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Applicability of the Taylor-Green-Kubo formula in particle diffusion theory
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Diffusion coefficients of particles can be defined as time integrals over velocity correlation functions, or as
mean square displacements divided by time. In the present paper it is demonstrated that these two definitions are
not equivalent. An exact relation between mean square displacements and velocity correlations is derived. As an
example of the applicability of these results so-called drift coefficients of energetic particles are discussed. It is
explained why different previous approaches in drift theory provided contradicting results.
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I. INTRODUCTION

A fundamental problem in physics is the stochastic prop-
agation of particles in two or three dimensions. A prominent
example is the motion of a Brownian particle described by
Brown and Einstein (see Refs. [1] and [2]). A more general
discussion of the stochastic motion of particles in physics and
astronomy was presented by Chandrasekhar (see Ref. [3]).
Another example is the propagation of energetic charged
particles in magnetized plasmas (see, e.g., Refs. [4] and [5]).
In the latter case the particles are scattered due to complicated
interactions with turbulent electric and magnetic fields. Such
fields are usually superposed by a mean magnetic field. The
latter field breaks the symmetry of the physical system and,
thus, there is a preferred direction of the particles; i.e., the
particles prefer to propagate along the mean magnetic field
(see, e.g., Ref. [6]). Although there is a preferred direction,
particles are also scattered across the mean magnetic field.

An example of energetic particles propagating through a
plasma is the motion of charged particles in fusion devices
(see, e.g., Refs. [7] and [8]). In this context, the interaction of
alpha particles or accelerated ion beams with the turbulence
in a tokamak is a topic of great interest. Another example is
the motion of energetic particles such as cosmic rays through
the interplanetary or interstellar plasma (see, e.g., Refs. [9]
and [10]).

Due to the stochastic motion, one can use mean square
displacements of particle trajectories to describe the prop-
agation. For example, in the x direction we can assume
that 〈(�x)2〉 ∼ tα with �x = x(t) − x(t0). Here we used the
ensemble average operator 〈. . .〉 and the initial time t0. This
corresponds to an increase of the uncertainty to find the particle
at a position in space if time t passes. The parameter α can
be used to characterize the particle motion. For example, we
have by definition subdiffusion if α < 1, diffusion if α = 1,
and a superdiffusive motion if α > 1. Although nondiffusive
transport has been discussed more and more in the recent years
(see, e.g., Refs. [11–16]), it is still a standard assumption that
particles propagate diffusively. The latter process is also known
as normal or Markovian diffusion (named after the Russian
mathematician A. A. Markov).
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If the particle motion is diffusive, the three dimensional
propagation of the particle can be described by a diffusion
tensor

(κij ) =
⎧⎨
⎩

κxx κxy κxz

κyx κyy κyz

κzx κzy κzz

⎫⎬
⎭ , (1)

where we used a Cartesian system of coordinates. If we assume
that there is a mean magnetic field pointing in the z direction,
we can call κzz ≡ κ‖ the parallel diffusion coefficient, κxx and
κyy the perpendicular diffusion coefficients, and κij with i �=
j the off-diagonal elements. A strong simplification can be
achieved if we assume axisymmetry with respect to the mean
magnetic field. This special case is considered later in the
paper.

In the literature one can find two different definitions of the
diffusion coefficient. If the transport is diffusive (α = 1) we
can define a diffusion coefficient in the ij direction as

κMSD
ij = lim

t→∞
〈�xi�xj 〉

2t
. (2)

In this case the diffusion coefficient is defined by using the
mean square displacements (MSDs) of all possible particle
trajectories. Alternatively, one can find the following formula
in the literature:

κVCF
ij =

∫ ∞

0
dt〈vi(t)vj (0)〉. (3)

In this case the diffusion coefficient is defined as a time
integral over the velocity correlation function (VCF). This
formula is based on the work of Taylor, Green, and Kubo (see
Refs. [17–19]) and is, therefore, known as Taylor-Green-Kubo
(TGK) or Kubo formula.

In the present paper it will be demonstrated that Eqs. (2)
and (3) are not equivalent for the off-diagonal elements of the
diffusion tensor (1); i.e., κMSD

ij �= κVCF
ij if i �= j . As an example

we consider so-called drift coefficients in the theory of solar
modulation where a disagreement between different previous
results had been found in the recent years (see, e.g., Ref. [20]
and references therein).

