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We consider nonlinear interactions between a relativistically strong laser beam and a plasma in the quantum
regime. The collective behavior of electrons is modeled by a Klein-Gordon equation, which is nonlinearly
coupled with the electromagnetic wave through the Maxwell and Poisson equations. This allows us to study
nonlinear interactions between arbitrarily large-amplitude electromagnetic waves and a quantum plasma. We have
used our system of nonlinear equations to study theoretically the parametric instabilities involving stimulated
Raman scattering and modulational instabilities. A model for quasi-steady-state propagating electromagnetic
wave packets is also derived, and which shows possibility of localized solitary structures in a quantum
plasma. Numerical simulations demonstrate collapse and acceleration of electrons in the nonlinear stage of
the modulational instability, as well as possibility of the wake-field acceleration of electrons to relativistic speeds
by short laser pulses at nanometer length scales. Our study is relevant for understanding the localization of
intense electromagnetic pulses in a quantum plasma with extremely high electron densities and relatively low
temperature.
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I. INTRODUCTION

With the advent of the x-ray free-electron lasers [1] there
are new possibilities for exploring matter on atomic and
single-molecule levels. On these length scales, of the order
of a few angstroms, quantum effects play an important role in
the dynamics of the electrons. Quantum effects have been
measured experimentally both in the degenerate electron
gas in metals and in warm dense matters [2]. It has also
been found that quantum mechanical effects must be taken
into account in intense laser-solid density plasma interaction
experiments [3–5]. Nonlinear interactions of large-amplitude
electromagnetic (EM) waves with the plasma can lead to
various parametric instabilities [6–8]. At laser intensities
around 1019 W/cm2 and above, nonlinearity associated with
relativistic electron mass increase in short laser pulses plays
a significant role. Furthermore, the relativistic ponderomotive
force [9] of intense laser pulses produces density modifica-
tions. Thus, in a classical plasma, nonlinear effects associ-
ated with relativistic electron mass increase and relativistic
ponderomotive force are very important, since they provide
possibility of the modulational instability [10,11] followed
by a compression and localization of intense EM waves. In
addition to the modulational instability, there are relativistic
Raman forward and backward scattering instabilities [12–15]
and the two-plasmon decay [16] instability that lead to
strong collisionless heating of the plasma in the relativistic
regime. The parametric instabilities of intense EM waves in a
magnetized plasma have also been investigated [17–19].

However, for intense EM waves interacting with the plasma
in the x-ray and γ -ray regimes, both relativistic and quantum
effects must be taken into account on an equal footing.
Accordingly, in this paper, we present a simplified nonlinear
model, based on the Klein-Gordon (KG) equation coupled
with the Maxwell equations that are capable of treating both
the relativistic (propagation and mass increase) and quantum
(tunneling or diffraction) effects, but neglects electron spin

effects. The latter can be motivated by the fact that the
main source of nonlinear interactions between the EM waves
and the plasma is via the ponderomotive force, while the
electron spin-1/2 effect comes in as a perturbation. Similar
models have been discussed in the past by Takabayasi [20]
and, using the Feshbach-Villars Hamiltonian formalism for a
bosonic gas [21], by Hines and Frankel [22] and Kowalenko
et al. [23]. Previous investigations have focused on the general
formulation of quantum mechanics and on linear eigenmodes
in a quantum plasma; here we will use the basic model to
investigate the nonlinear coupling between large-amplitude
EM waves and electrostatic oscillations and structures. Our
work has potential applications in laser-matter experiments
[2,24], quantum free-electron laser systems [25–27], as well
as in astrophysical environments [28–30].

The manuscript is organized as follows. In Sec. II, we
present our mathematical model for the coupled KG and
Maxwell equations, exhibiting nonlinear interactions between
relativistic electrons and EM fields. Linear properties of the
electrostatic waves are discussed in Sec. III. Section IV shows
how our governing equations lead to the wave equation that
reveals the phenomena of relativistic nonlinear propagation
and self-induced transparency of EM waves. Section V is
concerned with the theoretical and numerical investigations of
the relativistic parametric instabilities in the quantum regime.
Section VI deals with relativistic optical solitary waves. The
nonlinear dynamics of interacting intense localized EM pulses,
as well as the new phenomena of the formation of nonlinear
Bernstein-Greene-Krushkal (BGK) -like modes and associated
electron acceleration, are described in Sec. VII. Section VIII
contains a brief summary and conclusions.

II. MATHEMATICAL MODEL

Historically, the Klein-Gordon equation (KGE) for an
electron is obtained from the relativistic relation between the
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energy E and the momentum p, namely,

E2 = p2c2 + m2
ec

4, (1)

where c is the speed of light in vacuum and me the electron
mass. By the substitution E → ih̄∂/∂t and p → −ih̄∇ in (1),
where h̄ is the Planck constant divided by 2π , we obtain the
KGE for a free electron as

h̄2 ∂2ψ

∂t2
− h̄2c2∇2ψ + m2

ec
4ψ = 0, (2)

where ψ is the electron wavefunction. The free-particle KGE
fulfills the continuity equation

∂ρe

∂t
+ ∇ · je = 0, (3)

where

ρe = − ieh̄

2mec2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
, (4)

and

je = ieh̄

2me

(ψ∗∇ψ − ψ∇ψ∗). (5)

We have multiplied the right-hand sides of Eqs. (4) and (5)
by the electron charge −e, so that ρe can be interpreted as the
electric charge density and j as the electric current density.
Since ρe is neither positive nor negative definite, it cannot
be interpreted as a probability density; however, it can be
interpreted as a charge density that need not have a definite
sign.

