
PHYSICAL REVIEW E 83, 046321 (2011)

Inertial migration of an elastic capsule in a Poiseuille flow
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The inertial migration of a two-dimensional elastic capsule in a Poiseuille flow was studied over the Reynolds
number range 1 � Re � 100. The lateral migration velocity, slip velocity, and the deformation and inclination
angle of the capsule were investigated by varying the lateral position, Reynolds number, capsule-to-channel size
ratio (λ), membrane stretching coefficient (φ), and membrane bending coefficient (γ ). During the initial transient
motion, the lateral migration velocity increased with increasing Re and λ, but decreased with increases in φ,γ ,
and the lateral distance from the wall. On the other hand, the deformation of the capsule increased and the
inclination angle became smaller as Re, φ, γ , and the distance from the wall decreased. The initial behavior
of the capsule was influenced by variation in the initial lateral position (y0), but the equilibrium position of the
capsule was not affected by such variation. The balance between the wall effect and the shear gradient effect
determined the equilibrium position. As Re increased, the equilibrium position initially shifted closer to the wall
and then moved toward the channel center. A peak in the equilibrium position was observed near Re = 30 for λ =
0.1, and the peak shifted to higher Re as λ increased. Depending on the lateral migration velocity, the equilibrium
position moved toward the centerline for larger λ, but moved toward the wall for larger φ and γ .
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I. INTRODUCTION

Capsules consisting of a liquid drop enclosed by a thin
deformable membrane are often employed as models for
deformable particles such as biological cells and vesicles
[1,2]. The mechanics of an elastic capsule immersed in a
viscous flow has been studied by many researchers in biology,
bioengineering, and chemical engineering. Capsule mechanics
is particularly important in medical and industrial applications
that use it for cell and particle manipulation. To develop
various capsule products or to facilitate advanced control of
capsules, the principles of capsule mechanics are widely used
in the pharmaceutical, cosmetic, biomedical, and biochemical
industries [3,4].

Capsule mechanics has been studied using both theoretical
and experimental techniques. A theory of the small defor-
mations of elastic capsules with thin and linear viscoelastic
membranes was developed for a simple shear flow by Barthès-
Biesel [5]. Rao et al. [6] solved the large deformation of
two-dimensional (2D) capsules in a shear flow by using a
series expansion technique. Chang and Olbricht [7] investi-
gated experimentally the deformation of an artificial capsule
freely suspended in a circular Couette flow driven by two
counterrotating concentric cylinders. Walter et al. [8] obtained
experimental results for the mechanical properties of an elastic
capsule in a simple shear flow. Numerical studies of capsule
mechanics have begun to be performed relatively recently.
Ramanujan and Pozrikidis [9] studied a liquid capsule in a
simple shear flow for vanishing Reynolds numbers by using a
boundary-element method to investigate the effects of fluid
viscosity on capsule deformation. In particular, Pozrikidis
[1] modeled red blood cells as capsules with various initial
shapes and membrane properties. Sui et al. [10] investigated
the flow-induced deformation of an elastic capsule in a
simple shear flow by varying the membrane bending stiffness.
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Recently, Sui et al. [11] extended a hybrid method based on
the lattice Boltzmann method to investigate the behavior of a
three-dimensional (3D) capsule.

However, in most of the studies of wall-bounded shear
flow mentioned above, capsule migration was not considered.
Chan and Leal [12] investigated the lateral migration of a
sphere in a Poiseuille flow by using a fluid drop model and
a perturbation expansion method. Doddi and Bagchi [13]
studied capsule migration under large deformation in a channel
flow with small fluid inertia. Ma et al. [14] investigated
the initial motion of a 2D capsule in a microchannel, and
the effects on capsule mechanics of elasticity, initial capsule
shape, and initial capsule position were analyzed. In all
these studies, however, the inertial effect was not considered.
Recently, the inertial effect on the migration of particles in
microscale flows has received significant attention [3,4,15].
Di Carlo [16] suggested a promising practical application of
the inertial lift forces intrinsic to particle motions in particle
separation and bioparticle focusing. Precise cell and particle
manipulations can be achieved using the inertial lift forces
to particle migrations in a channel flow. Fundamental studies
of the inertial migration of particles on a macroscale have
been reported by Segré and Silberberg [17], who demonstrated
that a spherical particle in a pipe flow migrates to a specific
equilibrium position and that particle migration across the
streamline originates from the presence of fluid inertia. A
number of theoretical and numerical methods have been
developed to interpret these nonintuitive results [18–20].
Although the inertial migration of particles in Poiseuille flows
has been investigated, most studies have focused on rigid
particle motion and little research into the inertial migration
of elastic particles has been performed.