II. EXACT RELATION BETWEEN MEAN SQUARE
DISPLACEMENTS AND VELOCITY CORRELATIONS

We start our investigation with Eq. (2) which can be
written as 〈�xi�xj 〉 = 2tκMSD

ij . Usually it is assumed that
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this relation is only correct in the formal limit t → ∞ since it
needs a certain time before the particle approaches the stable
(diffusive?) regime. More general is a full time dependent
description of the transport. In the following we derive
general relations for time dependent diffusion coefficients. The
asymptotic limit t → ∞ is only considered for some examples
and to relate our new results to previously derived relations.
To achieve a full time dependent description, we can define a
running diffusion coefficient as

Dij (t) := 1

2

d

dt
〈�xi�x∗

j 〉, (4)

where we allowed complex valued positions which is useful
if we allow complex valued fields causing the scattering of
the particles. Furthermore, we have used the notation x∗

j for
complex conjugate. If the particle motion is indeed diffusive,
the running diffusion coefficient becomes constant in the
(formal) limit t → ∞ and Eqs. (2) and (4) are equivalent. The
displacement used above can be related to the i component of
the particle velocity vector vi via

�xi(t) =
∫ t

t0

dτvi(τ ) (5)

with t > t0. Therewith, we can easily write the mean square
displacements as

〈�xi�x∗
j 〉 =

∫ t

t0

dτ

∫ t

t0

dξ 〈vi(τ )v∗
j (ξ )〉. (6)

To proceed we employ the Leibniz rule named after G.W.
Leibniz,

d

dt

∫ b(t)

a(t)
dτf (τ,t) = ∂b(t)

∂t
f [b(t),t] − ∂a(t)

∂t
f [a(t),t]

+
∫ b(t)

a(t)
dτ

∂f (τ,t)

∂t
, (7)

and Eq. (4) with (6) becomes

Dij (t) = 1

2

∫ t

t0

dτ [〈vi(t)v
∗
j (τ )〉 + 〈vi(τ )v∗

j (t)〉]. (8)

This exact formula relates velocity correlations to mean
square displacements and can be used for diffusive as well
as super- and subdiffusive transport. Furthermore, we allow
complex valued positions and velocities. To use complex
valued quantities is often useful if one relates particle diffusion
coefficients to the magnetic correlation tensor of the turbulence
(see Ref. [10]). In this case the usage of complex valued
magnetic fields is crucial. The assumption of stationary
transport (see below) was also not employed to derive Eq. (8).

A similar formula has been derived in Ref. [21]. However,
these authors focused on the case i = j . We can express the
coefficient Dij (t) through velocities and displacements by
combining Eqs. (5) and (8):

Dij (t) = 1
2 [〈vi(t)�x∗

j (t)〉 + 〈�xi(t)v
∗
j (t)〉]. (9)

If one knows the coefficient Dij (t) one can easily calculate the
mean square displacement by integrating Eq. (9) over time.

Alternatively, we can define a diffusion coefficient by using

Vij (t) :=
∫ t

t0

dτ 〈vi(t)v
∗
j (τ )〉, (10)

which is equivalent to

Vij (t) = 〈vi(t)�x∗
j (t)〉. (11)

Equation (10) is the general form of the Taylor-Green-Kubo
formula (3).

If we combine Eqs. (8) and (10), or Eqs. (9) and (11), we
deduce

Dij (t) = Vij (t) + V ∗
ji(t)

2
. (12)

This is an exact relation between the diffusion coefficients
defined by using mean square displacements Dij and the
diffusion coefficients defined by using velocity correlation
functions Vij . It should be emphasized again that Eq. (12)
can also be used for non-Markovian transport. In general we
have Dij �= Vij ; i.e., the two definitions (4) and (10) are not
equivalent.

III. SPECIAL CASES AND LIMITS

Here we consider special cases to simplify and to under-
stand the relations between the different definitions of the
diffusion coefficient derived above.

A. The case i = j

If the two indices are equal, Eq. (12) becomes

Dii(t) = � [Vii(t)] . (13)

If the indices are equal the two formulas (4) and (10) provide
the same result. The only difference is that, in general, Vii(t)
can be complex valued whereas Dii(t) is a real number.