We now wish to use the charge and current densities as
sources for the self-consistent EM scalar and vector potentials
φ and A for a quantum plasma [20], so that ψ represents an
ensemble of charged electrons. Introducing the EM potentials
into the KGE, we make the usual substitutions ih̄∂/∂t →
ih̄∂/∂t + eφ and −ih̄∇ → −ih̄∇ + eA, and obtain

W2ψ − c2P2ψ − m2
ec

4ψ = 0, (6)

where we have defined the energy and momentum operators
as

W = ih̄
∂

∂t
+ eφ, (7)

and

P = −ih̄∇ + eA, (8)

respectively. The electric charge and current densities are now
obtained as

ρe = − e

2mec2
[ψ∗Wψ + ψ(Wψ)∗] (9)

and

je = − e

2me

[ψ∗Pψ + ψ(Pψ)∗], (10)

respectively, and in this form they fulfill the continuity
equation (3).

The self-consistent vector and scalar potentials are obtained
from the EM wave equations

∂2A
∂t2

+ c2∇ × (∇ × A) + ∇ ∂φ

∂t
= μ0c

2je (11)

and

∇2φ + ∇ · ∂A
∂t

= − 1

ε0
(ρe + ρi), (12)

where μ0 is the magnetic vacuum permeability and ε0 is the
electric permittivity in a vacuum, and ρi is the neutralizing
positive charge density due to the ions. For immobile, singly
charged ions, one can assume that ρi = en0, where n0 is the
equilibrium ion number density. The assumption of immobile
ions is justified because we are studying nonlinear phenomena
on a timescale much shorter than the ion plasma period.

Using the Coulomb gauge ∇ · A = 0, we obtain from
Eqs. (11) and (12)

∂2A
∂t2

− c2∇2A + ∇ ∂φ

∂t
= μ0c

2je (13)

and

∇2φ = − 1

ε0
(ρe + ρi), (14)

respectively. Taking the divergence of both sides of Eq. (13),
we have

∇2 ∂φ

∂t
= μ0c

2∇ · je, (15)

so that Eq. (13) can be written as

∇2

(
∂2A
∂t2

− c2∇2A
)

= −μ0c
2∇ × (∇ × je). (16)

Equations (6), (14), and (16) are our desired system that
describes nonlinear interactions between intense laser beams
and an unmagnetized plasma in the quantum regime. We note
that the KGE, given by Eq. (6), is valid for relativistic electrons
without the spin-1/2 effect. The latter could be important in
a magnetized quantum plasma where one should also account
for the electron spin-1/2 dynamics [31–33].

The nonrelativistic limit is obtained from Eq. (6) by sub-
stituting ψ = 	 exp(−imec

2t/h̄), and by using the condition
|h̄∂	/∂t | � mec

2	, together with the normalization of 	

such that 		∗ = n0 is the electron number density at the
equilibrium. In this limit, Eq. (6) yields the Schrödinger
equation

ih̄
∂	

∂t
+ 1

2me

(−ih̄∇ + eA)2	 + eφ	 = 0. (17)

Here, and in what follows, we have used a simplified model
and neglected the electron degeneracy pressure. The latter is
important in dense matters where the electron degeneracy
pressure appears due to the Pauli exclusion principle. For a
nonrelativistic plasma, the quantum statistical pressure has
been introduced in a nonlinear Schrödinger model [34], but
this has to be investigated for relativistic quantum plasmas.

III. COLLECTIVE ELECTROSTATIC OSCILLATIONS
AND FREE PARTICLES

In the absence of the EM field (namely, A = 0), we still
have electrostatic (ES) waves due to the charge separation
between the electrons and ions. At short wavelengths, the
quantum effects become important and give rise to dispersion
effects in the ES wave. At these wavelengths, there is an
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interplay between collective electron oscillations and free
electron motion. When the wavelength is comparable to the
Compton wavelength, the electrons become relativistic, and
there are relativistic corrections to the dispersion relation for
the electrostatic wave.

In the derivation of the dispersion relation for relativistic
electrons, it is convenient to first make the transformation
ψ = ψ̃ exp(−imec

2t/h̄), where the wavefunction ψ̃ obeys the
wave equation(

ih̄
∂

∂t
+ mec

2 + eφ

)2

ψ̃ + h̄2c2∇2ψ̃ − m2
ec

4ψ̃ = 0, (18)

and the electron charge density is

ρe = − ih̄e

2mec2

(
ψ̃∗ ∂ψ̃

∂t
− ψ̃

∂ψ̃∗

∂t

)
−

(
1 + eφ

mec2

)
e|ψ̃ |2. (19)

We next linearize the system (15), (19), and (20) by
setting φ = φ1 and ψ̃ = ψ̃0 + ψ̃1, where φ1 = φ̂ exp(iK ·
r − i
t) + complex conjugate, ψ̃1 = ψ̂+ exp(iK · r − i
t) +
ψ̂− exp(−iK · r + i
t), and where |ψ̃0|2 = n0. Separating
different Fourier modes, we obtain from (18) the dispersion
relation for the ES oscillations as E = 1 + χe = 0, where E is
the dielectric constant and the electron susceptibility is

χe = ω2
pe

[
4m2

ec
4 − h̄2(
2 − c2K2)

]
h̄2(
2 − c2K2)2 − 4m2

ec
4
2

, (20)

where ωpe = (n0e
2/ε0me)1/2 is the electron plasma frequency.

We note that in the classical limit h̄ → 0, we have χe =
−ω2

pe/
2, while in the nonrelativistic limit c → ∞, we
have χe = −ω2

pe/(
2 − h̄2k4/4m2
e). After some reordering of

terms, the dispersion relation can be written as

h̄2(
2 − c2K2)
(

2 − c2K2 − ω2

pe

)
− 4m2

ec
4
(

2 − ω2

pe

) = 0. (21)

Similar results have been obtained previously for a relativistic
bosonic gas [22,23]. It is interesting to investigate some
limiting cases of Eq. (21). For ωpe → 0, we obtain the four
solutions


 = ∓mec
2

h̄
±

√
m2

ec
4

h̄2 + c2K2, (22)

Choosing the upper sign (−) in front of the first term in the
right-hand side of Eq. (22), we obtain the free particle solutions
of the Klein-Gordon equation, where the upper sign (+) in the
second term corresponds to the motion of a free electron and
the negative sign (−) corresponds to a negative energy state
solution, which can be interpreted as the motion of a free
positron. The other two solutions (with a plus sign in front
of the first term) are connected to plasma modes, which are
not easy to interpret in terms of free particle solutions. In the
classical limit h̄ → 0, we obtain from Eq. (21) the Langmuir
oscillations 
 = ωpe, while in the limit c → ∞, we have the
nonrelativistic result