In the present study, to analyze the effects of fluid inertia
on the transverse movements of elastic particles, the inertial
migration of an elastic capsule in a Poiseuille flow was
investigated numerically in the Reynolds number range 1 �
Re � 100. We used the immersed boundary (IB) method,
which has previously been used to solve fluid-flexible body
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interaction problems [21–23]. The flow field was calculated
in a Eulerian grid system with a Navier-Stokes solver that
employs the fractional step method and a staggered Cartesian
grid. The capsule behavior was determined by solving the
structural equation of motion in a Lagrangian coordinate with
a uniform grid on the membrane. The capsule membrane
was assumed to obey linear elastic rules. The fluid motion
and the capsule motion were solved independently and their
interaction was formulated in terms of momentum forcing.
The lateral migration velocity, slip velocity, deformation, and
the inclination angle of the elastic capsule were examined
by varying the initial lateral position (y0), Reynolds number,
capsule-to-channel size ratio (λ), membrane stretching coeffi-
cient (φ), and membrane bending coefficient (γ ). The effects
of varying these parameters on the equilibrium position and
tank-treading motion were also analyzed.

II. PROBLEM FORMULATION

A schematic diagram of the flow configuration of a circular
elastic capsule moving in a Poiseuille flow is shown in Fig. 1.
The half-channel height and the radius of the capsule are H and
a, respectively. The capsule-to-channel size ratio is λ = a/H
and the initial position of the capsule centroid is denoted by
(x0,y0). Initially, an undisturbed parabolic velocity profile was
imposed

u(y) = Um

(
1 − y2

H2

)
for − H � y � H, (1)

where Um is the maximum velocity at the centerline of the
channel. The periodic boundary condition was adopted in the
x direction and the length of the channel is L. In this approach,
we actually consider the motion of an array of capsules, rather
than of a perfectly isolated capsule, because of the periodic
boundary condition in the x direction. It has been shown that
the intercapsule distance (or channel length L) influences the
motion of such capsules [13]. In the present study, the channel
length was set at L = 8H, so the hydrodynamic interactions
between the capsules almost vanish.

The capsule has an elastic membrane on the boundary �

when the Lagrangian coordinate (s) is used. The capsule is
immersed in a fluid domain � that is described in Eulerian

L

o 2H

(x, y)

x
y

(x0, y0)

FIG. 1. Schematic diagram of an elastic capsule in a Poiseuille
flow.

coordinates (x). The incompressible viscous flow is governed
by the Navier-Stokes equations and the continuity equation

ρ0

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u + f, (2)

∇ · u = 0, (3)

where u is the velocity vector, p is the pressure, ρ0 is the fluid
density, μ is the dynamic viscosity of the fluid, and f is the
Eulerian forcing acting on the immersed boundary (IB), as
constrained by the no-slip boundary condition. The structural
equation of motion of the elastic capsule can be expressed as

ρ1
∂2X
∂t2

= ∂

∂s

(
φ

(∣∣∣∣∂X
∂s

∣∣∣∣ − 1

)
∂X
∂s

/∣∣∣∣∂X
∂s

∣∣∣∣
)

− ∂2

∂s2

(
γ (κ − κ0)

∂2X
∂s2

/∣∣∣∣∂
2X

∂s2

∣∣∣∣
)

− F, (4)

where s is the Lagrangian coordinate along the membrane
length and X = [X(s,t),Y(s,t)] is the position. κ = |∂2X/∂s2| is
the instantaneous membrane curvature and κ0 is the initial
membrane curvature. φ is the stretching coefficient of the
capsule, γ is the bending coefficient, and ρ1 denotes the
additional boundary density. Note that the surrounding fluid
density is subtracted from ρ1 and that the actual capsule
boundary density is ρ1 + hρ0, where ρ0 is the fluid density
and h is the capsule thickness. The last term F represents
the Lagrangian forcing acting on the capsule due to the
surrounding fluid.

