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Raman scattering of intense, short laser pulses in modulated plasmas
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We examine the exponentiation of the Raman forward scattering instability in modulated plasma channels
computationally and analytically. An evolution equation for the complex phases of the Raman scattered waves
treating the spatial localization and discrete nature of the channel modes is derived. Simulations with WAKE [P.
Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997).] verify the theory in the linear growth regime and
provide insight into the nonlinear stage of the instability when cascading and pump depletion play a role. We
find that the exponentiation in modulated channels depends on two factors: the increase in coupling due to the
increased plasma wavenumber in the high-density regions of the channel and a decreased coupling due to the
reduced longitudinal spatial coherence. For the parameters considered, simulations show that the finite extent of
the pump pulse is more significant in determining the exponentiation than phase mixing due to the transverse
variation of the channel. Both the theory and simulations confirm that modulated channels allow for the stable
guiding of longer pulses than nonmodulated channels.
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I. INTRODUCTION

The stimulated Raman forward scattering instability occurs
when an incident laser pulse scatters from plasma density
fluctuations. The resulting scattered electromagnetic waves
are downshifted (Stokes) and upshifted (anti-Stokes) by the
plasma frequency. The ponderomotive force resulting from
the beating of the scattered waves with the incident wave
reinforces the density fluctuations, driving plasma waves of
ever increasing amplitude [1–3]. As the sidebands grow in
amplitude, they themselves undergo the instability, and the
feedback process continues until the wave energy is distributed
in the spectral domain or cascading [3] or another nonlinear
process takes over [4].

Prior to the development of lasers producing pulse durations
on the order of the plasma period for typical gas jets, the self-
modulation instability [5] and forward Raman scattering were
the predominant method for producing plasma wakefields: the
self-modulated wakefield regime [6–8]. Traditionally, the two
instabilities were distinguished by the transport of laser pulse
energy [5]. In self-modulation, pulse energy is transferred
radially, while in Raman scattering the transfer is axial. In our
analysis, we label both axial and transverse transfer as Raman
scattering. The electrons trapped in the standing density waves
(wakefields) resulting from the instabilities follow the phase
fronts and can be accelerated to several hundred MeV in only
several centimeters [9–11]. The promise of application led
to several experiments and analytic results describing Raman
forward scattering and self-modulation, but the analysis was
primarily focused on uniform background plasmas in the lab
frame [12–16].

Almost simultaneously with the development of self-
modulated wakefields was the development of miniature
plasma-guiding structures or channels [17–19]. The channels,
produced by hydrodynamic expansion of a heated column
of plasma, provide a transversely varying dielectric constant
that is smaller on the edges than in the center combating the
natural transverse expansion of the laser due to diffraction.
The prospect that plasma channels could guide pulses over
many gain lengths (exponentiations of the instability) led

to interest in how the Raman instability may evolve in a
channel [20–30]. In particular, Shvets et al. showed that the
transverse variation of the structure leads to phase mixing,
causing the instability to evolve at a reduced growth rate
compared to transversely uniform plasmas [19,20]. In addition
to investigations considering the transverse variation in the
plasma density, density variations from channel tapers were
also explored [31].

Even before the advent of plasma channels and the
self-modulated wakefield regime, modulated plasmas have
been of interest [32–35]. In early investigations modulated
plasmas were considered in primarily two scenarios: beat
wave excitation by two pump laser pulses detuned by the
plasma frequency and plasma wavenumber [34,35] or by
stimulated Brillouin waves in the plasma [33]. Figueroa et al.
investigated the general properties of wave propagation in
density-modulated plasmas including the effects of slow-wave
dispersion and forbidden frequency regions corresponding
to band gaps [32]. In the case of electron plasma waves
co-localized with a modulated Brillouin perturbation, Figueroa
demonstrated that the slow-wave dispersion of plasma waves
predicted real frequency shifts altering the phase matching of
Raman scattering [33].

The creation of modulated plasma channels by Layer
et al. expanded the applicability of plasma channels, allowing
for quasiphase matching to THz radiation and relativistic
electron beams over many diffraction lengths [36–40]. For
quasiphase-matched acceleration of electrons, the periodic
structure of the plasma channel results in a guided pulse
composed of several spatial harmonics. While the central
harmonic of the laser pulse has a phase velocity greater than
the speed of light in vacuum, individual spatial harmonics
can have subluminal phase velocities. The subluminal phase
velocities allow for phase matching with relativistic electrons,
accelerating the electrons to high energies. Because the group
velocity of the pulse is less than the speed of mildly relativistic
electrons, for long enough plasma channels, the energy gain
of quasiphase-matched direct acceleration is limited by the
time it takes an electron to outrun the laser pulse. This
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makes the Raman forward scattering instability of particular
interest. As the pulse length is increased, the energy gain
in quasiphase-matched direct acceleration increases, but the
pulse also becomes more susceptible to instability. If the
gain of the instability is too large, the pulse quality can be
diminished, and the accelerating field spoiled.

Here we examine the evolution of the Raman scattering
instability in modulated plasma channels analytically and com-
putationally. Starting from Maxwell’s equations, an evolution
equation for the complex phase is derived that is capable
of modeling uniform, axially varying, and radially varying
background plasmas. The equation provides instability growth
rates in both the spatiotemporal regime where the instability
exponentiation depends on the pulse frame coordinate [41] and
in a standard long-pulse regime. Simulations with WAKE [42]
are used to verify the theory and examine the instability in the
nonlinear regime where pump depletion and cascading play
a role. While transverse phase mixing in channels has been
described analytically by Shvets et al. [21,22], we find that
with significant phase mixing the instability behaves as though
it is strongly damped, resulting in different growth rates than
those predicted in the reference. In addition, we find that for
the parameters considered here, the transverse phase mixing
plays little role in the exponentiation of the instability. The
finite duration of the laser pulse has the dominant effect on
the instability growth rates. While density-modulated plasmas
have been investigated by Figueroa et al., predictions of growth
rates and a systematic investigation of the Raman forward
scattering instability were not considered. Detailed simulations
of the forward instability in channels with correspondence to
theory and descriptions of the loss of spatial coherence due
to axial modulations are absent in the literature. In particular,
we find that density modulations lead to a reduction in growth
rates associated with the Raman forward instability.

This paper is organized as follows. In Sec. II we detail
the laser pulse and plasma wave evolution equations and
present the background density profile. The pump laser pulse
dispersion and phase evolution is derived in Sec. III. Sec. IV
contains the derivation of the equation describing the complex
phase evolution of the scattered electromagnetic wave in
Raman forward scattering. In Sec. V we obtain analytic results
in a variety of situations including transversely uniform and
channeled plasmas. Sec. VI presents simulation results using
WAKE and verification of the results of Sec. V. Sec. VII gives
the summary and conclusions.

II. LASER PULSE AND PLASMA WAVE EQUATIONS

We begin by separating the fields into high-frequency
(near the laser frequency) and low-frequency (near the plasma
frequency) components. Our analysis will assume tenuous
plasma such that the laser frequency is much greater than
the plasma frequency.

Under the separation of timescales, the normalized vector
potential ⇀a = e

⇀
A/mec

2 satisfies the wave equation[
c2∇ × (∇ ×⇀a

) + ∂2⇀a

∂t2

]

= −ω2
p(r,z)

[
1 + δn

n
− 1

2
〈|⇀a|2〉

]
⇀a (1)

in the weakly relativistic limit. Here ⇀a is the vector potential
in a gauge where the electrostatic potential φ = 0, e is the
fundamental unit of charge, me is the electron mass, and
c is the speed of light. The right-hand side of Eq. (1)
represents the high-frequency plasma current. Here ω2

p(r,z) =
4πe2n(r,z)/me is the spatially dependent plasma frequency,
and n(r,z) is the ambient electron density. The quantity δn

is the low-frequency perturbed electron density, which will
be derived subsequently. The angular bracket indicates a time
average of a high-frequency field. This term represents the
relativistic correction to the plasma current.