2 = ω2
pe + h̄2K4

4m2
e

. (23)

On the other hand, in the limit K → 0, Eq. (21) yields the
Langmuir (plasmon) oscillations at the plasma frequency, 
 =
ωpe, and the pair branch with the frequency 
 = 2mec

2/h̄ [23].
We note that there is a nondimensional quantum parameter

H = h̄ωpe/mec
2 (24)

in Eq. (21) that determines the relative importance of the
quantum effect. Typical values are H = 10−4 for the electron
number density ne ∼ 1030 m−3 in solid density laser-plasma
experiments, and H = 0.007 may be representative of modern
laser-compressed matter experiments with ne ∼ 1034 m−3.
This corresponds to ωpe = 8 × 1016 s−1 and λe = 4 × 10−9 m
for H = 10−4, and ωpe = 5.4 × 1018 s−1 and λe = 5.5 ×
10−11 m for H = 0.007, where λe = c/ωpe is the electron
skin depth. The nonrelativistic result (23) is valid for the ES
waves with wavenumbers in the range 1 < Kλe < 1/H . For
Kλe < 1, the quantum corrections to ω ≈ ωpe are different
from (23) and turn the wave frequency slightly lower than
ωpe [22]. However, this effect is negligible for small values of
H and may be smaller than the degeneracy electron pressure
effect, which has been neglected here. On the other hand,
the limit Kλe > 1/H corresponds to relativistic particles
with K > 1/λC , where λC = h̄/mec ≈ 3.9 × 10−13 m is the
reduced Compton wavelength.

In Fig. 1 we have plotted the solutions of the dispersion
relation (21) for H = 10−4 and 0.007. Both the electron plasma
oscillations and the pair branches (positronic states) are shown.
The electron plasma oscillations have a cutoff frequency ω →
ωpe when K → 0, while the positronic states have a cutoff
frequency ω → 2mec

2/h̄, corresponding to ω/ωpe → 1/H

at K → 0 in Fig. 1. For the electron plasma oscillations,
the increase in the wave frequency due to the quantum
effect becomes noticeable when Kλe = 1/

√
H , or K ≈

(4πn0/aB )1/4, where aB = 4πε0h̄
2/mee

2 ≈ 5.3 × 10−11 m
is the Bohr radius. This corresponds to a wavelength of
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FIG. 1. (Color online) Dispersion curves (
 vs. K) for the ES
oscillations for H = 10−4 (solid curves) and H = 0.007 (dashed
curves), where H = h̄ωpe/mec

2. For Kλe > 1/H , the particle motion
turns from weakly relativistic to ultrarelativistic.
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2π/K ≈ 2.8 × 10−10 m for H = 10−4 and 2π/K ≈ 5 ×
10−11 m for H = 0.007.

The pair branches are associated with, for example, the
Zitterbewegung effect [35,36], in which the interference
between the positive and negative energy states are predicted
to give oscillations on Compton wavelength scales. The
Zitterbewegung effect was originally predicted for Dirac
particles with spin-1/2, but is also predicted in the framework
of the Klein-Gordon equation for spinless particles [35].
It shall be noted that the Zitterbewegung disappears if the
negative energy states are neglected, and thus it is not
supported in the nonrelativistic models, such as the standard
Schrödinger equation and Pauli equation for nonrelativistic
quantum particles. The Zitterbewegung effect is still debated
and has not yet been observed in experiments.

IV. NONLINEAR ELECTROMAGNETIC WAVE
PROPAGATION AND SELF-INDUCED

TRANSPARENCY

It is well known [37] that a large-amplitude EM wave
propagating in a classical plasma changes the dispersion
properties of the plasma due to the relativistic mass increase
of the electrons. We show here that the same effect occurs in
our Klein-Gordon-Maxwell system.

We consider for simplicity the propagation of a circularly
polarized electromagnetic (CPEM) wave of the form A =
A0[̂x cos(k0z − ω0t) − ŷ sin(k0z − ω0t)], where ω0 is the wave
frequency and k0 the wavenumber. Due to the circular polar-
ization, the oscillatory parts in the nonlinear term proportional
to A2 in the Klein-Gordon equation vanish. Assuming that ψ

depends only on time and not on space, and that φ = 0, we
obtain from Eq. (6)

h̄2 ∂2ψ

∂t2
+ m2

ec
4γ 2

Aψ = 0, (25)

where γA = √
1 + e2A2

0/m2
ec

2 can be interpreted as the rela-
tivistic gamma factor due to the electron mass increase in the
CPEM wave field. Equation (25) has the solution

ψ = ψ0 exp(−imec
2γAt/h̄), (26)

where the constant ψ0 is determined by assuming the constant
density ρe = −en0 in Eq. (9).

Inserting (26) into (9) with ρe = −en0, we obtain

|ψ0|2 = n0

γA

. (27)

On the other hand, inserting (26) into (10) we have

je = −e2|ψ0|2
me

A = − e2n0

γAme

A, (28)

which can be inserted into (13) to obtain

1

c2

∂2A
∂t2

− ∇2A = −μ0e
2n0

γAme

A. (29)

Equation (29) admits the nonlinear dispersion relation

ω2
0 = c2k2 + ω2

pe

γA

, (30)

which predicts a relativistic downshift of the CPEM wave
frequency due to relativistic electron mass increase in the
CPEM wave field. Since the effective plasma frequency is
decreased by a factor 1/

√
γA, the model predicts the well-

known self-induced transparency where the CPEM wave can
propagate at frequencies below the electron plasma frequency.
This is identical to the case of classical plasmas [37].