We treated the fluid density ρ0, the half-channel height H,
and the centerline velocity Um as the characteristic density,
length, and velocity, respectively. Thus we introduced the
following characteristic scales: H/Um for the time, ρ0H for
the boundary mass, ρ0U

2
m for the pressure as well as the La-

grangian forcing F, ρ0U
2
m/H for the Eulerian forcing f, ρ0U

2
mH

for the stretching coefficient φ, and ρ0U
2
m/H for the bending

coefficient γ . For convenience, in the remainder of this paper
the dimensionless quantities are written in the same form as
their dimensional counterparts. After nondimensionalization,
Eqs. (2) and (4) take the following dimensionless forms:

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u + f, (5)

ρ
∂2X
∂t2

= ∂

∂s

(
φ

(∣∣∣∣∂X
∂s

∣∣∣∣ − 1

)
∂X
∂s

/∣∣∣∣∂X
∂s

∣∣∣∣
)

− ∂2

∂s2

(
γ (κ − κ0)

∂2X
∂s2

/∣∣∣∣∂
2X

∂s2

∣∣∣∣
)

− F, (6)

where Re = ρ0UmH/μ and ρ = ρ1/ρ0H.
Since the fluid and the structure are coupled through the

membrane or the immersed boundary (IB) of the capsule, the
Lagrangian forcing can be calculated along the IB by using
the feedback law

F = α

∫ t

0
(Uib − U)dt + β(Uib − U), (7)

where Uib is the fluid velocity calculated with interpolation
at the IB and U is the velocity of the capsule calculated with
U = dX/dt . The first term of the forcing in Eq. (7) connects the
fluid closely to the surface and the second term annihilates the
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FIG. 2. Migration of the capsule for two different initial lateral
positions (y0 = −0.05 and −0.75) in a Poiseuille flow at Re = 40,
λ = 0.2, and φ = 1.

difference in the velocity. In other words, this interaction force
approximates the no-slip boundary condition on the moving
surface. Increasing the values of α and β results in a more
accurate interaction force (α = −105 and β = −10), which
is shownin Table I [24].

The Lagrangian and Eulerian variables were transformed by
using the regularized delta function δ. We used the smoothed
approximation of the Dirac delta function to interpolate the
velocity and momentum forcing between the Eulerian and
Lagrangian coordinate systems. For example, the velocity
is spread across the immersed boundary with the following
equation:

Uib(s,t) =
∫

�

u(x,t)δ(X(s,t) − x) dx. (8)

Here, we used the four-point regularized delta function
discussed by Shin et al. [24]. Also the Lagrangian forcing
was spread to the nearby Eulerian grids by using a similar
equation

f(x,t) =
∫

�

F(s,t)δ(x − X(s,t))ds. (9)

Details regarding the numerical procedure can be found in
Shin and Sung [22].

III. RESULTS AND DISCUSSION

The inertial migration of a two-dimensional elastic capsule
in a Poiseuille flow was examined by varying the initial
lateral position (y0), Reynolds number, capsule-to-channel
size ratio (λ), membrane stretching coefficient (φ), and
membrane bending coefficient (γ ). The bending coefficient
γ was assumed to be the ratio of the stretching coefficient to

TABLE I. Comparison of the lateral position, lateral velocity,
and slip velocity at t = 150 for different computational parameters
(α and β) at Re = 40, λ = 0.2, φ = 1, and y0 = −0.75.

y at t = 150 v at t = 150 uslip at t = 150

α = −105 and β = −10 −0.317 58 9.81 × 10−5 0.0369
α = −104 and β = −10 −0.317 46 9.89 × 10−5 0.0369
α = −105 and β = −1 −0.317 58 9.80 × 10−5 0.0369

