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Asymmetry and bifurcations in three-dimensional sudden-contraction channel flows
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This study reports the presence of two different stable modes of bifurcation in the near field of a three-
dimensional sudden contraction. To be precise, flow downstream of a symmetric sudden contraction undergoes
a transition from a symmetric state to an asymmetric state through a symmetry-breaking pitchfork bifurcation
following an increase in the channel aspect ratio or the Reynolds number. In addition, the oncoming (upstream)
symmetry-plane flow exhibits spanwise bifurcations along the topological core lines of each of the salient roof
and floor eddies. Small aspect-ratio (contraction) channels are noted to facilitate interesting splitting of the salient
roof and floor eddies into multicore forms with accompanying spanwise flow bifurcations along the respective
vortical core lines. Herein extensive three-dimensional simulations performed with various aspect and contraction
ratios and Reynolds numbers clearly suggest that flow transition in the sudden-contraction channels should indeed
occur primarily through these two generically distinct modes of bifurcation.
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I. INTRODUCTION

Flow through a contraction channel with steps is one
of the simplest models that is inhomogeneous in the flow
direction, and appears to display interesting pitchfork bifur-
cating solutions at higher aspect ratios. On the other hand,
such entry flow problems are of fundamental interest in
understanding kinematics of viscoelastic flows (melt flow
instability), in particular, in polymer processing. However,
unlike for flows in channels with a suddenly expanded part, the
exploration of flow physics around three-dimensional sudden
contractions is yet to receive adequate attention. An early
review covering both Newtonian and non-Newtonian aspects
of flows around sudden contraction is provided by Boger [1]. In
general, the important physically distinguishable flow features
around the contraction area (Fig. 1) may be characterized as
(i) the formation of two recirculating eddies at the upstream
salient corners and (ii) the growth of two separation bubbles
(tip corner eddies) immediately downstream of the plane of
contraction. Notably, while most of the available investigations
(e.g., Dennis and Smith [2], Durst and Loy [3], Durst ez al. [4],
Hawken et al. [5], and Huang and Seymour [6]) on the
topic remained concerned with two-dimensional (2D) flow
behaviors observed at moderate Reynolds numbers, almost
all practical flow situations are, however, inherently three
dimensional and they often occur at a relatively higher
Reynolds number (Re). Notably, in three dimensions the
physically sensitive critical parameters in a sudden-contraction
flow are the aspect ratio A, the contraction ratio C, and
the Re. According to Dennis and Smith [2], for a fixed
contraction ratio C = 2 (and Re < 1000), the separation
length L; of the upstream salient eddy (comprising a single
recirculating bubble, as shown in Fig. 1) varies linearly with
Re, ie., L} = 0.1289 In(Re) — 0.547. Furthermore, existing
(two-dimensional) investigations report symmetrical growth
of single-core upstream separation bubbles (with the same
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separation lengths L; extending along the channel roof and
floor and the same reattachment lengths L, over the two
vertical planes of contraction) along the roof and floor of
the channel (Fig. 1). However, our three-dimensional (3D)
simulations in setups having relatively lower aspect ratios
demonstrate interesting near-transitional splitting behavior of
the salient roof and floor eddies (formed immediately upstream
of the plane of contraction). In addition, the presently observed
phenomenon of the occurrence of spanwise flow bifurcations
along critical core lines of (split) salient roof and floor eddies
remained virtually unknown. Moreover, we note the clear
persistence of pitchfork bifurcation in the downstream flow
beyond a critical Reynolds number. One of the aims of the
present study is therefore to explore these physically sensitive
important (but relatively unknown) flow phenomena in three
dimensions (which are noted to occur in the vicinity of two
steps of the sudden contraction) and extract the governing
physics.