V. STIMULATED RAMAN SCATTERING AND
MODULATIONAL INSTABILITIES

We now consider the instability of an intense CPEM wave
in the quantum regime. In the presence of intense EM waves,
we have the relativistic downshift in the EM wave frequency,
given in (30), as well as possibility of exciting electrostatic
oscillations via the parametric instabilities. As an example,
we will here consider stimulated Raman scattering instability,
in which an intense EM wave decays into a daughter EM
wave and an electron plasma wave. The two-plasmon decay
instability, in which the CPEM wave decays into two ES waves,
will be treated elsewhere.

It is convenient to first introduce the transformation ψ =
ψ̃ exp(−iγAmec

2t/h̄), where γA = √
1 + e2A2

0/m2
ec

2 and A0

is the amplitude of the EM carrier wave A0. The wavefunction
ψ̃ obeys the modified KGE(

ih̄
∂

∂t
+ γAmec

2 + eφ

)2

ψ̃

− c2(−ih̄∇ + eA)2ψ̃ − m2
ec

4ψ̃ = 0, (31)

and the electron charge density is given by

ρe = − ih̄e

2mec2

(
ψ̃∗ ∂ψ

∂t
− ψ

∂ψ̃∗

∂t

)
−

(
γA + eφ

mec2

)
e|ψ̃ |2.

(32)

Let us now linearize our system of equations by introducing
ψ̃(r,t) = ψ̃0 + ψ̃1(r,t) (where ψ̃0 is assumed to be constant),
A = A0(r,t) + A1(r,t), and φ(r,t) = φ1(r,t). By using ρi =
en0 into Eq. (14), we note that the equilibrium quasineutrality
requires that ψ̃0 is normalized such that |ψ̃0|2 = n0/γA.
Supposing that A0 fulfills the plane wave equation (29), the
linearized KGE (31), Poisson’s equation (14), and the EM
wave equation (16) then become, respectively,

h̄2

(
− ∂2ψ̃1

∂t2
+ c2∇2ψ̃1

)
+ 2ih̄γAmec

2 ∂ψ̃

∂t

+ 2ih̄c2eA0 · ∇ψ̃1 +
(

2γAmec
2eφ1 + ih̄e

∂φ1

∂t

)
ψ̃0

− 2c2e2A0 · A1ψ̃0 = 0, (33)

∇2φ1 = ieh̄

2ε0mec2

(
ψ̃∗

0
∂ψ̃1

∂t
− ψ̃0

∂ψ̃∗
1

∂t

)
+eγA

ε0
(ψ̃∗

0 ψ̃1 + ψ̃0ψ̃
∗
1 ) + ω2

pe

γAc2
φ1, (34)
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and

∇2

(
∂2A1

∂t2
− c2∇2A1 + ω2

pe

γA

A1

)
= ω2

pe

n0
∇ × {∇ × [A0(ψ̃∗

0 ψ̃1 + ψ̃0ψ̃
∗
1 )]}. (35)

We note that the term proportional to A0 · ∇ψ̃1 in Eq. (33)
gives rise to the two-plasmon decay, which we, however, do
not consider here.

We now introduce the Fourier representations
ψ̃ = ψ̂+ exp(−i
t + iK · r) + ψ̂− exp(i
t − iK · r), φ1 =
φ̂ exp(−i
t + iK · r) + c.c., A0 = (1/2)Â0 exp(−ω0t +
k0 · r)+ c.c., and A1 = [Â+ exp(−iω+t + ik+ · r) +
Â− exp(−iω−t + ik− · r)] + c.c., where we introduced
ω± = ω0 ± 
 and k± = k0 ± K, and c.c. stands for the
complex conjugate. In one of the steps, we take the
scalar product of both sides of the EM wave equation
by Â∗

0 and use the fact that Â∗
0 · [k± × (k± × Â0)] =

(k± × Â0) · (Â∗
0 × k±) = −|k± × Â0|2. Separating different

Fourier modes and eliminating the Fourier coefficients, we
readily obtain the nonlinear dispersion relation

1 + 1

χ̃e

= (c2K2 − 
2 + ω2
pe/γA)[

4γ 2
Am2

ec
4 − h̄2(
2 − c2K2)

]
×

[
c2e2|k+ × Â0|2
k2+DA(ω+,k+)

+ c2e2|k− × Â0|2
k2−DA(ω−,k−)

]
, (36)

where the EM sidebands are governed by DA(ω±,k±) =
c2k2

± − ω2
± + ω2

pe/γA. The electric susceptibility in the pres-
ence of the EM field is given by

χ̃e = ω2
pe

[
4γ 2

Am2
ec

4 − h̄2(
2 − c2K2)
]

γA

[
h̄2(
2 − c2K2)2 − 4γ 2

Am2
ec

4
2
] . (37)

After reordering of terms, the nonlinear dispersion relation
(36) can be written as

1 − ω2
pe

4γ 3
Am2

ec
2

(
c2K2 − 
2 + ω2

pe

/
γA

)
D̃L(
,K)

×
[

e2|k+ × Â0|2
k2+DA(ω+,k+)

+ e2|k− × Â0|2
k2−DA(ω−,k−)

]
= 0, (38)

where the electron plasma oscillations in the presence of the
EM field are represented by

D̃L(
,K) = ω2
pe

γA

− 
2 + h̄2(
2 − c2K2)

4γ 2
Am2

ec
4

×
(


2 − c2K2 − ω2
pe

γA

)
. (39)

We note that DL = 0 gives the dispersion relation for pure ES
oscillations in the presence of a large-amplitude EM wave.

In the classical limit h̄ → 0, we have χ̃e = −ω2
pe/
2γA,

and the nonlinear dispersion relation takes the form

1 − 
2γA

ω2
pe

=
(
c2K2 − 
2 + ω2

pe/γA

)
4γ 2

Am2
ec

2

×
[

e2|k+ × Â0|2
k2+DA(ω+,k+)

+ e2|k− × Â0|2
k2−DA(ω−,k−)

]
, (40)

which can be written in a more familiar form as

1 −
(

c2K2

DL

+ 1

)
ω2

pe

4γ 3
Am2

ec
2

×
[

e2|k+ × Â0|2
k2+DA(ω+,k+)

+ e2|k− × Â0|2
k2−DA(ω−,k−)

]
= 0, (41)

with DL = ω2
pe/γA − 
2. These results can be compared with,

for example, the dispersion relations obtained in Refs. [13,14,
16] for the relativistic classical case and in Ref. [6] for the
nonrelativistic classical case.