the bending coefficient γ /φ = 1 × 10−5 and the additional
boundary density was set at ρ = 0.01 by default unless
otherwise stated. The computational domain in the y direction
ranges from −1 to 1, that is, the channel height is 2. This
geometry is symmetrical, so we only considered the migration
of the capsule released below the centerline of the channel in
the range −1 � y0 � 0. As mentioned above, the intercapsule
distance (or channel length) was set at L = 8. First, the effects
of varying the initial lateral position were examined for Re =
40, λ = 0.2, and φ = 1. The migration of the capsule for two
different initial conditions (y0 = −0.05 and −0.75) is shown
in Fig. 2. After the capsule is released, it deforms due to the
hydrodynamic stresses, and aligns itself at an angle with the
direction of the flow. Larger shear stresses are imposed close to
the wall, so the deformation of the capsule with y0 = −0.75 is
greater and it is more aligned with the flow than that with y0 =
−0.05; a different initial lateral position results in different
initial behavior. However, as time passes, the two capsules
migrate toward the same lateral position and finally attain the
same shape and position near t = 200.

Figure 3 shows the evolutions of the lateral position y, lateral
velocity v, and slip velocity uslip for y0 = 0, −0.05, −0.2, −0.6,
and −0.75. The slip velocity is the relative motion between
the fluid and the capsule, and is obtained by subtracting the
capsule velocity from the fluid velocity at the location of the
capsule centroid in the undisturbed flow. As shown in Fig. 3(a),
the capsule starting from the center of the channel (y0 = 0)
migrates to the centerline due to the hydrodynamic stresses
on the capsule imposed symmetrically by the background
Poiseuille flow. When the elastic capsule is released at other
lateral positions it moves toward other equilibrium positions.
Note that the capsule starting near the channel center (y0 =
−0.05) does not move toward the centerline but to another
equilibrium position. When the capsule is released closer to
the wall, the lateral velocity of the capsule is higher and
it migrates more quickly to its equilibrium position. The
capsule velocity diminishes in the lateral direction as
the capsule reaches the equilibrium position in Fig. 3(b).
The slip velocity reaches its maximum value during the initial
transient motion and then converges to a steady state, as shown
in Fig. 3(c). When the capsule is released closer to the wall,
a higher slip velocity is obtained during the initial motion
because the viscous shear stress near the bottom wall delays
capsule motion. In Fig. 3(d), plots of the lateral velocity as
a function of the lateral position are presented for various
initial positions. During the initial transient motion, a positive
lateral velocity is observed regardless of the initial lateral
position. After the initial transient motion, a negative (positive)
lateral velocity is generated for y0 = −0.05 and −0.2 (y0 =
−0.6 and −0.75) toward the equilibrium position. The lateral
velocity, as well as the slip velocity, is an order of magnitude
lower than the fluid velocity (or the capsule velocity in the x
direction).

In Fig. 4, the velocity vectors are shown at three points
in time during the migration of the capsule for two different
initial positions. The vectors were obtained by subtracting the
x velocity of the capsule centroid from the fluid velocity. In
Fig. 4(a), the capsule migrates toward the bottom wall for
y0 = −0.05. This phenomenon can be explained by using the
Bernoulli equation. At t = 20, the relative velocity above the
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FIG. 3. Variations with time of (a) the lateral position y, (b) the lateral velocity v, (c) the slip velocity, and (d) the lateral velocity versus the
lateral position for the elastic capsule in a Poiseuille flow starting with five different initial conditions y0 at Re = 40, λ = 0.2, and φ = 1.
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capsule (a) y0 = −0.05 and (b) y0 = −0.75.
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FIG. 5. Variations with time of (a) the lateral position, (b) the lateral velocity, (c) the slip velocity, and (d) the lateral velocity versus the
lateral position, for various Reynolds numbers and grid numbers.

capsule is smaller than that below the capsule, which means
that the pressure above the capsule is higher than that below
the capsule. A negative lift then arises and the capsule moves
toward the bottom wall. As time passes, the velocity difference
between the top and bottom of the capsule decreases and the
negative lift also decreases. A clockwise rotating vortex is
generated inside the capsule and the vortex is strengthened as
it moves toward the bottom wall. In Fig. 4(b), the capsule is
released close to the bottom wall and the interaction between
the capsule and wall raises the positive lateral velocity around
the capsule at t = 2.5. At that time, the center of the clockwise
rotating vortex is located above the capsule centroid. When
the capsule moves away from the bottom wall, the positive
velocity around the capsule is weakened and the center of the
vortex is located close to the capsule centroid. The balance
between the negative lift given by the Bernoulli equation and
the positive lift due to the wall effect results in the specific
equilibrium position.