B. The case i �= j

Now we investigate the case that the indices are different.
If we consider i = x and j = y as an example, we derive from
Eq. (12)

Dxy = Vxy + V ∗
yx

2
= D∗

yx. (14)

Thus, the real parts are symmetric while the imaginary parts are
antisymmetric. According to Eq. (14) we have Dij �= Vij if i �=
j . Therefore, we conclude that for the off-diagonal elements
of the diffusion tensor (1), the two definitions (2) and (3) are
not equivalent.

C. The case Dx y = Dyx = 0

If the diffusion coefficients Dxy and Dyx are zero (e.g., due
to the symmetry of the physical system), we can derive from
Eq. (14)

Vxy = −V ∗
yx. (15)

In this case the parameters Vxy and Vyx are antisymmetric. The
two relations derived here are important to explain different
results obtained in drift theory (see below).
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D. The stationary case

In diffusion theory it is often assumed that the transport
is stationary. In this case the velocity correlation functions
depend only on the time difference; i.e., 〈vi(t2)v∗

j (t1)〉 =
〈vi(t2 − t1)v∗

j (0)〉 if t2 > t1. To calculate the diffusion coef-
ficients for this case we start with Eq. (8) and employ the
integral transformation ξ = t − τ + t0. We deduce

Dij (t) = 1

2

∫ t

t0

dξ [〈vi(t)v
∗
j (t − ξ + t0)〉

+ 〈vj (t)v∗
i (t − ξ + t0)〉∗], (16)

which is still an exact relation. By additionally assuming
stationary transport we derive for the special case t0 = 0

Dij (t) = 1

2

∫ t

0
dξ [〈vi(ξ )v∗

j (0)〉 + 〈vj (ξ )v∗
i (0)〉∗]. (17)

In the present article we do not judge whether the assumption
of stationary transport is valid for realistic scenarios or not; we
just provide the correct result.

E. Stationary and Markovian transport

If we additionally assume diffusive transport, Eq. (17) can
be written as

Dij = 1

2

∫ ∞

0
dξ [〈vi(ξ )v∗

j (0)〉 + 〈vj (ξ )v∗
i (0)〉∗] (18)

with Dij ≡ Dij (t → ∞). Again we realize that for i �= j this
form does not agree with the standard form (3). If we define
a diffusion coefficient by using mean square displacements—
see, e.g., Eq. (2)—the standard form (3) is not correct for the
off-diagonal elements of the diffusion tensor. For the diffusive
case we can easily integrate Eq. (18) to find for the mean
square displacements

〈�xi�x∗
j 〉 = (Vij + Vji)t (19)

with Vij ≡ Vij (t → ∞).

IV. RELATION TO THE DIFFUSION EQUATION

Above we have discussed two different possibilities
to define a diffusion coefficient. A third way to define
and use diffusion coefficients is provided by the diffusion
equation.

A. Fundamental equations

According to Fick’s first law (named after A. E. Fick) we
can write

Ji = −κij

∂f

∂xj

, (20)

where we used the Einstein summation convention. Further-
more, we used the diffusion flux Ji , the elements of the
diffusion tensor κij as above, and the distribution function
f (�x,t) describing the probability to find the particle at the
position �x at time t . The latter function is normalized via∫

d3xf (�x,t) = 1; (21)

i.e., the probability to find the particle somewhere in space
is 1.

Since we are dealing with charged particles, we can also
interpret f as charge density and Ji as the current density.
Furthermore, we can employ the continuity equation

∂f

∂t
+ ∂Ji

∂xi

= 0. (22)

By combining Eqs. (20) and (22) we find the diffusion equation

∂f

∂t
= κij

∂2f

∂xi∂xj

, (23)

which is also known as Fick’s second law. Here we assumed
that the diffusion coefficients do not have a spacial dependence.

In the following we calculate the two coefficients Vij and
Dij from the four equations discussed here. To do these
derivations we assume that the function f and its derivatives
are zero in the limit xi → ±∞ for all i.

B. The coefficient Di j

In the following we calculate the mean square displace-
ments from the diffusion equation (23). As an example we
compute the mean square displacement 〈�x�y〉 for which we
have

1

2

d

dt
〈�x�y〉 = 1

2

∫
d3x�x�y

∂f

∂t

= 1

2

∑
i,j=x,y,z

κij

∫
d3x�x�y

∂2f

∂xi∂xj

= κxy + κyx

2
. (24)

To perform the last step we used integration by parts twice.
In a similar way we can compute the other eight mean square
displacements. We find the general relation

Dij = κij + κji

2
= Dji, (25)

which is correct for i = j as well as i �= j . However, the latter
relation is only valid for the case of diffusively propagating
particles. In the present article we have derived the general
relation (14) which is also correct for nondiffusive and
nonstationary transport and can also be used in the complex
formulation of magnetic fields.