Notably, over the years, the transition behavior of flows in
symmetric sudden-expansion channels has been investigated
extensively. To this point, experimental findings of Durst
et al. [7] and Cherdron et al. [8] demonstrate that such
expansion flows (in a perfectly symmetric setup) remain
symmetric at low Reynolds numbers, but become asymmetric
at a higher Re. Later, Fearn er al. [9] found that the
asymmetry in the flow above some critical Re appears due
to a pitchfork bifurcation. On the other hand, Mizushima et al.
[10] numerically investigated the stability of two-dimensional
flows in a symmetric channel with a suddenly expanded
and contracted part. According to their findings, the flow
in the setup remains steady and symmetric at low Reynolds
numbers, becomes asymmetric at a critical Reynolds number
Re; due to symmetry-breaking pitchfork bifurcation, and
regains symmetry at another critical Reynolds number Re,
owing to another pitchfork bifurcation. The symmetric flow
eventually becomes oscillatory at some other critical Reynolds
number Re; owing to a Hopf bifurcation. Remarkably, the
aspect ratio of such an expansion-contraction channel was
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FIG. 1. Schematic of the three-dimensional contraction channel
flow and its symmetry-plane features.

found to have a profound effect on the unstable growth of
the downstream flow. An exchange of modes with oscillatory
instabilities was found to occur for the flow as the aspect
ratio, the ratio of the length of the expanded part to its
width, varied. For the channel aspect ratio 2.44, hysteresis
was noted to occur (Ref. [11]) for a certain range of Reynolds
numbers, in which the setup facilitates the growth of two
stable and two unstable asymmetric solutions and a stable
symmetric solution. In contrary, it is interesting to note that the
corresponding three-dimensional flows [12] exhibit perfectly
symmetric solutions, with no sign of bifurcation.

On the other hand, surprisingly, the present investigation
concerning three-dimensional flow evolution in a symmetric
sudden contraction channel reveals the coexistence of two
different modes of dominant bifurcating solutions in the
setup, and such flow bifurcations in 3D remained virtually
unexplored. Notably, most of the existing investigations (e.g.,
Refs. [2,4-6]) preassumed the symmetric nature of the flow
and often conducted 2D simulations in the half-channel.
However, our simulated results, covering a wide range of
physically sensitive parameter spaces, clearly indicate that
the pitchfork bifurcation remains inherently the strongest
feature of 3D plane sudden-contraction channel flows. In
addition, a physically significant new phenomenon is noted to
occur in these three-dimensional contraction flows, that is, the
occurrence of spanwise bifurcation of the oncoming upstream
symmetry-plane flow along each of the topological core lines
of salient roof and floor eddies. While being consistent, in the
present study we aim to exploit these important bifurcation
characteristics of 3D sudden-contraction channel flows, and
extract the unknown inner physics.

II. MATHEMATICAL MODEL AND THE NUMERICAL
IMPLEMENTATION

The physical problem considered here is the three-
dimensional steady incompressible flow evolution through a
planner symmetric channel with sudden contraction. Fully
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developed laminar flow enters into the channel inlet situated
at a streamwise distance 2.5D upstream of the plane of
contraction (D being the transverse width of the inlet channel),
and the length of the contraction part is 5D (=20 d or 10 d,
depending on the contraction ratio; d is the width of the
symmetric channel downstream of the plane of contraction).
Therefore, the two equal sized step heights of the channel
became (D—d)/2, leading to channel contraction ratio C =
D/d. Notably, our flow configuration remained consistent with
the past experimental [4] and computational [5,6] setups used
for corresponding two-dimensional investigations. In order to
have a broader understanding of the developed flow and to
clearly establish the governing physics (including different
bifurcation scenarios), the spanwise width “B” (B = AD, A
being the aspect ratio) of the channel was carefully varied
between 0.5D and 48D. In a rectangular Cartesian coordinate
system with the origin situated at the center of the plane of
contraction (Fig. 1), the x axis (which coincides with the
channel axis) is taken along the streamwise direction, the
y axis remained directed along the channel span, and the z axis
is taken along the step height. Extensive 3D flow simulations in
the setup are carefully conducted with five different Reynolds
numbers, 1250, 1500, 1750, 3150, and 3500, two different
contraction ratios, C = 2 and C = 4, and a sequence of 26
values of channel aspect ratio within 0.5D < A < 48D, to
clearly establish the associated physics.