The background (equilibrium) electron density profile is
chosen to model the experimentally produced corrugated
plasma waveguides [36] paralleling our previous studies:

ω2
p(r,z) = ω2

p,0[1 + δ sin(kmz)] + ω′′2
p,0r

2/2. (2)

Throughout the text, we will use the plasma wavevec-
tor and frequency interchangeably through the rela-
tions k2

p(r,z) = ω2
p(r,z)/c2, k2

p,z = ω2
p,z/c

2 = ω2
p(0,z)/c2, and

k2
p,r = ω2

p,r/c
2 = ω2

p(r,0)/c2.
The low-frequency response of the plasma is driven by the

ponderomotive potential of the laser field

Vp = 1
2mec

2〈|⇀a|2〉. (3)

We assume the plasma responds linearly to the pondero-
motive force. For the parameters considered here, the radial
dependence of the ambient electron density is weak such that
ω2

p,0 � 1
2ω′′2

p,0r
2 for values of r where the laser pulse amplitude

is large (roughly the spot size). As a consequence, the plasma
wave is electrostatic. We can then write the frequency domain
electrostatic potential as the solution of Poisson’s equation,

∇ · (1 + χe)∇eV̄e = ∇ · χe∇V̄p, (4)

where the overbar indicates the quantity is expressed in
the frequency domain, and χe = −ω2

p(r,z)/ω2 is the plasma
susceptibility at frequency ω. The density perturbation then
follows from the electrostatic potential through Poisson’s
equation,

δn = 1

4πe
∇2Ve, (5)

which is valid in both the time and frequency domain. The
density perturbation is inserted into Eq. (1), completing the
system of governing equations.

III. PUMP LASER PULSE PROPAGATION

We start by writing the vector potential of a single radial
eigenmode, pump electromagnetic pulse propagating along the
z axis as follows:

�a0(�x,t) = �̂a0(�x⊥,z − cg,0t,z)ei(k̂0z−ω0t) + c.c., (6)

where k̂0 ≡ ω0/c and ω0 provide the rapidly varying com-
ponents of the phase. The group velocity can be expressed
as cg,0 = c2k0/ω0, and k0 will be determined subsequently.
The envelope function �̂a0 contains the temporal pulse shape
through the variable z − cg,0t , the slow-varying axial phase
through z, and the transverse variation through �x⊥. The
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wavevector k̂0 is taken to be greater than any other spatial vari-
ation in Eq. (6): k̂0 � ∂z ln(a0). Similarly for the frequency:
ω0 � ∂t ln(a0).

Inserting Eq. (6) into Eq. (1) and dropping slowly varying
terms in z and t (second-order derivatives) we obtain the
familiar nonlinear Schrödinger equation for the pump laser’s
vector potential:[

2ik̂0
∂

∂z
+ ∇2

⊥

]
�̂a0 = k2

p(r,z)

[
1 + δn

n
− 1

2
〈|�̂a0|2〉

]
�̂a0,

(7)

where we performed the variable transformation ξ = z −
cg,0t , z′ = z, and renamed z′ as z. In Eq. (7), δn/n evolves
in ξ according to the inverse Fourier transform of Eqs. (4) and
(5). We note that including the group velocity cg,0 instead of
the speed of light in a vacuum in Eq. (7) is consistent with our
approximation to drop second-order derivatives.

We now remove an additional phase from �̂a0 and separate
the group velocity propagation from the transverse variation
as follows:

�̂a0(�x,ξ,z) = α0(ξ )�u0(�x⊥)eiφ0(ξ,z), (8)

where α0 is the amplitude of �a0 and �u0(�x⊥) corresponds to
an eigenmode of the channel, which we choose to be the
lowest. Here we consider radially polarized modes, which
are of more direct interest as discussed in Refs. [37] and
[38]. The dispersion of linearly polarized modes will be
different by a numerical factor in the diffractive contribution
and instability growth rates. For a parabolic density pro-
file, the eigenmodes of the radial component of the vector
potential in the structure are given by �un(r) = urn(r)r̂ +
uzn(r)ẑ, where urn(r) = x1/2L1

n(2x)e−x/
√

n + 1 and uzn(r) =
i(k0r)−1∂r (rurn). Here n is an integer, x = r2/w2

ch, and the
functions L1

n represent the associated Laguerre polynomials,
and wch = (2c)1/2(2/ω′′2

p,0)1/4. The eigenmodes satisfy the
equation[

1

r

∂

∂r
r

∂

∂r
− 1

r2
− 4r2

w4
ch

]
urn = −k2

⊥,�urn, (9)

where the eigenvalue is given by k2
⊥,n = 8(n + 1)/w2

ch. In
order that the pump field can be represented as a single
radial eigenfunction it is necessary that the plasma density
perturbation, δn/n, and the relativistic correction, 〈|�a|2〉, be
sufficiently small. Basically we require that these terms are
small when compared with the spacing between adjacent
eigenvalues. Specifically we assume (kp,0wch)−2 > 1

16a2
0 . Here

we are considering only variation of the pulse in radial and
axial coordinates; thus hosing-type instabilities of the laser
pulse will not be considered [43].

Inserting Eq. (8) into Eq. (7), projecting onto �̂a∗
0 and

integrating over the cross-sectional area, we obtain an equation
for the local shift of the pump pulse’s wavenumber ∂zφ0:

∂

∂z
φ0 = −κ0(z) − δκ0(ξ,z), (10)

where

κ0(z) = 1

2

k2
p,z + k2

⊥,0

k̂0
(11)

is the linear wavenumber shift due to the plasma and presence
of the channel, and

δκ0(ξ,z) = −1

4
α2

0(ξ )

[
I nl

0 k2
p,z + I

nl,ch
0 k2

⊥,0

k̂0

]
(12)

is the shift resulting from the relativistic reduction in the
plasma frequency. For the parameters considered here, the
relativistic shift to the plasma frequency is small, and φ0 is
predominantly a function of z. In Eq. (12) we have defined the
following transverse overlap integrals:

I nl
j = 2

Aj

∫
|�uj |2|�u0

∣∣2
d2r, (13a)

I
nl,ch
j = 1

w2
chAj

∫
|⇀uj |2|⇀u0|2r2d2r, (13b)

where Aj = ∫ |⇀uj |2d2r is the intensity weighed area of the
mode. The subscript j is left ambiguous because the scattered
light wave will have overlap integrals of the same form when
we consider the nonlinear dispersion relation in the next
section. The integrals represent the numerical factors for the
relativistic nonlinear (nl) shift to the plasma frequency and the
nonlinear shift to the profile’s diffractive contribution (nl, ch).
Evaluating the integrals given by Eqs. (13a) and (13b), and
inserting them in Eq. (12), we obtain for the total wavenumber
k0 = k̂0 + ∂zφ0

k0 = k̂0 − 1

2

k2
p,z

k̂0

[
1 − 1

8
α2

0(ξ )

]
− 1

2

k2
⊥,0

k̂0

[
1 − 3

64
α2

0(ξ )

]
.

(14)

Every term appearing in Eq. (10) is strictly real, and thus
φ0 = φ∗

0 and k0 = k∗
0 .

The local dispersion relation expresses the wavenumber
as a periodic function of distance with period equal to that
of the density modulations. The local dispersion relation
can complicate phase matching in a three-wave process as
wavenumbers vary from point to point in the channel. In fact,
the nonstationary position of the phase is what will end up
reducing the growth rate. Here we note that the pump wave
can be expressed as a sum of spatial harmonics with constant
wavenumbers:

�̂a0(�x,ξ,z) = α0(ξ )�u0(�x⊥)
∑

�

i�J�(ψ)eiφ0,� , (15)

where J� is the �th Bessel function, ψ = δω2
p,0(1 −

1
8α2

0)/c2kmk̂0, and there are now an infinite number of phases
for the pump laser satisfying the equation

∂

∂z
φ0,� = −κ0,� − δκ0,�, (16)

where

κ0,� = 1

2

k2
p,0 + k2

⊥,0

k̂0
− �km (17)

is the linear wavenumber shift due to the plasma and presence
of the channel, and

δκ0(ξ ) = −1

4
α2

0(ξ )

(
I nl

0 k2
p,0 + I

nl,ch
0 k2

⊥,0

k̂0

)
. (18)
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The nonlocal dispersion relation for each spatial harmonic
is then

k0,� = k̂0 + �km − 1

2

[
1 − 1

8
α2

0(ξ )

]
k2
p,0

k̂0

−
[

1 − 3

64
α2

0(ξ )

]
k2
⊥,0

k̂0
. (19)

While this formalism is useful for phase matching to relativis-
tic electron beams, as in Ref. [37], for the remainder of this
text, we focus on the local dispersion.