Next, the effects of varying Re on the behavior of the
capsule were investigated for λ = 0.2, φ = 1, and y0 =
−0.75. Figure 5 shows the variations with time of the lateral
position, lateral velocity, and slip velocity for Re = 10, 20,
40, and 100. Figure 5(a) shows that first the equilibrium

position shifts closer to the bottom wall and then toward the
channel center as Re increases (see Fig. 8). During the initial
transient motion, a higher positive lateral velocity is obtained
for higher Re. Transient oscillations of the lateral velocity
can be seen in Fig. 5(b), especially for Re = 100. A similar
transient oscillation of the deformation of a liquid drop has
been reported [25,26]. The transient time required to reach
the equilibrium position decreases with increases in Re, as
shown in Figs. 5(a) and 5(b). As Re decreases, the slip velocity
decreases due to the increase in the viscous force of the fluid
flow. The variations for various values of Re of the lateral
velocity with the lateral position are presented in Fig. 5(d).
The lateral velocity decreases with increases in the lateral
distance from the bottom wall, regardless of Re. For lower Re,
the region affected by the bottom wall is widened because of
the larger viscous force of the fluid flow. Hence, the bottom
wall pushes the capsule farther from the wall and the capsule
migrates farther from the wall for Re = 10, although the initial
positive lateral velocity is smaller than for the other higher Re,
as shown in Fig. 5(d). It is expected that, on going to lower Re,
the capsule will move even further from the wall until it reaches
the center of the channel for very low Re [see Fig. 16(a)].
The sensitivities of the Eulerian and Lagrangian resolutions
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FIG. 6. Variations with time of (a) the Taylor deformation parameter and (b) the inclination angle (with respect to the x axis) for various
Reynolds numbers.

were tested by selecting three different resolutions for Re =
100: (i) 1024 × 257 Eulerian grids and 160 Lagrangian grids;
(ii) 1536 × 385 Eulerian grids and 240 Lagrangian grids;
(iii) 2048 × 513 Eulerian grids and 320 Lagrangian grids. As
can be seen in Fig. 5, no significant difference was observed.
In the present study, 1536 × 385 Eulerian grids and 240
Lagrangian grids were used.

The effects of varying Re on capsule deformation were also
studied. Figure 6 shows the initial variations with time of the
Taylor deformation parameter Dxy and the inclination angle θ

for various Re. The Taylor deformation parameter is defined
as Dxy = (LA − LB)/(LA + LB), where LA and LB are the
maximum and minimum radii, respectively, of the deformed
capsule. The inclination angle is the angle between LA and the
x axis. Since the viscosity effects are larger for lower Re, the
deformation of the capsule is greater and it is better aligned
with the direction of the flow. As a result, Dxy increases and
θ/π decreases for lower Re.

We examined the migration of a capsule starting near
the center (y0 = −0.15) for various Reynolds numbers. The
variations of the lateral position are shown in Fig. 7(a) for
two different initial positions. The capsules with y0 = −0.15
and y0 = −0.75 move faster to the equilibrium position as Re
increases. Transient oscillations of the lateral velocity can be
seen in Figs. 7(b) and 7(d). As for y0 = −0.75, a higher positive
lateral velocity is obtained during the initial transient motion
for a higher Re. After the initial transient motion, however, a
negative lateral velocity is observed until the capsule reaches
the equilibrium position. At Re = 40, the negative lateral
velocity is higher than for other values of Re, as shown
in Figs. 7(b) and 7(d), in accordance with the equilibrium
position. The slip velocity increases with increases in Re due
to the decreases in viscous stress, as shown in Fig. 7(c). The
variations of the equilibrium position yeq of the capsule with
the capsule-to-channel size ratio λ and Re are presented in
Fig. 8. The equilibrium position is defined as the distance
between the channel centerline and the capsule centroid. There
is a peak in the equilibrium position near Re = 30 for λ = 0.1

and this peak shifts to higher Re for larger λ. The equilibrium
position moves up toward the center of the channel (yeq = 0)
with increasing λ. The capsule migrates to the centerline of
the channel, regardless of Re, especially for λ = 0.4.