To proceed with the numerical evaluation of the nonlinear
dispersion relation, we choose a coordinate system such that
the CPEM takes the form Â0 = (̂x + îy)Â0 and k0 = k0̂z.
Without loss of generality, we choose K = K||̂z + K⊥ŷ. Then

we have K2 = K2
|| + K2

⊥, γA =
√

1 + e2|Â0|2/m2
ec

2, |k± ×
Â0|2 = [2(k0 ± K||)2 + K2

⊥]|Â0|2, and k2
± = (k0 ± K||)2 +

K2
⊥. We also use the fact that the carrier wave A0 obeys the

nonlinear dispersion relation ω0 = √
c2k2

0 + ω2
pe/γA.

We now assume that the wave frequency is complex
valued, 
 = 
R + i
I , where 
R is the real frequency and

I the growth rate, and solve numerically the dispersion
relation (38) for 
. In Fig. 2 we have plotted the growth
rate for stimulated Raman scattering instability as a function
of the wavenumbers K|| and K⊥, for a few values of a0 =
e|Â0|/mec and H = h̄ωpe/mec

2. For all cases in Fig. 2,
we used k0c/ωpe = 20, which corresponds to a wavelength
of 1.25 × 10−9 m for H = 10−4 and to 1.7 × 10−11 m for
H = 0.007, which is in the x-ray regime. We observe that for
H = 10−4, there is a broad spectrum of unstable waves, in
particular for a0 = 5 and 10. For H = 0.007, we observe a
reduction in the spectrum of unstable waves and the growth
rate (relative to the electron plasma frequency) is slightly
reduced. This is due to the fact that the wavelength of unstable
ES oscillations approaches the critical wavelength, where
quantum dispersion effects become important compared to the
plasma frequency. For H = 10−4, this wavelength is λcrit =
2π/(4πn0/aB)1/4 ≈ 5 × 10−10 m, corresponding to a critical
wavenumber Kcrit = 1.25 × 1010 m−1, and for H = 0.007, we
have λcrit = 2π/(4πn0aB) ≈ 2.8 × 10−11 m, corresponding

FIG. 2. (Color online) Growth rate (
I/ωpe vs. K|| and K⊥)
for stimulated Raman scattering in the presence of a large-amplitude
CPEM wave, for the amplitudes a0 = 1, a0 = 5, and a0 = 20 (left to
right panels) where a0 = e|Â0|/mec for H = 10−4 (top panels) and
H = 0.007 (bottom panels).
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to Kcrit = 2.25 × 1011 m−1. Hence, for H = 0.007 we have
k0 ≈ Kcrit, which leads to the reduction of the growth rate due
to the quantum dispersion effect.

Furthermore, it should be mentioned that we do not find
Raman-type instabilities involving the pair branches in Fig. 1.
This is consistent from the point of view of the conservation
of charges, since the production of positrons would violate the
conservation of electric charges.

In addition to stimulated Raman scattering instabilities,
we also have the modulational instability that dominates for
pump frequencies ω0 < 2ωpe/

√
γA and the corresponding

wavenumbers k0 < (ωpe/c)
√

3/γA. The modulational insta-
bility usually occurs for small modulation wavenumbers and
saturates nonlinearly by the formation of relatively small
localized structures and solitary waves. In the past, such
nonlinear structures have been studied for classical plasmas
in one [38] and three dimensions [39]. We have investigated
the modulational instability for the CPEM dipole field with
k0 = 0 and have plotted the results in Fig. 3 for different
amplitudes :a0 = 1, a0 = 5, and a0 = 20. We find that the
growth rate is relatively insensitive to the quantum parameter
H . We have used H = 0.007 in Fig. 3, but H = 0 gives
almost identical results. This is understandable since the
modulational instability takes place on relatively large scales,
and the quantum effect is thus negligible. However, we will
investigate the quantum effect on the relatively small-scale
nonlinear structures below.

VI. RELATIVISTIC OPTICAL SOLITARY WAVES

Here we illustrate the existence of large-amplitude localized
CPEM wave excitations at the quantum scale in our system.
We restrict our investigation to one-space dimension, which
has also been studied for classical plasmas [38].

Far from the local excitation, one can assume that the
dynamics of the plasma is nonrelativistic. To shorten the
algebraic steps, it is convenient first to introduce a new wave-
function ψ̃(z,t) and the potential � via the transformations
ψ(r,t) = ψ̃(z,t) exp(−imec

2t/h̄) and φ = � − mec
2/e, and

which satisfy the KGE(
ih̄

∂

∂t
+ e�

)2

ψ̃ + h̄2c2 ∂2ψ̃

∂z2
− γ 2

Am2
ec

4ψ̃ = 0, (42)

where γA = (1 + e2A2/m2
ec

2)1/2. In this gauge, the wavefunc-
tion ψ̃ is nonoscillatory in time, and the new potential takes

FIG. 3. (Color online) The growth rate (
I/ωpe vs. K|| and K⊥)
for the modulational instability in the presence of a large-amplitude
CPEM wave, for the amplitudes a0 = 1 (left panel), a0 = 5 (middle
panel), and a0 = 20 (right panel) where a0 = e|Â0|/mec. H = 0.007
for all cases.

the value � = e/mec
2, far from the solitary wave where the

plasma is at rest. The electron charge density is expressed as

ρe = − e

mec2

[
ih̄

2

(
ψ̃∗ ∂ψ̃

∂t
− ψ̃

∂ψ̃∗

∂t

)
+ e�|ψ̃ |2

]
. (43)