IV. NONLINEAR EVOLUTION

We now consider the growth of the Raman forward
scattering instability. The scattering of the pump pulse from
density fluctuations in the plasma results in electromagnetic
sidebands. The total vector potential including the sidebands
can be expressed as follows:

�a(�x,t) = �̂a0(�x⊥,ξ,z)ei(k̂0z−ω0t)

+
∑
±

�̂a±(�x⊥,ξ,z)ei(k̂±z−ω̂±t) + c.c., (20)

where we write for the sidebands

�̂a±(�x,ξ,z) = α±�u±(�x⊥)eiφ±(ξ,z). (21)

Each sideband is in a superposition of eigenmodes of the
channel, which may be different from the pump (assumed
to be in the n = 0 mode). To lowest order, however, each
scattered eigenmode of the sideband evolves independently.
Furthermore, crosscoupling between sidebands is only avail-
able to identical eigenmodes. As a result, we can drop the
indicator n on each eigenmode, set ⇀u± =⇀u, and consider them
independently as in Eq. (21). The wavenumber and frequency
for an eigenmode of the sidebands is given by

k± = k̂± + ∂

∂z
φ±, (22a)

ω± = ω̂± − ∂

∂t
φ±, (22b)

where the phases φ± of the scattered waves are complex
quantities whose imaginary parts will determine the growth
of the instability. We choose to assign the spatial and temporal
growth to the phase, rather than a complex amplitude, as
it allows us to more easily calculate the time and space
dependence of the growing modes. In this regard the quantities
α± are constants fixed at the initial seed levels of the sideband
eigenmodes. One consequence of this treatment is that the
absence of phase matching will result in an oscillatory φ±,
making the connection between stationary phase and phase
matching clear. In Appendix A we show that the complex
phase is directly involved in action conservation. In particular
Eq. (A4) shows that it is the real component of the phase
that leads to a direct proportionality with the action, while

the imaginary component describes transfer of action between
waves.

Using Eqs. (20) and (22) we can evaluate the time average
of |⇀a| as

1
2 〈|�a|2〉 = |�̂a0|2 + [(�̂a∗

0 · �̂a+ + �a0 · �̂a∗−)ei(k̂ez−ω̂et) + c.c.], (23)

where k̂e = k̂+ − k̂0 = k̂0 − k̂∗
− and ω̂e = ω̂+ − ω0 = ω0 −

ω̂∗
− are the wavenumber and frequency of the low-frequency

plasma wave excitations. We note that the time dependence of
the ponderomotive potential will be determined by both the
lowest order frequency (linear plasma frequency) ω̂e and the
complex phase φ±. In this regard, the effective frequencies of
the ponderomotive potential are

ωe,± = ω̂e − ∂

∂t
φ±. (24)

These will be the frequencies of the plasma wave excited
by the ponderomotive potential associated with each of the
sidebands.

The perturbed ponderomotive potential drives a density
perturbation, which we write as follows:

δn(r,z,t) = δn̂(r,z,t)ei(k̂ez−ω̂et). (25)

The amplitude δn̂ is obtained from Eqs. (4) and (5). We con-
sider two limits of Eq. (4): when the longitudinal and transverse
components of the Laplacian dominate. If the longitudinal
component dominates, we have eV̄e = [χe/(1 + χe)]V̄p and
∇2eV̄e  ∇ · [χe/(1 + χe)]∇V̄p. On the other hand, if the
transverse component dominates, ∇eV̄e = [χe/(1 + χe)]∇V̄p

and ∇2eV̄e  ∇ · [χe/(1 + χe)]∇V̄p. Thus an expression for
the density that is correct in both limits is

δn = 1

4πe2
∇ ·

[
χe

1 + χe

]
∇V p. (26)

We then Fourier invert Eq. (26) to find an expression
for δn:

δn

n
= 1

2πk2
p

∇ ·
∑
±

∫
dk

χe

1 + χe

e−ikξ∇V̄p,±(k,r,z), (27)

where

V̄p,+(k,r,z) =α+(⇀u ·⇀u∗
0)

∫
dξ ′α0(ξ ′)ei(k+k̂e)ξ ′−i(φ0−φ+) + c.c.

(28a)

V̄p,−(k,r,z) =α−(⇀u∗ ·⇀u0)
∫

dξ ′α0(ξ ′)ei(k+k̂e)ξ ′+i(φ0−φ∗
−) + c.c.

(28b)

are the components of the ponderomotive potential and φa =
φa(ξ ′,z).

We now substitute the side bands into the wave equation
[Eq. (1)] and project the equation onto the relevant transverse
mode of the channel. We obtain the following pair of equations
for the coupled side bands:

[(
ω+
c

)2

− k2
+ − 2(κ+ + δκ+)k̂+

]
α+ = α0A

−1
∫

k2
p

[
(�u0 · �u∗)ei(φ0−φ+) δn̂

n
− α0α

∗
−
∣∣�u∗

0 · �u∣∣2
e−i(φ+−φ∗

−)

]
d2r (29a)
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and [(
ω∗

−
c

)2

− (k∗
−)2 − 2(κ+ + δκ+)k̂−

]
α∗

− = α0A
−1

∫
k2
p

[
(�u∗

0 · �u)e−i(φ0−φ∗
−) δn̂

n
− α0α+|�u∗

0 · �u|2e−i(φ+−φ∗
−)

]
d2r, (29b)

where we have dropped second-order derivatives of the
complex phases. For small pump amplitudes, the nonlinear
phase shifts, δκj , and the second term under the integral can
be dropped. In a plasma channel, the electromagnetic waves
always have a perpendicular component of the wavevector,
k2
⊥,n = 8(n + 1)/w2

ch, precluding pure forward scattering. In
Ref. [12] it is shown that the mixed derivative term, ∂2

ξza ∼
(∂zφ±)(∂ξφ±), is necessary only when k⊥ → 0; thus we can
neglect terms proportional to the square of the phase.

Equations (27), (29a), and (29b) form a closed set of
equations for predicting the evolution of the Raman forward
instability in the presence of an arbitrary pump pulse with both
radial and axial variation in the background plasma density.
In general the complex phase is a function of ξ , precluding
an exact expression for integrals in Eqs. (28a) and (28b).
However, we have already ruled out any ξ dependence of the
real component of the phase by dropping δκ±. The ξ depen-
dence in the imaginary component of the phase is weak, which
allows us to approximate φ±(ξ ′,z)  [1 + (ξ ′ − ξ )∂ξ ]φ±(ξ,z).

With this approximation, the integrals in Eqs. (30a) and
(30b) are simply Fourier transforms of the pump pulse vector
potential.

Here we will consider the situation where the instability
grows over several periods of the plasma modulation: km >

Im[∂zφ±]. This implies an ordering in our phase evolution
model of k2

0 � k2
p,0 ∼ w−2

ch ∼ k0km > Im[∂zφ±]. Using this
disparity of scales, we can average the phase equations over a
modulation period. In particular, we use the following:〈

χe

1 + χe

〉
= 1 − k2S

(
k2 − k2

p,r

)
√(

k2 − k2
p,r

)2 − (
δk2

p,0

)2
, (30)

where the angled brackets denote the average and the function
S represents the sign of the argument and is introduced to
ensure that as δ → 0, we retrieve the proper limiting function.
Using Eqs. (29a), (29b), (27), and (30) we arrive at the
equations describing the evolution of the phase for the Raman
forward scattering instability:

∂φ̂+
∂z

= α0k̂e

4πA

(
k̂e

k̂+

) ∫∫
P (r)

〈
χe

1 + χe

〉 [
ᾱ0(K+)e−iK+ξ +

(
α∗

−
α+

)
ᾱ0(K−)ei(�∗−K−ξ )

]
dkd2r (31a)

and
∂φ̂∗

−
∂z

= α0k̂e

4πA

(
k̂e

k̂−

) ∫∫
P (r)

〈
χe

1 + χe

〉 [
ᾱ0(K−)e−iK−ξ +

(
α+
α∗−

)
ᾱ0(K+)e−i(�+K+ξ )

]
dkd2r, (31b)

where φ̂± = φ± + ∫ κ±dz, P (r) = |(ẑ + r̂ k̂−1
e ∂r )(⇀u0 ·⇀u∗)|2,

K+ = k + k̂e − ∂ξ φ̂+, K− = k + k̂e + ∂ξ φ̂
∗
−, and � = 2φ0 −

φ∗
+ − φ−. The second term occurring in Eqs. (31a) and (31b)

arises from the two contributions of the ponderomotive force
to the density perturbation, Eqs. (28a) and (28b). If the pump
eigenmode differs from the scattered eigenmodes, the second
term in the integral will oscillate due to the mismatch in � and
will not contribute to the instability. In a uniform plasma this
would correspond to the waves not being phase matched due to
different transverse wavenumbers. In this situation, Eqs. (31a)
and (31b) predict that only the redshifted sideband is unstable.
On the other hand, if the pump eigenmode matches the
sideband eigenmodes (the effective transverse wavenumbers

are equal), �  0, the sidebands are coupled, and both terms in
the integral are important. When �  0 both sidebands grow
at the same rate. In a transverse uniform plasma this would
correspond to the pure forward scattering regime. As we will
see in the simulations, the fastest growing mode, in the axially
uniform channel, has an eigennumber of n = 1 with � �= 0,
but the channel extends to the radial simulation boundary.
In a leaky channel [44], a scattered eigennumber of n = 0
may be the fastest growing mode; thus we choose to examine
both situations. We will denote the � = 0 case as coupled
sidebands (each wave has the same transverse eigennumber),
and the � �= 0 case as uncoupled sidebands. The governing
equations for coupled and uncoupled sidebands are