The flow characteristics in the physical setup are modeled
by the three-dimensional steady incompressible Navier-Stokes
equations,

u-Vu=—-Vp+ Vu/Re, (1)
V-u=0, 2)

where all lengths have been nondimensionalized by the
transverse channel width D (=1) upstream of contraction.
The velocities are normalized with respect to the chosen
characteristic velocity U.,, which takes on a value 2/3 times
that of the inlet maximum velocity uma.x (=3/2), and the
pressure is nondimensionalized with respect to pU3,. The
Reynolds number of the flow is defined as

Re = [(2/3)umax | D/ V.

Concerning the implemented boundary conditions, for all
the investigated cases we specify fully developed velocity
profiles (e.g., see Ref. [13]) at the channel inlet, and at the
exit a zero gradient outflow boundary condition is used. Along
the sidewalls no-slip conditions are specified. Notably, with
the help of presently adopted primitive variable formulations
we carefully avoided the undesirable scenario of encountering
corner singularities (of infinite vorticity at the tip corners)
that were often faced (e.g., Refs. [2,6]) while using the
stream-function vorticity approach.

In order to calculate the velocity (u) and pressure (p)
fields numerically, the primitive-variable equations (1) and (2)
have been discretized using a well-refined staggered multigrid
(control volume) system of 2.97x10° nodes of variable
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FIG. 2. Comparison of present results with those obtained using various uniform/nonuniform grids and symmetry-plane (2D) measurements

for the contraction flows. (a) Streamwise velocity («) profiles (on y =

0) through different stations, Re = 2000, C = 2; (b) computed two- and

three-dimensional u-velocity profiles on the plane of symmetry y = 0 and the experimental prediction of Durst et al. [4], Re = 1150, C = 4;

(c) comparison of presently simulated vorticity field with those obtai

ned by using the stream-function-vorticity approach, Re = 1000, C = 2;

and (d) vorticity along downstream channel roof/floor, C = 2, Re = 1000. % is the uniform grid width.

width. The convective terms in the momentum equations are
discretized by a modified version of the third order accurate

Quick scheme of Leonard [14], which accommodates suitable
distributions of nonuniform grids (see Ref. [15] for details).
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TABLE 1. Details of the nonuniform grid-A.

C x(min, max) N(dx,dy,dz) dx(min,max) dy(min,max) dz(min,max)
2 (—=2.5,5.0) (110, 150, 160) (0.001, 0.25) (0.01, 0.24) (0.001, 0.02)
4 (=2.5,5.0) (110, 150, 180) (0.001, 0.25) (0.01, 0.24) (0.001, 0.01)

This appeared necessary in order to accurately resolve the
local growth of vortical structures particularly near the sharp
edges/corners. The viscous terms are discretized using a
second order accurate central difference scheme. As far as
a solution algorithm is concerned, we adopted the Simple-C
method of Van Doormaal and Raithby [16] to achieve accurate
results at a faster convergence rate. The pressure field is
solved using the pressure-velocity coupling method. Notably,
for all the investigated cases, the solution was considered
to have converged when global L, norms of pressure and
velocity residuals reached a value below 1072, The solver
was thoroughly validated, first by taking into account the
grid independence of the computed results, and second by
obtaining a good comparison of our simulated results with the
previous relevant investigations. The optimized nonuniform
grid length scales with finer grids placed near the sharp
corner/reverse-flow regions are presented in Table 1. On the
other hand, it is noteworthy that Fig. 2 clearly demonstrates
that our simulated results obtained with both uniform and
nonuniform grids compare quite well with those of Durst
et al. [4], Hunt [17], Dennis and Smith [2], and Huang and
Seymour [6].