We now study quasi-steady-state structures propagating
with a constant speed v0, so that φ = φ(ξ ) and A2 = A2(ξ ),
where ξ = z − v0t and A2 = |A|2. The CPEM wavevector po-
tential is of the form A = A(ξ )[̂x cos(k0z − ω0t) − ŷ sin(k0z −
ω0t)]. It is convenient to introduce the eikonal representation
ψ̃ = P (ξ ) exp[iθ (ξ )], where P and θ are real valued. Then the
KGE (42) takes the form

h̄2
(
c2 − v2

0

)[d2P

dξ 2
− P

(
dθ

dξ

)2

+ 2i
dP

dξ

dθ

dξ
+ iP

d2θ

dξ 2

]
− ih̄ev0

d�

dξ
P − 2ih̄e�v0

(
dP

dξ
+ iP

dθ

dξ

)
+ (

e2�2 − m2
ec

4γ 2
A

)
P = 0. (44)

Setting the imaginary part of Eq. (44) to zero, we obtain

2U
dP

dξ
+ P

dU

dξ
= 0, (45)

where

U = h̄2
(
c2 − v2

0

)dθ

dξ
− h̄e�v0. (46)

The solution of Eq. (45) is P 2U = D = const. Using the
boundary conditions P 2 = n0, φ = 0 (hence � = mec

2/e),
and d/dξ = 0 at |ξ | = ∞, we have D = −n0h̄mec

2v0. Hence,
we obtain

dθ

dξ
= v0meγ

2
0

h̄

(
e�

mec2
− n0

P 2

)
, (47)

where we have denoted

γ0 = 1√
1 − v2

0/c
2
. (48)

The electron charge density (43) now takes the form

ρe = − e

mec2

(
h̄v0

dθ

dξ
+ e�

)
P 2, (49)

which, by using Eq. (47), can be written as

ρe = −en0γ
2
0

(
− v2

0

c2
+ e�

mec2

P 2

n0

)
, (50)

and hence Poisson’s equation (14), with ρi = en0, becomes

d2�

dξ 2
= en0γ

2
0

ε0

(
e�

mec2

P 2

n0
− 1

)
. (51)

On the other hand, by setting the real part of Eq. (44) to zero,
we have

h̄2c2

γ 2
0

[
d2P

dξ 2
− P

(
dθ

dξ

)2]
+ 2h̄e�v0P

dθ

dξ
+ (

e2�2 − m2
ec

4γ 2
A

)
P = 0, (52)
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which, by using Eq. (47), can be written as

h̄2 d2P

dξ 2
+ m2

ec
2γ 4

0

[
e2�2

m2
ec

4
− v2

0

c2

n2
0

P 4
− γ 2

A

γ 2
0

]
P = 0. (53)

Finally, inserting the ansatz A = A(ξ )[̂x cos(k0z − ω0t) −
ŷ sin(k0z − ω0t)] for the vector potential, together with the
current

je = − e2

me

|ψ |2A = − e2

me

P 2A, (54)

into Eq. (16), we obtain the EM wave equation

d2A

dξ 2
+ ω2

pe

c2

[
λ + γ 2

0

(
1 − P 2

n0

)]
A = 0, (55)

where we have used k0 = ω0v0/c
2, and where λ =

(c2/ω2
pe)(ω2

0 − ω2
p − c2k2

0)/(c2 − v2
0) = ω2

0/ω
2
pe − γ 2

0 is a
nonlinear eigenvalue of the system that determines the wave
frequency ω0.

The coupled system (51), (53), and (55) describes the profile
of EM solitary waves in a quantum plasma. It has the conserved
quantity H = 0, where

H = − c2

ω2
pe

(
d

dξ

e�

mec2

)2

+ h̄2

γ 2
0 m2

ec
2n0

(
dP

dξ

)2

+ c2

ω2
peγ

2
0

×
(

d

dξ

eA

mec

)2

+
(

λ

γ 2
0

+ 1 − P 2

n0

)
e2A2

m2
ec

2
+ γ 2

0
e2�2

m2
ec

4

P 2

n0

− 2γ 2
0

e�

mec2
+ v2

0γ
2
0

c2

(
n0

P 2
− 1

)
− P 2

n0
+ 1 + γ 2

0 . (56)

The conserved quantity H can be used to check that the
numerical scheme used to solve the nonlinear system of
Eqs. (51), (53), and (55) produces correct results.

In Fig. 4 we have compared the present model with our
previous results in Ref. [40] where we used a simplified model
to describe nonlinear interactions between intense CPEM wave
and a quantum plasma. We used the same parameters as in
Fig. 2 of Ref. [40], to produce the profiles of the CPEM wave
potential, the electron charge density, and the ES potential.
We observe that the present results are almost identical to our
previous work [40]. For our sets of parameters, the quantum
effect on the profiles of the EM solitary waves are small, and
there is only a slight difference in the profiles of the electron
density for the two values H = 0.002 and 0.007. For standing
EM solitary waves, such as the ones in Figs. 4(a) and 4(b),
the solutions are localized with exponentially decaying tails.
By linearizing the system of Eqs. (51), (53), and (55), one can
show that far from the EM soliton, A decays as exp(

√−λξ ),
while P and φ are proportional to exp(Kξ ), where K is found
from the dispersion relation

h̄c2K2(c2K2 + γ0ω
2
pe

) − 4γ 4
0 m2

ec
4(v2

0K
2 − ω2

pe

) = 0. (57)

For v0 = 0 (and γ0 = 1), we see immediately that there
exist only complex-valued K , which means that the quasi-
stationary-wave solutions decay exponentially far away from
the EM solitary wave. However, in the classical limit h̄ → 0,
we instead have the plasma wake oscillations given by real-
valued K = ωpe/v0. Hence, a localized EM pulse will create
an oscillatory wake that extends far from the EM pulse. In one-
space dimension, there also exist special classes of propagating
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m
ec
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−
ρ e / 

en
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1.5
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e

eφ
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m
ec2
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ξ / λ
e
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1
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ξ / λ
e
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FIG. 4. (Color online) The spatial profiles of the vector potential,
the electron charge density, and the electrostatic potential (top to
bottom panels), for standing solitary waves (v0 = 0) for (a) H =
0.007 and λ = −0.34, (b) H = 0.002 and λ = −0.34, and (c) for
a moving solitary wave with v0 = 0.0059c for H = 0.002 and λ =
−0.30.

localized EM envelope solutions [41,42]. In addition to the
wake oscillations, we also have quantum oscillations in
quantum plasmas. In Fig. 4(c), we show an example of a slowly
moving envelope EM soliton, where small-scale oscillations
in the charge density are clearly visible.