During the migration, the capsule not only moves toward
the equilibrium position, but also its membrane rotates in
a clockwise direction as it becomes stressed in the fluid
flow [27]. After the capsule reaches the equilibrium position,
its shape becomes constant and its membrane rotates with a
frequency f. This tank-treading motion is presented in Fig. 9(a)
as a series of capsule contours for Re = 100, λ = 0.2, and φ =
1. The small square symbols indicate the same Lagrangian
point on the membrane, and thus clearly show the clockwise
rotating motion. The Strouhal number for tank-treading motion
St = (Hf)/Um is shown in Fig. 9(b) for various size ratios
and Reynolds numbers. The variation of St is similar to that
of the equilibrium position shown in Fig. 8. As mentioned
in Fig. 4(a), a clockwise rotating vortex is generated inside
the capsule and the vortex is strengthened as the capsule
approaches the bottom wall. When the equilibrium position
is closer to the wall, the capsule is affected by larger shear
stresses and it rotates faster. For λ = 0.2, the capsule with
Re = 40 migrates closer to the bottom wall and a larger
clockwise vortex is generated than that with other Reynolds
numbers. Similarly, for λ = 0.4, the capsule moves toward
the centerline and its membrane no longer rotates due to the
symmetrical hydrodynamic stresses.

The effects of varying the capsule-to-channel size ratio
on the migration of the capsule were scrutinized for Re =
40, φ = 1, and y0 = −0.55. Figure 10 shows the variations
of the lateral position, lateral velocity, and slip velocity for
various size ratios λ = 0.1, 0.2, 0.3, and 0.4. For larger λ,
the capsule moves more strongly toward the center of the
channel, as shown in Fig. 10(a). During the initial transient
motion, a higher positive lateral velocity is obtained for larger
λ, as shown in Fig. 10(b). Figure 11 shows the fluid velocity
vectors at three points in time for two different size ratios. The
fluid velocity below the capsule is lower due to the no-slip
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FIG. 7. Variations with time of (a) the lateral position, (b) the lateral velocity, (c) the slip velocity, and (d) the lateral velocity versus the
lateral position for various Reynolds numbers.

condition of the bottom wall. The velocity difference between
the bottom and top of the capsule increases with increasing
λ, as shown in Fig. 11. A larger velocity difference generates
a larger positive lift according to the Bernoulli equation. In
addition, the bottom part of a capsule with a larger size ratio

Re
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0.4 φ=1
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λ=0.1

λ=0.2
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FIG. 8. Equilibrium positions of the elastic capsule for λ = 0.1,
0.2, 0.3, and 0.4, for the range Re = 5–100.

is closer to the bottom wall for the same lateral position of the
capsule centroid. Hence, the capsule with a larger size ratio
is influenced more by the wall and a larger positive lateral
velocity is generated, as shown in Fig. 10(d). The slip velocity
in Fig. 10(c) also increases with the size ratio because of the
larger hydrodynamic effect of the bottom wall. As a result,
the capsule with λ = 0.4 migrates more strongly toward the
centerline than that with λ = 0.2, as shown in Fig. 11. At t =
200, the capsule with λ = 0.4 reaches the centerline and its
shape becomes that of a parachute due to the hydrodynamic
stresses of the background Poiseuille flow [28,29].

The effects of varying the membrane stretching coefficient
φ and bending coefficient γ on the equilibrium position of
the capsule are displayed in Fig. 12. As φ increases, the
equilibrium position shifts toward the bottom wall (yeq = 1).
There is a peak in the equilibrium position near Re = 40 for
φ = 1 and this peak moves to Re = 30 for φ = 10 and 100.