∂φ̂∗
−

∂z
= α0k̂

2
e

4πA

∫ ∫
P (r)

〈
χe

1 + χe

〉 [
k̂−1
− ᾱ0(K−)e−iK−ξ + k̂−1

+ ᾱ0(K+)e−iK+ξ
]
dkd2r (32a)

and
∂φ̂∗

−
∂z

= α0k̂e

4πA

(
k̂e

k̂−

)∫ ∫
P (r)

〈
χe

1 + χe

〉
ᾱ0(K−)e−iK−ξ dkd2r, (32b)

respectively, where we have defined φ̂± = φ± + ∫ κdz.
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V. NONLINEAR EVOLUTION FOR WEAK
TRANSVERSE VARIATION

Here we derive some simple results where there is no
reduction in the exponentiation due to transverse phase mixing.
As demonstrated in the next section, the simulation results
are consistent with the instability regime described here. In
Appendix B, we present the growth rates in the presence of
strong transverse phase mixing. In order to obtain solutions
in this regime, Eqs. (31a) and (31b) can be simplified to give
results resembling spatiotemporal solutions [12,41]. We will
skip the algebra in reducing Eqs. (31a) and (31b) and show
only the resulting equations describing the evolution of the
phase. In the limit of weak transverse variation, we can simply
remove any term involving kp from the transverse integral:
k2
p,rk

2
p,0.

A. Finite pulse, no modulations

For our simulations, which we describe in the next section,
we use the following expression for α0(ξ ):

α0(ξ ) =
{
α̂0 sin(πξ/σ ) 0 < ξ < σ

0 else
, (33)

which has the Fourier transform

ᾱ0(ζ ) = α̂0σ

π
[1 + eiσζ ]

[
1 −

(
σζ

π

)2
]−1

. (34)

From Eqs. (32a), (32b), and (33) we find the phase evolution
equations for the coupled and uncoupled sideband situations
to be(

∂
�
φ∗

−
∂ξ

)(
∂

�
φ−
∂z

)
= −1

4
α̂2

0I
pwk̂2

e

(
kp

k̂−

)2

sin(πξ/σ ), (35a)

(
∂

�
φ∗

−
∂ξ

) (
∂

�
φ−
∂z

)
= −1

8
α̂2

0I
pwk̂2

e

(
kp

k̂−

)
sin(πξ/σ ), (35b)

where
�
φ− = φ̂− ± πξ/σ and Ipw  A−1 ∫P (r)d2r . The

maximum growth rate occurs when k̂e = kp ± π/σ . The ±
in our definition of

�
φn,− refers not to the anti-Stokes and the

Stokes sidebands of the pump pulse’s central wavenumber,
but to the different components of the Stokes sideband due to
the envelope of the pump pulse. Solving Eqs. (35a) and (35b)
we find

�
φ− = −i

√
2α̂0(Ipw)1/2

(
kp

k̂−

)(
k̂eσ

π

)1/2

× (k̂ez)1/2 sin1/2

(
πξ

2σ

)
, (36a)

�
φ− = −iα̂0(Ipw)1/2

(
kp

k̂−

)1/2
(

k̂eσ

π

)1/2

× (k̂ez)1/2 sin1/2

(
πξ

2σ

)
. (36b)

In Appendix C, we show that the maximum exponentia-
tion occurs when z = −g/∂zg, where for our pulse shape
g = sin(πξ/2σ ). This results in a transcendental equation
for the position of maximum exponentiation: cg0t = z +

2σ
π

tan−1(πz/2σ ). However, because there can be no expo-
nentiation in regions devoid of the pump, the finite duration of
the pulse implies that the maximum exponentiation occurs at
the back of the pump pulse. The maximum exponentiation is
then

�
φ− = −i

√
2α̂0(Ipw)1/2

(
kp

k̂−

)(
k̂eσ

π

)1/2

(k̂ez)1/2, (37a)

�
φ− = −iα̂0(Ipw)1/2

(
kp

k̂−

)1/2
(

k̂eσ

π

)1/2

(k̂ez)1/2, (37b)

which scales as z1/2 exponentiation and not the usual z

exponentiation.
The exponentiation spectrum for each scattered eigenmodes

is determined by the coefficient (Ipw)1/2. The uncoupled
growth rate [Eq. (37b)] valid for n > 0 decreases as a function
of eigennumber. The reduction in growth rate for increasing
eigennumber occurs because the different eigenfunctions are
maximized at different radii. When the maxima occur at similar
radii the ponderomotive coupling is stronger and the growth
rate increased. For the n = 0 pump mode, the maxima are
most closely aligned with the nearest n values, resulting in
the decreasing growth rate with increasing n. For a different
choice of n for the pump mode, the exponentiation would
peak around the pump value and decay for larger and smaller
eigennumbers.

We note that we can recover the standard infinite pulse Ra-
man growth rates by substituting sin(πξ/2σ ) with

√
2/2 (this

choice ensures the correct pulse energy scaling) in Eqs. (35a)
and (35b) and setting I pw = 1 (the plane wave value). With
these substitutions we find φ− = −i 1√

2
α̂0(kp/k̂−)(kpz) and

φ− = −i 1
2 α̂0(kp/k̂−)1/2(kpz) for the coupled and uncoupled

sideband cases, respectively.

B. Infinite pulse, modulations

In the presence of modulations, the coupling between
the sidebands provides a nonlinear frequency shift, but does
not affect the exponentiation. On resonance, the plasma
response in the axially uniform and modulated channels
reduce to 〈χe/(1 + χe)〉 ∝ (±1/∂ξφ∓) and 〈χe/(1 + χe)〉 ∝
(±1/∂ξφ∓)1/2, respectively. In the axially uniform channel the
coupling to the blueshifted sideband reduces the growth rate
by providing an effective damping (the negative sign in the
response). For the modulated channel, the blueshifted side-
band’s response is imaginary, providing the frequency shift.
As a result, the exponentiation of all scattered eigenmodes is
governed by Eq. (32b).

The phase evolution equation for infinitely long pulses
α2

0(ξ ) = 1
2 α̂2

0 with modulations is given by

(
∂

∂z
φ̂−

)2 (
∂

∂ξ
φ̂∗

−

)
= 1

δ

(
α̂2

0I
pw

8

k̂2
e

k̂−kp,0

)2

k2
p,0k̂e, (38)

where I pw is defined in the previous section. The resonant
values of k̂e are k̂2

e = (1 ± δ)k2
p, corresponding to the plasma

density at the maximum and minimum of the modulations.
Even though both values of k̂e are resonant, for δ ∼ 1, the
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maximum density resonance provides a much larger growth
rate. Upon solving for φ̂−, we find

φ̂− = −i
3

4
δ−1/3(1 + δ)−2/3(I pw)2/3α̂

4/3
0

(
k̂2
e

2k̂−kp,0

)2/3

× (k̂ez)2/3(k̂eξ )1/3, (39)

and upon finding the maximum exponentiation as detailed in
Appendix C, we have

φ̂− = − i
3

4
δ−1/3(1 + δ)−2/3(I pw)2/3α̂

4/3
0

(
k̂2
e

2k̂−kp,0

)2/3

(k̂ez).

(40)

Comparing Eq. (40) with the infinite pulse result in a
axially uniform channel φ− = −i 1

2 α̂0(I pw)1/2(kp/k̂−)1/2(kpz),
we see that the fractional powers are altered by the presence
of modulations, and that larger modulation amplitudes reduce
the growth rate. For δ ∼ 1 the exponentiation in the modulated
channel is smaller through the stronger enhanced scalings with

α0 and kp/k̂−. Equations (38)–(40) do not directly limit to the
growth rates found in the axially uniform situation as one
takes the limit as δ → 0. This is a result of the approximation
δkp,0 � |∂ξ φ̂±| used in simplifying Eq. (32b). This is a valid
approximation for the modulations considered here as δ ∼ 1.
If δ is chosen to be too small, one may expect the growth rates
in Eqs. (35a) and (35b) to hold instead.