We note that the cold fluid results can be retained in the
classical limit h̄ → 0. Then Eq. (53) can be written as

e2�2

m2
ec

4
= v2

0

c2

n2
0

P 4
+ γ 2

A

γ 2
0

. (58)

By setting ρe = −ene, where ne is the electron number density,
in Eq. (50) and solving for P , we obtain

P 2

n0
=

[
1 + 1

γ 2
0

(
ne

n0
− 1

)]
mec

2

e�
, (59)

which can be inserted into (58) to obtain[
1

γ 2
0

ne

n0
+ v2

0

c2

]/[
n2

e

n2
0

− v2
0

c2

(
ne

n0
− 1

)2]1/2

= e�

γAmec2
,

(60)

which relates ne to � and γA at a given speed v0. The relation
(60) can also be obtained from the cold electron fluid model
[41] and hence confirms the classical limit of the quantum
model used here. If, furthermore, we assume standing waves
such that v0 = 0, then we have from (60)

e�

mec2
= γA. (61)

Solving for � and inserting the result into Poisson’s equa-
tion (51), we have

λ2
e

d2γA

dξ 2
= γA

P 2

n0
− 1. (62)
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Finally, solving for P 2 and inserting the result into Eq. (55),
we obtain

λ2
e

d2A

dξ 2
+ ω2

0

ω2
p

A =
(

λ2
e

d2γA

dξ 2
+ 1

)
A

γA

, (63)

where we have used v0 = 0 and, therefore, k0 = 0. Equa-
tion (63) is identical to the model of Marburger and Tooper [38]
for the nonlinear optical standing wave in a classical cold fluid
electron plasma. The relativistic mass increase is reflected by
the ratio A/γA in the right-hand side of Eq. (63). The nonlinear
electron density fluctuations, which are reflected in the term
proportional to d2γA/dξ 2 in the right-hand side of Eq. (63)
can often be neglected in the weakly relativistic case [43].

We note that our previous model [40] can be recovered
in the weakly relativistic limit, in the following manner.
Assuming that, to first order, we have a balance between
the ponderomotive and electrostatic pressures, so that 1 +
eφ/mec

2 ≈ γA and that γA ≈ 1, with v2
0 � c2. Accordingly,

we have

h̄2c2 d2P

dξ 2
+ 2m2

ec
4

(
1 + eφ

mec2
− γA

)
P = 0, (64)

Poisson’s equation

d2φ

dξ 2
= en0

ε0

(
γAP

n0
− 1

)
, (65)

and the CPEM wave equation

d2A

dξ 2
+ λA = ω2

pe

c2

(
P 2

n0
− 1

)
A. (66)

We now make a simple change of variables γAP = P̃ . Then
we have, by neglecting terms containing dγA/dξ , the model
[40]

h̄2c2 d2P̃

dξ 2
+ 2m2

ec
4

(
1 + eφ

mec2
− γA

)
P̃ = 0, (67)

d2φ

dξ 2
= en0

ε0

(
P̃

n0
− 1

)
, (68)

and

d2A

dξ 2
+ λA = ω2

pe

c2

(
P̃ 2

γAn0
− 1

)
A, (69)

where the relativistic mass increase appears explicitly in the
CPEM wave equation.

VII. DYNAMICS OF NONLINEARLY INTERACTING EM
WAVES IN A QUANTUM PLASMA

In order to study the dynamics of nonlinear interactions
between intense CPEM waves and a quantum plasma, we
have carried out numerical simulations of the Klein-Gordon-
Maxwell system of equations. We have here restricted our
study to one-space dimension, along the z direction in space,
and written our governing equations in the form(

ih̄
∂

∂t
+ eφ

)
ψ = W, (70)(

ih̄
∂

∂t
+ eφ

)
W + h̄2c2 ∂2ψ

∂z2
− γ 2

Am2
ec

4ψ = 0, (71)

1

c2

∂2A
∂t2

− ∂2A
∂z2

= −μ0e
2

me

|ψ |2A, (72)

and

∂2φ

∂z2
= e

2mec2ε0
(ψ∗W + ψW ∗) − en0

ε0
. (73)

We have used a periodic simulation box in space, of length
Lx = 63 λe and used of the order 104 grid points to resolve
the solution in space. It is important to resolve the relatively
long electron skin depth scale as well as the shorter length scale
associated with accelerated electrons with the momentum p =
h̄k and the associated wavelength λ = 2π/k = 2πh̄/p. Since
we need at least two grid points per wavelength to represent
the solution, the required grid size is �x < πh̄/p, which can
be written �x/λe < πHmec/p. For example, to represent
the wavefunction of relativistic electrons with the momentum
p = mec, we need a spatial grid with �x/λe < πH ≈ 0.022
to represent the wavefunction for H = 0.007. The solution was
advanced in time with the standard fourth-order Runge-Kutta
scheme, using a time step of order �t = 10−4 ωpe.