C. The coefficient Vi j

Now we derive a relation between the coefficients Vij

and the diffusion coefficients κij occurring in the diffusion
equation. We can write the current density as

Ji = ṽif. (26)

ṽi = ṽi(�x,t) is the particles’ average velocity at position �x at
time t . By multiplying this relation by �xj and by integrating
the result we deduce∫

d3x(�xj )ṽif =
∫

d3x(�xj )Ji

= −
∫

d3x(�xj )κik

∂f

∂xk
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= −κik

∫
d3x(�xj )

∂f

∂xk

= κik

∫
d3x

∂(�xj )

∂xk

f. (27)

Here we used Fick’s first law (20) and partial integration. If we
use (∂�xj )/(∂xk) = δjk and the normalization condition (21)
we can rewrite this relation as

κij = 〈vi�xj 〉. (28)

By comparing our result with Eq. (11) we find that Vij =
κij ; i.e., the diffusion coefficients occurring in the diffusion
equation are those defined by using velocity correlation
functions—see Eq. (23). This conclusion is in agreement with
the result obtained by Giacalone et al. (see Ref. [22]), who
used a different derivation.

A more systematic derivation can be performed by in-
troducing the velocity dependent distribution function G =
G(�x,�v,t). As a differential equation for this function one could
use the Fokker-Planck equation (see, e.g., Ref. [10]). In this
case one can write

〈vi�xj 〉 =
∫

d3x

∫
d3vvi�xjG(�x,�v,t)

=
∫

d3x�xj

∫
d3vviG(�x,�v,t)

=
∫

d3x�xjJi

= −κik

∫
d3x�xj

∂f

∂xk

= κik

∫
d3xδjkf

= κij , (29)

confirming the results obtained above and by Giacalone et al.

D. Solution of the diffusion equation

Here we briefly discuss the solution of the diffusion
equation (23). By using standard tools of the theory of
differential equations, we can easily derive the general solution
of the diffusion equation

f (�x,t) =
∫

d3x
′
f (�x ′

,t = 0)P (�x,�x ′
,t) (30)

with the initial distribution f (�x,t = 0) and the propagator

P (�x,�x ′
,t) = 1

(2π )3

∫
d3ke− ∑

ij κij kikj t+i�k·(�x−�x ′
). (31)

If we assume that the particle has a well-defined initial position
�x = 0 we can use

f (�x,t = 0) = δ(�x) (32)

with the Dirac delta function δ(x). In this case the solution of
the diffusion equation has the form

f (�x,t) = 1

(2π )3

∫
d3ke− ∑

ij κij kikj t+i�k·�x. (33)

Below we will simplify these results by assuming axial
symmetry.

E. The diffusion tensor for axial symmetry

In the physics of charged particle diffusion in magnetized
plasmas it is often assumed that turbulent magnetic fields are
superposed by a mean magnetic field �B0. In the present paper
we assume that the (constant) mean magnetic field points in
the z direction so that �B0 = B0�ez. Furthermore, we assume
that the turbulence and therewith the whole physical system
is axisymmetric with respect to the mean field. In this special
case the diffusion tensor (1) has the general form

(
κij

) =
⎧⎨
⎩

κ⊥ κA 0

−κA κ⊥ 0
0 0 κ‖

.

⎫⎬
⎭ (34)

It is straightforward to prove that this form is invariant under
arbitrary rotations about the z axis, i.e., κij = RT

il κlmRmj ,
where we used the rotation matrix Rij . The parameters used
in Eq. (34) are the perpendicular diffusion coefficient κ⊥, the
parallel diffusion coefficient κ‖, and the drift coefficient κA.

F. The diffusion equation for axial symmetry

In the case of axial symmetry we obtain for the diffusion
equation

∂f

∂t
= κ‖

∂2f

∂z2
+ κ⊥

[
∂2f

∂x2
+ ∂2f

∂y2

]
, (35)

and the solution of the diffusion equation (33) has the form

f (�x,t) = 1

(2π )3

∫
d3ke−κ‖k2

‖ t−κ⊥k2
⊥t+i�k·�x

= 1

(4πtκ⊥)
√

4πtκ‖
e
− x2+y2

4κ⊥ t
− z2

4κ‖ t . (36)

Often this form is employed to develop nonlinear diffusion
theories of energetic particles (see, e.g., Ref. [10]). Obviously
the drift terms do not influence the solution of the diffusion
equation.