The equilibrium position shifts toward the bottom wall for
larger γ in Fig. 12(b). Figure 13 depicts the variations of
the lateral position, the lateral velocity, and the slip velocity
for various membrane stretching coefficients, φ = 1, 10, and
100; in this figure, Re = 10, λ = 0.2, and γ = 10−5. For
smaller φ, a larger positive lateral velocity is generated, as
shown in Figs. 13(b) and 13(d). Accordingly, as the membrane
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FIG. 9. (a) Tank-treading motion for Re = 100, λ = 0.2, and φ = 1. (b) The variation of the Strouhal number with Re for various values of
the size ratio λ.

stretching coefficient decreases, the capsule migrates more
strongly toward the center, as shown in Fig. 13(a). The slip
velocity is smaller for more deformable capsule (φ = 1) in
Fig. 13(c) because it exhibits the less resistance to the flow. Fig-
ure 14 depicts the variations of the lateral position, the lateral
velocity, and the slip velocity for various membrane bending

coefficients γ = 10−5, 10−4, and 10−3 at Re = 40, λ = 0.2,
and φ = 10. For smaller γ , the slip velocity decreases and a
higher positive lateral velocity is obtained in Fig. 14.

The variation of the Taylor deformation parameter Dxy

is presented in Fig. 15(a) for three different membrane
stretching coefficients φ. The initial peak of the deformation
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FIG. 11. Fluid velocity vectors at three points in time during the migration of capsules with y0 = −0.55. (a) λ = 0.2 and (b) λ = 0.4.

rapidly rises, and then converges to a steady state. As the
membrane stretching coefficient φ increases, the deformation
of the capsule decreases. Figure 15(b) shows the effect of the
bending coefficient γ on Dxy . The deformation of the capsule
decreases with increasing γ . This variation is similar to that
of the equilibrium position shown in Fig. 12(b). These figures
show that the deformation of the capsule is closely related
with the capsule migration. The deformation of the capsule
influences the balance of the hydrodynamic forces, particularly
the viscous shear and inertia forces, and finally determines
the specific equilibrium position. This phenomenon might

be useful in biological applications, such as the separa-
tion of cells that have similar size but different membrane
elasticity.

The effects of varying the size ratio and Re on the lateral
velocity were scrutinized for φ = 10 and y0 = −0.65. The
lateral velocity is depicted as a function of the lateral position
in Figs. 16(a), 16(b), and 16(c) for Re = 1, 10, and 100,
respectively. The wall pushes the capsule farther from the
wall for lower Re, as mentioned above, and the capsule for
Re = 1 moves more strongly until it reaches the centerline
regardless of the size ratio [28,29]. For Re = 10, the variations
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FIG. 12. Equilibrium positions for various membrane stretching coefficients φ and bending coefficientsγ for the range Re = 10–100.
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of the lateral velocity are similar to those for Re = 1, though
the equilibrium positions are different to those for Re = 1.
On the other hand, the variation of the lateral velocity for
Re = 100 is very different from those for Re = 1 and 10 due
to the larger inertial effect. Figures 16(d), 16(e), and 16(f)
show the variations of the lateral velocity as functions of
λ3 keeping the lateral position constant. The lateral velocity
increases linearly with λ3 for Re = 1 and 10. These results
are in good agreement with previous analytical predictions
[20,30]. Note that the inertial effect was not considered
in these previous studies. As Re increases, a deviation is
observed from the linear dependence of v on λ3 for Re = 100,
which might be due to the effects of fluid inertia on capsule
migration.

During migration in a Poiseuille flow, the capsule expe-
riences two lift forces perpendicular to the flow direction:
one generated by the shear gradient effect and the other by
the wall effect. The negative lift toward the bottom wall is
generated by the shear gradient in the Poiseuille flow. The x
velocity of the capsule centroid uc is obtained by subtracting
the slip velocity uslip from the fluid velocity at the location
of the capsule centroid in the undisturbed flow, as shown in
Eq. (1),

uc = (
1 − y2

c

) − uslip. (10)

The fluid velocities at the top and bottom of the capsule can
be obtained as follows

utop = (1 − (−yc + λ)2),
(11)

ubottom = (1 − (−yc − λ)2) for 0 � yc � 1.

Then, the relative velocities between the fluid and
capsule at the top and bottom can be calculated as
follows:

urel
top = utop − uc = (2λyc − λ2) + uslip

(12)
urel

bottom = uc − urel
bottom = (2λyc + λ2) − uslip.

For simplicity, we can neglect the slip velocity uslip because
it is relatively small. The relative velocity at the top of the
capsule is always smaller than that at the bottom of the capsule,
which means that the pressure at the top of the capsule is higher
than that at the bottom of the capsule. The negative lift force
arises around the capsule due to the Poiseuille flow velocity
profile.