We first numerically study the growth and nonlinear
saturation of the modulational instability, which is relevant
for dense matters where the plasma is overdense or close to
overdense. As initial conditions, we used a CPEM pump wave
of the form A = A0[̂x cos(k0z) − ŷ sin(k0z)] with k0 = 0 and
A0/mec = 1. A small amplitude noise (random numbers) was
added to A in order to seed any instability in the system. As
initial conditions for the wavefunction, we used ψ = √

n0/γA

and W = mec
2√n0γA, corresponding to a pure electronic state

at equilibrium. The initially homogeneous electron density was
set to ne = n0 = 1030 m−3, corresponding to H = 0.007 [cf.
Eq. (24)]. In this situation, the EM wave is unstable due to
the modulational instability, which has instability for small
wavenumbers, as shown in Fig. 3. In the nonlinear stage,
we see in Fig. 5 that the CEPM wave envelope has been
focused into localized wavepackets similar to the ones in
Fig. 4, associated with depletions in the electron density and
positive electrostatic potentials. The collapse of the CPEM
wave packet leads to relativistically strong ponderomotive
potentials that accelerate electrons to relativistic speeds. The
relativistic electrons are associated with small-scale spatial
oscillations in the wavefunction, where the wavelength is
comparable to or even smaller than the Compton wavelength.
In order to study the distribution of electrons both in space and
momentum space, we have performed a Fourier transform of
the wavefunction ψ using a moving window technique (using
a Hann window) in space. The width of the window has been
tuned so that it provides a good resolution both in space and
in momentum space. The resulting spatial spectrogram gives
a representation of the distribution of the electrons both in
space and in momentum space; see Fig. 5(d), where the color
indicates the density of electrons in phase space. In Fig. 6(d) the
horizontal axis shows the spatial dependence, and the vertical
axis shows the momentum dependence via the relation p = h̄k

between the momentum p and the wavenumber k. In this figure
it is clear that in the collapse stage of the solitary waves,
bunches of electrons are accelerated to relativistic speeds
and form self-trapped, Bernstein-Greene-Kruskal (BGK) -like
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FIG. 5. (Color online) The nonlinear stage of a modulational
instability, showing localized EM wave-packets associated with
depletions in the electron charge density, and positive ES potentials.
The electron pseudodistribution function shows that the electrons
have been accelerated and form BGK-like modes that travel away
from the collapsed wave packets. Parameters are H = 0.007 and
initially a dipole field a0 = 1 with k0 = 0.

modes that propagate away from the collapsed EM wave
packets.

Next, we investigate a scenario of the short EM pulse prop-
agation and the wake-field generation in a quantum plasma.
This concept is traditionally used for electron acceleration in
classical plasmas [44,45]. The numerical results are displayed
in Figs. 6 and 7. Here two attosecond pulses are injected from
each side of a plasma slab and are allowed to collide at the
center of the slab. As initial conditions, we used a CPEM
pump wave of the form A = A0(z)[̂x cos(k0z) − ŷ sin(k0z)]
with k0 = 20 λ−1

e and envelopes of the form A0(z)/mec =
exp(−(z/λe ± 30)2) propagating into the plasma slab. The
plasma slab is initially centered between z = ±15λe with equal
electrons with the number densities n0, where the electron
wavefunction was set to ψ = √

n0 and W = mec
2√n0. After

a time t = 28.125 ω−1
pe , we see in Fig. 6(b) and 6(c) that the

large-amplitude CPEM pulses excite plasma wake oscillations
associated with large-amplitude positive potentials, and with
an approximate wavelength of 2πc/ωpe, corresponding to a
leading wavenumber of ωpe/c. The positive potentials of the
plasma wake oscillations are starting to capture populations
of the electrons at edges of the plasma slab, at x ≈ ±15λe.
A high-frequency diffraction pattern is formed in the electron
density, as faster electrons overtake slower electrons. Later, at
t = 37.5 ω−1

pe , the two EM pulses have collided and passed
through each other. Trapped electrons have been further
accelerated to ultrarelativistic speeds, as seen in Fig. 7(d)
at x ≈ ±5λe., where the fastest electrons have reached a
momentum of ≈ 5 mec.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we have developed a relativistic model for
treating nonlinear interactions between intense EM waves
and a quantum plasma. Our nonlinear model is based on the

FIG. 6. (Color online) Attosecond laser pulse propagation into an
underdense quantum plasma, at time t = 28.125 ω−1

pe . Top to bottom
panels show (a) the vector potential of the EM pulse (the arrows
show the propagation directions of the pulses), (b) the electron charge
density, (c) the ES potential, and (d) the distribution of electrons in
phase space in a 10-logarithmic color scale. Parameters are H =
0.007, amplitude a0 = 1 and wavenumber k0 = 20 λ−1

e . Localized
EM pulses excite large-amplitude oscillatory potential wakes behind
them, as they penetrate the plasma slab.

coupled Klein-Gordon and Maxwell equations for the relativis-
tic electron momentum and the EM fields. In our fully relativis-
tic nonlinear model, the electron current and charge densities
are calculated self-consistently from the KGE, and they enter
as sources for the nonlinear EM and ES waves in the Maxwell
equation. The KG-Maxwell system of equations has been used
to derive the linear dispersion relation for the ES and EM
waves, as well as for investigating stimulated Raman scattering
and modulational instabilities in the presence of relativistically

FIG. 7. (Color online) The same as in Fig. 6 at time t = 37.5 ω−1
pe .

Groups of electrons are accelerated to ultrarelativistic speeds by the
large-amplitude ES wake field.
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intense CPEM waves. In the linear regime, the general
dispersion relation for the ES waves exhibits the quantum
effect associated with the overlapping electron wavefunction.
At long-wavelengths, we have the dispersive Langmuir oscilla-
tions with frequencies close to the electron plasma frequency,
while at shorter wavelengths we have the oscillation frequency
of free electrons. At wavelengths comparable to or larger
than the Compton wavelength, the electron motion is fully
relativistic. In the nonlinear regime, we have demonstrated
the existence of fully relativistic stimulated Raman scattering
and modulational instabilities. While the Raman amplification
is of much interest for generating a coherent EM radiation,
the modulational instability gives rise to the localization and
collapse of the CPEM waves into localized solitary EM
wave packets. Indeed, numerical simulations of the coupled

KG-Maxwell equations reveal the collapse and acceleration of
electrons in the nonlinear stage of the modulational instability,
as well as possibility of wake-field acceleration of electrons to
relativistic speeds by short EM pulses at nanometer scales. In
conclusion, we stress that the present investigation of nonlinear
effects dealing with intense EM wave interactions with a
quantum plasma is relevant for the compression of x-ray free-
electron EM pulses to attosecond duration [46,47], as well as to
the understanding of localized intense x-ray and γ -ray bursts
that emanate from compact astrophysical objects [29,30].
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