C. Finite pulse, modulations

Direct manipulation of Eq. (32b) to provide an equation
describing the evolution of the complex phase for finite pulses
in the presence of density modulations is difficult. We can,
however, come up with a heuristic scaling based on the results
of the previous two sections. From Eqs. (36b) and (37b) we
see that the maximum growth rate entails evaluating a function
of the pulse shape at ξ = −σ , the back of the pulse where the
exponentiation is maximized. We can get the scaling with
respect to z by comparing Eqs. (37b) and (39). Based on these
equations our ansatz for the growth is

φ̂− = −iδ−1/3(1 + δ)−2/3(I pw)2/3α̂
4/3
0

(
k̂2
e

k̂−kp,0

)2/3 (
k̂eσ

π

)1/3

(k̂ez)2/3, (41)

where the numerical coefficient of unity is based on the
results of simulations presented in the next section. Comparing
Eqs. (37b) and (41) we see that modulations are most effective
at smaller amplitudes and longer pulse lengths. Figure 1 shows
a comparison of the exponentiation for the modulated and
uniform cases as a function of z for a pump amplitude of
α̂0 = 0.25 and the n = 1 scattered spatial harmonic. At large
propagation distances the growth in the modulated plasma
would become larger, but as shown in the simulations in
the next section saturation of the instability occurs earlier.
For quasiphase-matched direct acceleration, the quantity σ α̂0

should be maximized for the largest energy gain. Based on
Eq. (41), increasing the pulse length is preferable to increasing
the amplitude due to the weaker scaling of Raman growth rate
with pulse length.

FIG. 1. (Color online) A comparison of the exponentiation in
transversely uniform plasmas in the axially uniform case, the black
(upper) line, and the modulated case, the red (lower) line), as a
function of propagation distance. The pump amplitude is α̂0 = 0.25,
and the scattered eigennumber is n = 1.

VI. SIMULATIONS

In the previous section, we examined simple analytic
results for the exponentiation of the Raman forward instability.
The results, however, were limited to analytically tractable
situations. We now present the results of WAKE simulations
[42], allowing us to see which effects dominate in a more
realistic setting where an interplay between effects is possible.

WAKE is a fully relativistic, nonlinear, kinetic simulation
tool for modeling the propagation of short laser pulses in
underdense plasmas. WAKE is a moving window, particle-
in-cell simulation, but utilizes the disparity of two timescales
to significantly reduce computational times: the plasma re-
sponse time compared to the central pulse frequency, and
the pulse evolution time compared to the electron transit
time through the pulse. For tenuous plasmas (ω2

p � ω2
0), the

electron response can be separated into a high-frequency and
a ponderomotive component. Upon averaging over the rapid
pulse-induced oscillations, the plasma motion needs to be
resolved only at the plasma period. In addition, the pulse
modification timescale plasma is solely a function of the
wave frame coordinate ξ . Because the evolution of the laser
envelope is slow compared to the transit time of electrons
through the pulse, the field solver for the laser pulse does
not need to be updated after every particle time step. Using
these simplifications, WAKE solves an envelope equation for
the time evolution of the pulse in one transverse and one
longitudinal dimension. Inclusion of group velocity dispersion
to lowest order in ωp/ω0 allows for longitudinal modifications
to the pulse. The pulse is self-consistently altered by the
ponderomotively driven plasma current through the source
in the envelope equation. We note that for the channels
and pulses considered here ω2

p/ω2
0 ∼ 0.004 and σ/RT ∼ 0.3,
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where RT = πw2
ch/cλ is the Rayleigh time. While the first

assumption is well justified, the second is marginal but
can be relaxed by reducing the laser pulse evolution time
step.

We simulate the propagation of a radially polarized laser
pulse initialized as the lowest-order radial eigenmode in the
density profile given in Eq. (2), which extends to the transverse
simulation boundary. The pulse shape has the form of Eq. (33)
with a total length of σ = 1ps. The central wavelength is
λ = 800 nm, the spot size is wch = 15μm, and the amplitude
α̂0 will be varied. The background plasma density is n =
7 × 1018cm−3, and we will consider both nonmodulated,
δ = 0, and modulated, δ = 0.9, channels with a modulation
period 2π/km = 350μm. The simulation follows the pulse
propagation in a 1.6 ps window over 40RT or 3.5cm.. The
radial boundary is set at 120 μm or 8wch. The simulation
grid has 2000 points in ξ with a length of 480 μm and 640
points in r , which well resolves the plasma period in both
directions.

To examine the growth of the instability, we extract the
vector potential from the simulation and perform a Fourier-
Gaussian-Laguerre decomposition as follows:

an(kz,t) = 1

n + 1

∫ ∫
eikzξ−r2/w2

chL1
n

[
2r2

w2
ch

]
a(r,ξ,z)r2dξdr.

(42)

As we will see the instability has a linear stage and a saturation
stage. To extract the exponentiation to compare with the results
of the theory section we define the local growth rate as

φn(z) = 1

2
loge

∣∣∣∣an(kres,z)

an(kres,0)

∣∣∣∣
2

, (43)

where kres is the wavenumber corresponding to maximum
growth.

Figures 2(a) and 2(b) show the maximum exponentiation
as a function of z for the n = 0 and n = 1 scattered radial
eigenmodes, respectively, driven with a pump amplitude of
α̂0 = 0.14 in an axially uniform channel. The wavy lines are
the simulation results smoothed over five points, the smooth

FIG. 2. (Color online) A comparison of our theoretical exponen-
tiations with the simulation results in an axially uniform channel
for a pump amplitude of α̂0 = 0.14. (a) n = 0 scattered eigenmode;
(b) n = 1 scattered eigenmode. The black (oscillating) lines are the
simulation results, the red (solid) lines are the uncoupled sideband
theory results, and the red dashed is line the coupled sideband theory
result.

FIG. 3. (Color online) A comparison of our theoretical exponenti-
ations with the simulation results in a modulated channel for a pump
amplitude of α̂0 = 0.21. (a) n = 0 scattered eigenmode; (b) n = 1
scattered eigenmode. The black oscillating lines are the simulation
results, and the red lines are the theory results.

line (red online) is the prediction of the uncoupled theory,
and the dashed line (red online) the prediction of the coupled
theory. The oscillations in Fig. 2(b) are due to the second term
in Eq. (31b), which oscillates due to the mismatch in �. In
Fig. 2(a) the exponentiation starts in the coupled regime, and as
the instability grows the sidebands decouple. As the scattered
n = 0 eigenmode amplitude grows, it acquires a nonlinear
phase shift detuning it from the pump, resulting in the transition
to the decoupled growth rate. In Fig. 2(b), the sidebands are
always uncoupled.

In Figs. 3(a) and 3(b) the maximum exponentation as
a function of z for the n = 0 and n = 1 scattered radial
eigenmodes in the modulated channel is plotted. Here the
pump amplitude was α̂0 = 0.21. For both the n = 0 and n = 1
cases the sidebands are always uncoupled as discussed in the
previous section. From the agreement with the theory it is
apparent that the instability evolves with little damping due to
the transverse phase mixing.

In Fig. 4, the exponentiations in the axially uniform
and modulated channels are compared for two different
amplitudes. The theory results match reasonably well for
α̂0 = 0.28 until the instability saturates. As expected the
modulated channel has less exponentiation prior to saturation
due to the reduced exponentiation. The instability saturates in

FIG. 4. (Color online) A comparison of the growth in the axially
uniform and modulated plasma channels as a function of propagation
distance. (a) Initial pump amplitude is α̂0 = 0.28; (b) amplitude is
α̂0 = 0.42. The dashed red line is the theory, the black solid (upper)
line is the axially uniform exponentiation, and the blue solid (lower)
line is the modulated exponentiation.
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FIG. 5. (Color online) Normalized pump amplitude as a function
of time for three different initial amplitudes. (a) Axially uniform
channel; (b) modulated channel. The black (topmost) line is for a
pump amplitude α̂0 = 0.14, the blue (middle) line is for α̂0 = 0.28,
and the red (lowest) line is for α̂0 = 0.42.

two ways: pump depletion and rescattering of the scattered
sideband. Pump depletion occurs due to the finite energy
available at wavenumbers within the initial bandwidth of the
central wavenumber. The instability transfers pulse energy
from the central wavenumber to the scattered wavenumber
reducing the amplitude and as a result the growth rate. Once
the initial sideband has reached high enough amplitude (by
gaining energy from the pump pulse), it rescatters producing
its own sidebands to which its energy is transferred. Each
additional sideband can undergo the rescattering producing
energy diffusion in the spectral domain, which we refer to as
cascading. The larger the field amplitude the earlier the onset
of both pump depletion and rescattering. This is observed by
the earlier saturation for the instability in Fig. 4(b). Pump
depletion and rescattering will be examined further below.