On the other hand, a positive lift force toward the center
of the channel develops due to the no-slip condition of the
bottom wall. When the capsule is closer to the wall, the fluid
velocity profile is changed by the larger shear stress of the
wall and a higher pressure is generated below the capsule. As
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FIG. 13. Variations with time of (a) the lateral position, (b) the lateral velocity, (c) the slip velocity, and (d) the lateral velocity versus the
lateral position for various values of φ.
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FIG. 14. Variations with time of (a) the lateral position, (b) the lateral velocity, (c) the slip velocity, and (d) the lateral velocity versus the
lateral position for various values of γ .

Re increases, a smaller wall effect generates a smaller positive
lift force and then the equilibrium position shifts toward the
bottom wall. As Re increases further, the fluid velocity profile
becomes flatter and the velocity difference between the top

and bottom of the capsule decreases. Hence, for much higher
Re, the negative lift force due to the shear gradient effect de-
creases and the equilibrium position shifts toward the channel
center.
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FIG. 15. Variation of the Taylor deformation parameter Dxy for various values of (a) membrane stretching coefficients φ and (b) bending
coefficients γ at Re = 10, λ = 0.2, and y0 = −0.75.
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FIG. 16. Plots of the lateral velocity as a function of the lateral position for (a) Re = 1, (b) Re = 10, and (c) Re = 100, and the variations
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IV. CONCLUSION

The inertial migration of an elastic capsule in a Poiseuille
flow has been studied numerically by using the immersed
boundary method. The behavior of the capsule is affected
by various parameters, particularly the initial lateral position
(y0), Re, the capsule-to-channel size ratio (λ), the membrane
stretching coefficient (φ), and the membrane bending coef-
ficient (γ ). A different initial lateral position of the capsule
results in different initial behavior. When the capsule is
released closer to the wall, the lateral velocity is higher and
the capsule migrates more quickly toward the equilibrium
position. Larger shear stresses are imposed closer to the wall,
so the deformation of the capsule is larger and a higher slip
velocity is observed. However, as time passes, the capsule
migrates to the same equilibrium position regardless of the ini-
tial lateral position. The effects of varying Re on the capsule
behavior were also studied. As Re increases, a higher positive
lateral velocity is obtained during the initial transient motion
and less transient time is required to reach the equilibrium
position. Since the viscosity effects are smaller for higher Re,
the capsule deforms less, is less aligned with the direction of
the fluid flow, and the slip velocity increases. A change in the
Reynolds number affects the equilibrium position by changing
the fluid velocity profile and the strength of the shear stress near
the wall. As Re increases, the size of the region that is affected
by the wall decreases because the viscous force of the fluid is
weaker. For higher Re, the negative lift force due to the shear
gradient decreases because the fluid velocity profile is flatter
and the velocity difference between the top and bottom of the
capsule decreases. The balance between the wall effect and
the shear gradient effect determines the equilibrium position.

As a result, the equilibrium position first shifts closer to the
bottom wall and then to the channel center, as Re increases.
There is a peak in the equilibrium position near Re = 30 for
the capsule-to-channel size ratio λ = 0.1 and the peak shifts
to higher Re as the capsule-to-channel size ratio increases.
As the size ratio λ increases, the velocity difference between
the bottom and the top of the capsule becomes larger and the
capsule is influenced more by the wall for the same lateral
position of the capsule centroid. As a result, a higher positive
lateral velocity is generated and the equilibrium approaches
the upper centerline for larger λ. The membrane stretching
coefficient (φ) and bending coefficient (γ ) directly influence
the deformation of the capsule. For larger φ and γ , the capsule
deforms less and the inclination angle is larger. Capsule
deformation affects the balance between the viscous shear
force and inertia force, and changes the specific equilibrium
position. As φ and γ increase, a lower positive lateral velocity
is generated around the capsule and the equilibrium position
moves toward the wall. During the migration of the capsule,
the capsule membrane rotates due to the shear stresses of
fluid flow. This tank-treading motion is closely related to the
equilibrium position. As the equilibrium position moves closer
to the wall, the capsule becomes influenced by the larger shear
stresses and then its membrane rotates faster. As a result, the
variation of St for the tank-treading motion is proportional to
that of the equilibrium position.
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