotic states of the damped Kuramoto-Sivashinsky
equation. We applied our numerical technique to problems on
nonsquare two-dimensional geometries and three-dimensional
domains. Thus, our work extends previous studies on the topic
which were almost invariably restricted to one-dimensional
settings or square domains. Our study suggests that for the
two-dimensional domain that we analyze the asymptotic states
are the same as those found on a periodic square. However,
in three-dimensional domains we consistently found chaotic
asymptotic states. Since the damped Kuramoto-Sivashinsky
equation is a fundamental model that describes the onset and
evolution of secondary instabilities, our study may contribute
to a better understanding of physical phenomena exhibiting
this behavior. We presented several comparisons of our nu-
merical simulations with experiments of directed percolation.
We conclude that the damped Kuramoto-Sivashinsky equation
reproduces the hexagonal and breathing hexagonal states
found on directed percolation experiments on squares, and it
also exhibits the penta-hepta defects found in experiments. We
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have also computed numerically the scaling of the stabilization
time of chaotic solutions with respect to the control parameter
α. Our study agrees qualitatively with an experiment of
directed percolation. We have also presented a qualitative
comparison of our simulations with a directed percolation
experiment on an annular geometry.

ACKNOWLEDGMENTS

The authors were partially supported by Xunta de Galicia
(Grants No. 09REM005118PR and No. 09MDS00718PR),
Ministerio de Ciencia e Innovación (Grants No. DPI2009-
14546-C02-01 and No. DPI2010-16496) cofinanced with
FEDER funds, and Universidad de A Coruña.

[1] M. C. Cross and P. C. Hohenberg, Annu. Rev. Fluid Mech. 22,
143 (1990).

[2] S. W. Morris, E. Bodenshatz, D. S. Cannell, and G. Ahlers, Phys.
Rev. Lett. 74, 391 (1995).

[3] H. W. Xi, J. D. Gunton, and J. Vinals, Phys. Rev. Lett. 71, 2030
(1993).

[4] W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35, 444
(1964).

[5] A. Valance, K. Kassner, and C. Misbah, Phys. Rev. Lett. 69,
1544 (1992).

[6] N. B. Tufillaro, R. Ramshankar, and J. P. Gollub, Phys. Rev.
Lett. 62, 422 (1989).

[7] W. Zhang and J. Vinals, Phys. Rev. Lett. 74, 690 (1995).
[8] P. Brunet, Phys. Rev. E 76, 017204 (2007).
[9] C. Pirat, C. Mathis, P. Maı̈ssa, and L. Gil, Phys. Rev. Lett. 92,

104501 (2004).
[10] C. Pirat, A. Naso, J.-L. Meunier, P. Maı̈ssa, and C. Mathis, Phys.

Rev. Lett. 94, 134502 (2005).
[11] C. Pirat, C. Mathis, M. Mishra, and P. Maı̈ssa, Phys. Rev. Lett.

97, 184501 (2006).
[12] P. Rupp, R. Richter, and I. Rehberg, Phys. Rev. E 67, 036209

(2003).
[13] P. Brunet and L. Limat, Phys. Rev. E 70, 046207 (2004).
[14] C. Misbah and A. Valance, Phys. Rev. E 49, 166 (1994).
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