Figures 5(a) and 5(b) demonstrate the relative importance of
pump depletion in the amplitude scaling of Fig. 3. In Fig. 5(a)
and 5(b) the normalized pump amplitude

ā0 =
[∫ |⇀a0(k,z)|2 dk∫ |⇀a0(k,0)|2 dk

]1/2

, (44)

where we have integrated from k = k0 − 1
2kp,0 to k = k0 +

1
2kp,0, as function of time for the axially uniform and
modulated situations, respectively, is plotted for three different
initial amplitudes α̂0 = 0.14, α̂0 = 0.28, and α̂0 = 0.42. For
larger amplitude the pump is depleted faster and the instability
growth rate is increasingly reduced, due to a reduction in
the effective pump amplitude. As expected the increased
growth rate in the axially uniform case results in a more
rapid decay in the pump amplitude than in the modulated
situation. In particular, pump depletion becomes appreciable
when φn(z) ∼ ln(α̂0/α̂n); thus because φn is smaller in the
modulated case, the onset of depletion also occurs later for
α̂0 = 0.28.

For α̂0 = 0.42 the pump initially depletes faster in the
modulated channel, explaining the early saturation of the
exponentiation and deviation from the theory in Fig. 4(b).
This is in part due to the nonlinear effect of self-focusing.
The pulse in the modulated channel experiences an effective
density of ne ∼ (1 + δ)n0 every half period. In these regions
the critical power for self-focusing and pulse compression,

FIG. 6. (Color online) Longitudinal pulse shape at two different
times during the propagation. (a) Uniform channel; (b) modulated
channel. The black solid line is the pulse shape at 0RT , and the
dashed red line is at 2RT .

Pcr = 17(ω2/ω2
p)GW , drops by a factor of ∼2, making our

value of P/Pcr ∼ 1/3, while in the alternative regions of
low-densityP/Pcr ∼ 1/60 [45]. In this regime the modifica-
tion to the background density becomes significant, and the
propagating modes are no longer eigenmodes of the original
density profile [Eq. (2)]. The pump depletion results from a
competition between a reshaping of the n = 0 eigenmode and
forward Raman scattering. Figures 6(a) and 6(b) show the
pulse shape of the axially uniform and modulated channels,
respectively, at the maximum of the pulse amplitude, r =
wch/

√
2, for z = 0 and z = 2RT . The smaller value of Pcr

in the half regions of modulation periods result in stronger
pulse steepening. This effect will be explored further in a
forthcoming publication.

Figures 7(a) and 7(b) depict loge[an(kz,z)] for the central
and first redshifted sideband of the nonmodulated and modu-
lated cases, respectively. The eigenmode plotted is n = 1 and
the initial amplitude α̂0 = 0.28. The maximum growth rates
for the initial redshifted side band are at k = k0 − kp,0 and
k = k0 − (1 + δ)1/2kp,0 for the nonmodulated and modulated
cases, respectively, the same values as predicted by our theory.
The k = 0 spectrum is at lower amplitude because the pulse is
initialized as the n = 0. The long-period oscillation visible
in both plots is due to the n = 1 mode having a group

FIG. 7. (Color online) Log scale of the electromagnetic spectrum
as a function of time for the n = 1 eigenmode. Figure (a) is the axially
uniform channel and (b) the modulated channel. The right streak in
each curve is the seed level of the eigenmode at the pump central
wavenumber. The left streak is the first Stokes sideband resulting
from the scattering instability.
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FIG. 8. (Color online) Laser pulse shape for the pump wave, black
dashed line (top), and scattered waves of the n = 1 spatial harmonic
in the axially uniform, blue solid line (middle), and modulated, red
solid line (lower), channels evaluated at the kz for maximum growth
on a log scale as a function of ξ . (a) Pump amplitude α̂0 = 0.28;
(b) pump amplitude α̂0 = 0.35.

velocity different than c, the speed of the moving window.
The modulation period is visible as the rapid oscillation in
the modulated plot. The figure shows that the nonmodulated
instability reaches saturation at ∼15RT while the modulated
case saturates closer to ∼35RT , a result of the reduced
modulated growth rate.

In the previous section, we found an ansatz analytic result
for how the pump pulse variation affects the growth of the
Raman forward instability in transversely uniform plasmas
but were stuck with a complex differential functional in the
channeled case that provided little insight. To examine the
growth of the instability in the pulse frame we perform a
windowed Fourier transform of the vector potential as follows:

an(kz,ξ
′,z) = 1

n + 1

∫ ∫
eikzξ−r2/w2

ch−(ξ−ξ ′)2/W 2

×L1
n

[
2r2

w2
ch

]
a(r,ξ,z)r2dξdr, (45)

where we have found that the width W ∼ 24μm (80 fs)
provides adequate resolution in ξ . We note Eq. (45) is Eq. (42)
with an additional Gaussian factor for the window. That is,
Eq. (42) provides a better indication of the maximum growth
rate for each radial eigenmode, while Eq. (45) provides the
localized perturbation. Figure 8 shows loge |an(kz,ξ

′,z)| for
the n = 1 radial eigenmode at z/c = 10RT evaluated at the
kz corresponding to maximum growth as a function of pulse
coordinate. In Fig. 8(a) the pump amplitude is α̂0 = 0.28, while
in Fig. 8(b) α̂0 = 0.35. In both cases the growth of the scattered
wave’s pulse shape does not mimic the exact pulse shape of
the laser, but is localized to within the pump pulse’s envelope.
The scattered wave’s envelope grows until reaching the back
of the pump pulse where the pump amplitude goes to zero.
By z/c = 10RT for the α̂0 = 0.35 pump, the scattered wave
in the axially uniform channel has already reached the pump
amplitude.

Having demonstrated that transverse phase mixing plays
little role in the linear stage of the instability, and that
modulations reduce the exponentiation of the instability, we
now consider the nonlinear stage where cascading plays
a role. As a qualitative consideration, we plot the pulse
shape after 30RT of propagation in both the modulated and
nonmodulated channels in Fig. 9 for α̂0 = 0.35. The top plots
are modulated channels and the bottom the axially uniform.
The plasma density has been plotted in the background for
reference. After 30RT , the pulse in the modulated channel
has dropped in amplitude but has maintained its shape, while
the pulse in the axially uniform channel has become both
modulated, at the fundamental plasma period, and transversely
diffuse, an indication of strong scattering to higher-order
eigenmodes.

Figures 10(a) and 10(b) show the spectrum for the n = 0
eigenmode in the axially uniform and modulated channels,
respectively, as a function of propagation time for a pump
amplitude of α̂0 = 0.28. The pump pulse spectrum is visible as
the feathering away from the central peak. Previously we only

FIG. 9. (Color online) Laser pulse shape at three different times in a modulated channel (top) and an axially uniform channel bottom for
an initial amplitude of α̂0 = 0.35.
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considered the initial redshifted sideband at k = k0 − kp,0.
Because of the larger growth rates in the axially uniform
channel, the initial sideband peaks appear brighter than for the
modulated channel. It is clear from Fig. 10 that rescattering
has occurred and field energy has cascaded to both lower
and higher wavenumbers. This effect has been studied in
detail in uniform plasmas by Mima and Nahikawa [3]. Here
we consider the results in axially uniform and modulated
channels qualitatively and leave a detailed analysis for a future
publication.

As the amplitude of the initial redshifted sideband increases,
it also undergoes Raman forward scattering, producing its
own sideband at k = k0 − 2kp,0, the second sideband creates
a third, and so on. Figure 10 shows that in spite of being
stable, the blueshifted sidebands, k = k0 + mkp,0, grow in
amplitude, but the growth lags behind the corresponding
redshifted band, k = k0 − mkp,0. To explain the growth of
the blue sidebands we consider the coupled Eq. (31b). When
calculating the growth rates for the “uncoupled” regime we
simply dropped the second term in Eq. (31b), which couples

the blue sideband to the red sideband. However, as the red
sideband grows in amplitude, this sideband coupling becomes
significant and overcomes the noncoupled term. The result
is that the red sideband “pulls up” the amplitude of the blue
sideband. Rescattering takes longer to initiate in the modulated
channel due to the reduced growth rate: it takes longer for
each additional sideband to reach the required amplitude such
that its own scattering is appreciable. The onset of growth for
each additional sideband occurs before its pump (the sideband
appearing earlier in time at smaller k) has reached a steady
state due to saturation. Thus, each successive scatter cannot
be considered as an independent instability with a steady-state
pump.