G. The diffusive flux for axial symmetry

By using Fick’s first law (20) we can easily compute the flux
vector. With the solution (36) and by using κxy = −κA = −κyx

we find after straightforward algebra

Jx =
(

x

2t
− κA

κ⊥

y

2t

)
f (�x,t) ,

Jy =
(

y

2t
+ κA

κ⊥

x

2t

)
f (�x,t) , (37)

Jz = z

2t
f (�x,t) .

Clearly we can see the influence of the drift coefficients on the
diffusive flux.
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H. The nonaxisymmetric case

Sometimes it is assumed that for the case in which the
physical system is not axisymmetric we have the more general
form

(
κij

) =
⎧⎨
⎩

κxx κxy 0

κyx κyy 0
0 0 κzz

.

⎫⎬
⎭ (38)

In this case the diffusion equation (23) becomes

∂f

∂t
= κxx

∂2f

∂x2
+ κyy

∂2f

∂y2

+ (κxy + κyx)
∂2f

∂x∂y
+ κzz

∂2f

∂z2
. (39)

In this case we can use Eq. (25) to find for the diffusion
equation

∂f

∂t
= Dxx

∂2f

∂x2
+ Dyy

∂2f

∂y2

+ (Dxy + Dyx)
∂2f

∂x∂y
+ Dzz

∂2f

∂z2
(40)

with Dxy = Dyx . Therefore, we conclude that for the solution
of the diffusion equation it does not matter whether we use
definition (2) or (3) for the diffusion coefficients. The solution
is the same. This statement is very important since the solution
of Eq. (40) is often employed to model the nonlinear transport
of energetic particles. As shown in the present paper this form
is correct. Furthermore, the propagator (31) can be written as

P (�x,�x ′
,t) = 1

(2π )3

∫
d3ke− ∑

ij Dij kikj t+i�k·(�x−�x ′
) (41)

if the form (38) holds. Thus, for modeling the nonlinear
transport of energetic particles, we can also use Dij instead of
κij = Vij . The difference between the two diffusion coefficient
is only important if the diffusive flux Ji is calculated.

V. EXAMPLE: DRIFT THEORY OF COSMIC PARTICLES

The flux of cosmic rays incident on the Earth’s upper
atmosphere is modulated by the solar wind. A fundamental
problem in the theory of cosmic ray modulation is the
description of the drift coefficient (see Ref. [20]). Drift theory
is a good example of the applicability of the results derived
above. The form (34) can be seen as standard form in cosmic
ray diffusion theory (see, e.g., Refs. [23–26]). Here, the
diagonal elements describe diffusion of particles parallel and
perpendicular to the mean magnetic field. The off-diagonal,
antisymmetric terms ±κA describe effects of gradient and
curvature drifts. Whereas progress has been achieved in
the theory of parallel and perpendicular diffusion (see, e.g.,
Refs. [10] and [27]), a widely accepted theory of cosmic ray
drifts is still not available.

Burger and Visser (see Ref. [20]) have pointed out that one
can find different results for κxy and κyx in the literature which
contradict each other. Some authors (see Refs. [28] and [29])
derived κxy = κyx = 0 whereas others (see Refs. [30] and [31])
found κxy = −κyx �= 0. Candia and Roulet (see Ref. [30]), for
instance, have used the standard TGK formula (3), whereas

other authors used Eq. (2). By taking into account the results
of the present paper, the contradiction between those previous
results is evident. Below we review previous approaches for
the drift coefficient.

A. The unperturbed orbit

The simplest description of the particle motion can be
achieved by neglecting the turbulent magnetic field. In this case
the particle trajectory is a perfect helix in the perpendicular
direction whereas the parallel motion occurs with constant
velocity. By solving the Newton-Lorentz equation for this
simple case we find for the particle mean square displacements

�x(t) = vx(0)



sin (
t) + vy(0)



[1 − cos (
t)] ,

(42)

�y(t) = vx(0)



[cos (
t) − 1] + vy(0)



sin (
t) ,

and for the velocity components

vx(t) = vx(0) cos (
t) + vy(0) sin (
t) ,
(43)

vy(t) = −vx(0) sin (
t) + vy(0) cos (
t).