In the previous section, we found that the exponentiation in
the modulated channel was maximized when k̂2

e = (1 + δ)k2
p,0,

corresponding to a resonance with the maximum plasma
density. For a density profile, where the laser pulse spends less
time in the vicinity of the maximum density, we would expect
less growth. In particular we consider the periodic triangular
density profile

ω2
p(r,z) =

{
ω2

p,0

[
1 + δ

(
kmz

π

)] + 1
2ω′′2

p,0r
2 0 � mod(kmz,2π ) < π

ω2
p,0

[
1 + 2δ − δ

(
kmz

π

)] + 1
2ω′′2

p,0r
2 π � mod(kmz,2π ) < 2π

. (46)

Note that this function decays away from the maximum
much more rapidly than Eq. (2): The derivative in the vicinity
of the maximum is finite for Eq. (46) and zero for Eq. (2).
Figure 11 shows a comparison of simulation results of the n =
1 scattered eigenmode using the density profiles in Eqs. (2)
and (46) for a pump amplitude of α̂0 = 0.35. Figure 11(a)
shows the maximum exponentiation of the scattered for the
first redshifted sideband. As expected the growth is reduced
in the triangular profile compared to the sinusoidal profile.
Figures 11(b) and 11(c) show the resulting spectra.

FIG. 10. (Color online) Log scale of the electromagnetic spec-
trum as a function of time for the n = 0 eigenmode and a pump
amplitude of α̂0 = 0.28. (a) Channel is axially uniform; (b) channel
is modulated.

VII. SUMMARY AND CONCLUSIONS

We have developed an analytic model for the exponenti-
ation of the Raman forward instability in modulated plasma
channels. The model describes the complex phase evolution of
eigenmodes within the channel generated from the scattering
of a pump laser eigenmode scattering off fluctuations in the
plasma density. After deriving the governing equation, we
focused on the parameter regime of many plasma oscillations
per pulse length. We also limited our analysis to radial
polarized modes, but the analysis for linearly polarized modes

FIG. 11. (Color online) A comparison of an axial sinusoidal
and triangular density profile for the n = 1 eigenmode and a pump
amplitude of α̂0 = 0.35. (a) Maximum exponentiation is plotted for
the initial redshifted sideband as a function of propagation distance.
The black line (left) and the red line (right) correspond to the sine
and triangle profiles, respectively. (b) and (c) Spectra of the scattered
eigenmode as a function of time in the sinusoidal and triangular
channels.
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is different only by constants in the diffractive contribution
to the dispersion and changes in the ponderomotive overlap
integrals; the phenomenology is the same. With the model we
examined two regimes of the instability: a weak transverse
variation regime and a transverse phase-mixing-dominated
regime. In both axial uniform and modulated channels, for
parameters of interest, we find that phase mixing due to the
transverse variation of the channel does not play a role in the
instability growth.

For the situation with weak transverse variation, we
analytically considered the evolution of the phase for finite
pulse lengths. In these situations, the modulations resulted in
a modified scaling of the growth rate. In particular the growth
rate was found to scale as ∼(kp,0/k0)2/3α

4/3
0 as opposed to

the standard ∼(kp,0/k0)1/2α0. The finite duration of the pulse
was found to have a significant affect on the exponentiation.
For long pulses, the position of maximum growth occurs
at z = cgt/2; however, for short pulses, this position moves
outside the pulse early in the propagation. Thus the maximum
growth in the short pulse occurs at the back of the pulse,
resulting in an exponentiation that scales as ∼z1/2 not ∼z.

In the strong transverse phase-mixing regime, the plasma
resonance in axially uniform channels results from an essential
singularity in the coupling, a single radius allowing for local
phase matching. The plasma resonance in the modulated
channel contains no essential singularity. In the modulated
case, the resonance is spread over a range of radii determined
by the amplitude of the modulations. This is the result of
global phase matching taking place at a point in r-z space that
oscillates in the lab frame. The transverse spreading of the
resonance results in Raman forward growth rates that are 2–3
times smaller than those in axially uniform channels.

The analytically predicted weak transverse growth rates
were verified using WAKE simulations. Comparisons of the
simulations and theory for small pump amplitudes demon-
strated exponentiation scalings with pump amplitude and
scattered eigennumber. For larger pump amplitudes, the pump
eigenmode is rapidly depleted, and the linear eigenmodes
become distorted as the incident power begins to approach
the critical power for self-focusing. In spite of the reduced
exponentiation in the modulated channels, at large amplitudes,
the pump initially depleted faster than in the axially uniform
channel. The modulated channels have regions of higher
density than in uniform channels, resulting in an oscillation
of the critical power and stronger pulse compression. Finally
the simulations predicted that each Raman forward sideband
is forward scattered itself, resulting in a cascade. As the
amplitude of each sideband grows, so too does its rate of
transfer of energy to its own sidebands. The transfer of
energy between sidebands saturates the instability and causes
a diffusion of energy in spectral space. The cascade was found
to be asymmetric for the Stokes and anti-Stokes bands. The
Stokes sidebands start stable but eventually become unstable
due to being “dragged” up by the anti-Stokes sidebands. The
wavenumbers of maximum growth matched those predicted
by our model.

The main result of the analysis and simulations is to
demonstrate that modulated channels allow the guiding of
pulses with larger amplitudes or longer propagation distance

than axially uniform channels. For quasiphase-matched direct
acceleration, this allows the pulse shape to be maintained for
further distances extending the acceleration length. In modern
laser wakefield experiments, the laser duration is typically
shorter than a plasma period; thus Raman scattering does not
play a role. However, density modulations would affect the
structure of the wakefield. For instance, one would expect
higher fields and less dephasing of the electrons with the
wakefield in the low-density regions, while the opposite is the
case in the high-density regions. Examining the role of density
modulations in wakefield acceleration will be considered in a
later publication.
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APPENDIX A: WAVE ACTION

Here we show that the conserved wave action can be
expressed as a sum over the imaginary components of the
phase. The wave action can be expressed as

A =
∫

dξd2r

[
⇀a · ∂⇀a∗

∂z
−⇀a∗ · ∂⇀a

∂z

]
, (A1)

where using Eqs. (9), (11), (28), and (29), we have for our
system

⇀a(⇀x,t) = α0(ξ )⇀u0(⇀x⊥)ei(k̂0z−ω0t)+iφ0(ξ,z)

+
∑
±,n

αn,± ⇀un,±(⇀x⊥)ei(k̂±z−ω±t)+iφn,±(ξ,z). (A2)

Upon averaging over the rapid timescale, and integrating
we have simply

〈A〉=
∫

dξ
∑

j

|βj (ξ )|2e−2Im[φj (ξ,z)]

{
kj + ∂

∂z
Re[φj (ξ,z)]

}
,

(A3)

where the angled brackets represent the averaging, the index j

sums all over all n, anti-Stokes and Stokes modes, the pump,
and βj are the coefficients resulting from projecting each mode
onto itself and integrating over radius. For an infinite pulse,
we write the differential action

d 〈A〉
dξ

=
∑

j

|α̂j |2e−2Im[φj (z)]

{
kj + ∂

∂z
Re[φj (z)]

}
, (A4)

where we have used the fact that the radial eigenmodes all
have the same integrated area to write the action coefficients
in terms of the seed amplitudes only. Thus the total differential
action is directly proportion to a sum over the real component
of the phase for all waves in the system, and the imaginary
component describes the transfer of action between waves.
The growth rates can evolve only to maintain the constancy of
the action.
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APPENDIX B: NONLINEAR EVOLUTION WITH
TRANSVERSE PHASE MIXING

Transverse phase mixing played little role in the expo-
nentiation for the simulation parameters considered. This
may not be the case, however, for longer pulses or deeper
channels. Weak transverse variation ∂ξ φ̂

∗
n,− cannot be ne-

glected regardless of the pulse length. Here we consider a
situation where kp,0∂ξ φ̂

∗
n,− � w−2

ch such that ∂ξ φ̂
∗
n,− can be

neglected. In this situation, the instability behaves in the
strongly damped regime, where the damping is provided by
the transverse phase mixing. For simplicity we will also use
the condition w−2

ch � k2
p,0 such that only the longitudinal

component of the ponderomotive force need be considered.
This will provide insight into the difference between the
exponentiation reduction due to the transverse and longitudinal
uniformities. The primary difference in the strong transverse
phase-mixing case is that the plasma resonance must be
integrated over radius.

1. Infinite pulse, no modulations

To consider the limit of infinite pump pulse length, we set
α2

0(ξ ) = α̂2
0/2 for all ξ . The choice of α2

0(ξ ) = α2
0/2 provides

the same energy scaling with pulse length and amplitude as
the pulse used in the simulations [Eq. (33)]. After performing
some algebra, we find the phase evolution for the coupled and
uncoupled sidebands to be

∂

∂z
φ̂n,± = −i

π

2
α̂2

0

(
k̂e

k̂±

)
(k̂ewch)2P (r∗)k̂e, (B1a)

∂

∂z
φ̂n,± = −i

π

4
α̂2

0

(
k̂e

k̂±

)
(k̂ewch)2P (r∗)k̂e, (B1b)

where
r∗(ke) = 1

2w2
ch

[
k̂2
e − k2

p,0

]1/2
, (B2)

and k̂2
e = k2

p(r∗). We note that both sidebands are unstable,

the (k̂e/k̂−) scaling of Eqs. (B1a) and (B1b) are the same,
and the equations are different only by a factor of 2. This
is in contrast to the weak transverse variation case, where
the dependence on ∂ξ φ̂

∗
n,− broke the symmetry between the

two sidebands, resulting in the weaker scaling with (k̂e/k̂−)
when the sidebands were coupled. The transverse variation
has resulted in phase mixing. From the scaling with α̂2

0 we see
that the phase mixing results in the plasma wave evolving in
a strongly damped regime. To find the wavevector associated

with the plasma wave we look for k̂e that maximizes the right-
hand side of Eqs. (B1a) and (B1b). In Appendix D, we examine
why the growth rate increases with increasing wch. Because of
the similarity of results, we will focus on the Stokes sideband
and the coupled sideband situation henceforth.

2. Infinite pulse, modulations

Upon integrating over k and using the delta function from
ᾱ, we find the phase evolution for the Stokes sideband in the
presence of modulations to be

∂

∂z
φ̂− = − 4

π
iα̂2

0

(
k̂e

k̂−

)
k̂e

k2
p,0

w2
ch

×
∫

P (r)√(
δk2

p,0

)2 − (
k̂2
e − k2

p,r

)2
d2r, (B3)

where we have dropped the minus one in Eq. (30) as it will
contribute only a phase. From Eq. (B3), we see that the only
contributions to the growth rate will come from radii within
the channel that satisfy the condition

1

4
w2

ch

[
k̂2
e − k2

p,0(1 + δ)
]

<

(
r

wch

)2

<
1

4
w2

ch

[
k̂2
e − k2

p,0(1 − δ)
]
, (B4)

where the sign of δ has been taken as positive. Thus, as
opposed to Eq. (B1a), instead of one radius contributing to the
resonance, a range of radii of width �r2/w2

ch = δ
2 (kp,0wch)2

contribute to the resonance. It is worth noting that this range of
radii can be quite large as (kp,0wch)2 � 1, and the resonance
can be spread over a large transverse region of the channel.
Furthermore Eq. (B4) shows that k̂2

e > (1 + δ)k2
p,0 to ensure

that the range of resonant radii is strictly real.
One can show that for small delta, approximating P (r) 

P (r∗), and integrating over the interval in Eq. (B4) reproduces
Eq. (B1a). For further comparison we consider scattering in the
coupled situation where the scattered eigenmode has n = 1. In
the nonmodulated and modulated cases, respectively, we have
the following:

(∂zφ̂−)δ=0 = −i
π

32
α̂2

0

(
k̂e

k̂−

)
k̂e(k̂p,0wch)2

× (
k̂2
e − k2

p,0

)2
w4

che
−(k̂2

e −k2
p,0)w2

ch , (B5)

(∂zφ̂−)δ�0

(∂zφ̂−)δ=0
=

⎡
⎣1 +

(
δk2

p,0

k̂2
e − k2

p,0

)2
⎤
⎦ I0 −

(
δk2

p,0

k̂2
e − k2

p,0

) [
2 + 1

w2
ch

(
1

k̂2
e − k2

p,0

)]
I1, (B6)

where Ia are the modified Bessel functions evaluated at
δk2

p,0w
2
ch. The first and second equations are maximized at

approximately (k̂ewch)2  2 + (kp,0wch)2[1 + δI1/I0] where

δ = 0 in the prior case. Figure 12(a) shows a comparison
of Eqs. (B5) and (B6) as a function of (k̂ewch)2 for a
plasma density 7 × 1018 cm−3, matched spot size of 15μm,
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FIG. 12. (Color online) (a) Instability growth rates in the strong
transverse phase-mixing regime as a function of plasma wavenumber
in the axially uniform channel, red line (left) and modulated channel,
black line (right). Cutoff in the growth rate is due to the resonance
radius being imaginary. (b) Maximum growth rate as a function of
modulation amplitude.

and modulation amplitude of δ = 0.9. While the modulated
wavenumber is larger, the growth rate is ∼2.5 times smaller in
the modulated channel. The cutoff in the δ = 0.9 curve results
from the condition k̂2

e > (1 + δ)k2
p,0. Figure 12(b) shows the

maximum growth rate as a function of δ normalized to the
δ = 0 growth rate. The growth rate is lowered substantially
even for small δ.

3. Finite pulse, no modulations

For determining the effect of pulse shape and duration on
the growth rate, terms involving ∂ξ φ̂

∗
n,− must be maintained. To

demonstrate the effect of finite pulse shape, we will consider
a Gaussian pulse shape of the form α(ξ ) = α̂0 exp(−ξ 2/σ 2)
and consider the case of coupled sidebands. Upon performing
some algebra, we find that the evolution for the unstable Stokes
sideband, including the pulse shape, is

∂

∂z
φ̂n,± = −i

π

2
α2

0(ξ )

(
k̂e

k̂±

)
[(k̂e − ∂ξ φ̂

∗
n,−)wch]2P (r∗)k̂e,

(B7)

where r̂∗ = 1
2w2

ch[(k̂e − ∂ξ φ̂
∗
n,−)2 − k2

p,0]1/2. Equation (B7)
is valid to lowest order in O(k−1

p σ−1), O(w2
ch/σ

2),and

O(k−2
p w−2

ch ), which for our parameters are ∼0.007, ∼0.003,
and ∼0.02, respectively. We note that Eq. (B7) is Eq. (B1b)
including the pulse shape α2(ξ ), and with the complicated
dependence on ∂ξ φ̂

∗
n,−. As it is difficult to obtain meaningful

results by simplifying Eq. (B7) further, one must utilize
simulations to examine the instability growth in this regime.

APPENDIX C: MAXIMUM GROWTH WITHIN
A LASER PULSE

Equations (36a) and (36b) demonstrate that the exponenti-
ation of perturbations within the laser pulse scale as

Im[ωt − kz] ∝ zaf b(ξ ), (C1)

where a and b are rational numbers, and we remind the reader
that ξ = z − cgt . We want to find the time in the laser pulse
for which the exponentiation is maximized. Differentiating
Eq. (C1) with respect to z we have

∂

∂z
zaf b(ξ ) = aza−1f b(ξ ) + bzaf b−1(ξ )

∂f

∂z
. (C2)

Setting Eq. (C2) equal to zero and solving for z gives z =
−(a/b)(f/∂zf ), and plugging back into Eq. (C1), we find that
the maximum exponentiation occurs when

Im[ωt − kz] ∝
[
∂f

∂z

]b

za+b. (C3)

As an example we consider the situation where a = b = 1
2

and f = ξ , and find that the maximum exponentiation occurs
when z = 1

2cg0t .

APPENDIX D: CHANNEL WIDTH AND
MODE WIDTH SCALING

Here we aim to find how the channel and mode width
change with respect to one another. The widths of the mode
profile and channel density scale as

Lm ≡
[

1

a

∂a

∂r

]−1

∼ wch, (D1)

Lch ≡
[

1

ω2
p

∂ω2
p

∂r

]−1

∼ (kpwch)2wch. (D2)

The channel width decreases faster than the mode width as
wch decreases. The variation of the mode across the channel
width is then∣∣∣∣�a

a0

∣∣∣∣ ∼ (kpwch)2 exp[−(kpwch)4], (D3)

which decreases as wch increases. This is consistent with
the growth rate increasing as channel width increases: the
instability becomes increasingly less phase mixed.
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