Here we have used the gyrofrequency 
 and the initial velocity
components in the x and y directions, respectively. In the
following we will compute the coefficients Vxy and Vyx by
using Eq. (11) for real valued displacements and velocities. In
the unperturbed case we interpret the average operator 〈. . .〉 as
average over all possible initial velocities; i.e.,

〈. . .〉 ≡ 1

(2v)2

∫ +v

−v

dvx

∫ +v

−v

dvy. (44)

We derive

Vxy = −Vyx = v2

3

[1 − cos (
t)] . (45)

If we neglect oscillations (e.g., by averaging over one gy-
roperiod) we find Vxy = −Vyx = v2/(3
). The latter result
is known as the weak scattering limit (WSL) and has been
derived earlier from the unperturbed orbit (see, e.g., Ref. [20]).
According to those results we even find a finite drift coefficient
κA if there is no turbulence. The WSL is an exact result for
the case in which there is no turbulence. Therefore, it provides
a useful benchmark to test more general diffusion theories.
Each theory for charged particle drifts should provide the WSL
in the appropriate limit. This limit, however, is valid for the
coefficients Vxy = −Vyx . For the diffusion coefficients defined
by using mean square displacements, we find Dxy = Dyx = 0.
The same calculations can be performed for the diagonal
elements of the diffusion tensor. By combing Eqs. (42)–(44)
and by averaging over a gyroperiod we can easily derive
Vxx = Vyy = 0 for the unperturbed case.

B. The Bieber and Matthaeus model

A heuristic approach for perpendicular diffusion and drifts
has been developed by Bieber and Matthaeus (see Ref. [26]).
The latter authors started with the motion of a particle in
a constant mean magnetic field without turbulence as de-
scribed above. Then they multiplied the unperturbed velocity
correlation functions with exponential factors to describe the
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scattering of particles and therewith the decorrelation from the
unperturbed orbit. They used the Ansatz

〈vx(t)vy(0)〉 = v2

3
sin (
t)e−ωt = −〈vy(t)vx(0)〉. (46)

Here 
 is the gyrofrequency of the particle and ω is an
(unknown) scattering frequency describing the interaction with
magnetic turbulence. According to Eq. (18) the diffusion
coefficient defined by mean square displacements yields zero
for this model. If we use Eq. (3), however, we get

Vxy = v2

3





2 + ω2
= −Vyx. (47)

For ω � 
 we can easily obtain the WSL. A more complete
description of drifts and applications in the theory of solar
modulation can be found in Ref. [20].

VI. SUMMARY AND CONCLUSION

We can clearly see that what we get depends on how
we define and calculate the drift coefficient. Equations (2)
and (3) are not equivalent for the off-diagonal elements.
The coefficients used in the diffusion equation correspond to
those defined by velocity correlations and not by mean square
displacements. For the diagonal elements the three definitions
are equivalent—see Eq. (13) of the present paper.

As an example we have considered the drift coefficient
of cosmic particles propagating through the solar system.
As discussed by Burger and Visser (see Ref. [20]) previous

results for the drift coefficients contradict each other. Some
authors found κxy = κyx whereas other investigators found
κxy = −κyx . This disagreement caused some confusion and
discussion about the correctness of the different approaches
and calculations. The reason for those differences is that
definition (2) of the diffusion coefficient and the Kubo formula
(3) are not equivalent for drifts.

In some cases, however, one is just interested in the
solution of the diffusion equation. In this case the replacement
κij → Dij is allowed. This is especially the case if one tries to
formulate a nonlinear theory for particle transport (see, e.g.,
Ref. [10]). If one is interested in the diffusion flux, however,
it is essential to distinguish between the parameters κij = Vij

and Dij . This difference is important in the theory of solar
modulation.

The results of the present paper are fundamental and not
restricted to the propagation of energetic particles in the solar
system. In any two or three dimensional system where we
have a stochastic motion of particles, we can use a set of
diffusion coefficients to describe the motion of particles. A
further example for a stochastic process is the wandering of
magnetic field lines in turbulence (see, e.g., Refs. [32] and
[33]). For such processes the results of the present paper could
also be important. In general, we can have nonvanishing off-
diagonal diffusion coefficients in such systems. The present
paper explains how such coefficients can be calculated and
that special care is required if one tries to compute the drift
coefficient.
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