III. RESULTS AND DISCUSSION

Notably, the primary objective of the present investigation
is to provide an in-depth understanding of the observed
bifurcating flow behavior in the near field of a 3D plane
symmetric sudden contraction. However, for the sake of
consistency, we begin the section by presenting some of
the simulated two-dimensional flow features. Figure 3(a)
illustrates the detailed symmetry-plane (y = 0) characteristics
of the developed nonbifurcating steady flow (in a channel
having contraction ratio C = 4 and aspect ratio A = 4)
in association with superimposed streamwise (i) velocity
profiles through different stations. First, our simulated flow
characteristics (and u-velocity profiles) at this relatively lower
Reynolds number (Re = 1500) and moderate channel aspect
ratio (A = 4) remained quite consistent with the experimental
findings of Durst and Loy [3]. Second, an important thing
to note here is the perfect axially symmetric growth of the
simulated flow in association with two pairs of equal sized
roof and floor eddies [Fig. 3(a)] located at the upstream salient
corners and downstream tip corners. Note particularly that
at this moderate aspect ratio the developed roof (salient/tip)
eddies and their floor counterparts have the same separa-
tion/reattachment lengths L, L, and L3 (Fig. 1).

Figure 3(b) presents the near-critical flow behavior in a
significantly high aspect-ratio (A = 24) channel that facilitates
the onset of asymmetry/bifurcation (in a perfectly symmetric
setup). Remarkably, it displays unequal/asymmetrical struc-
tural growth of two tip corner eddies (behind the plane of

contraction), with the floor eddy appearing significantly (two
times) larger than the corresponding roof tip eddy. Such
an asymmetric flow development (in a perfectly symmetric

0.5

A=4, Re=1500, C=4

zZ axis

zZ axis

Z axis

FIG. 3. Streamwise flow development in a channel with con-
traction ratio C = 4. (a) Perfectly symmetrical structural growths
of streamlines on y = 0 and u-velocity profiles through different
streamwise stations reveal the typical nonbifurcating flow behavior
in the setup. (b) Symmetry-plane flow features with A = 24 reveal
unequal growth of tip eddies over the channel roof and floor, and the
onset of pitchfork bifurcation. (c) Restoration of nonbifurcating flow
in the setup at Re = 1250, A = 24.
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FIG. 4. Persistence of pitchfork bifurcating solutions with en-
hanced asymmetry in a contraction channel having high aspect
ratio. (a) Streamlines (on y = 0) and extracted u-velocity profiles at
A =48. (b) Continuation of pitchfork bifurcation at a higher Reynolds
number, Re = 1750.

contraction channel), which signals physical flow transition
from a predominantly symmetric [Fig. 3(a)] state to a vis-
ibly asymmetric [Fig. 3(b)] state (just behind the plane of
contraction), occurring due to pitchfork bifurcation. Note that
for the bifurcating flow the reattachment length L3 ;o0r (as
schematically shown in Fig. 1) along the channel roof became
significantly shorter than the corresponding floor reattachment
length L3 foor- Furthermore, readers may carefully note here
[Figs. 3(b) and 4] the initiation of the asymmetric appearance
of u-velocity profiles with respect to the channel axis (for
x 2 0.4). Interestingly, unlike downstream (roof and floor)
reattachment lengths (L3), the separation length L; and the
reattachment length L, (as defined in Fig. 1) of the two salient
(roof and floor) eddies [Fig. 3(b)] remained exactly the same.
Therefore, the observed distinctive characteristic of pitchfork
bifurcation of high aspect-ratio flows remains exclusively
dependent on unequal growth of the (roof and floor) tip corner
eddies. Note, however, that at a relatively lower Reynolds
number Re = 1250 (but with the same aspect ratio A = 24,
and the same contraction ratio C = 4) the flow recovered a
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visibly symmetric state again [Fig. 3(c)], comprising equal
sized tip (and salient) eddies on the channel floor and roof.
This clearly suggests the existence of a critical Re (for a
fixed set of physical parameters) beyond which the contraction
flow continues to exhibit pitchfork bifurcation. Importantly,
the phenomenon of growth of unequal/asymmetric separation
zones in channels with a sudden expansion part has been
attributed to instability of the wall shear layer [7,8], although
the phenomenon has been termed the “Coanda effect”” The
origin of such (steady) asymmetric streamwise flows in a
symmetric sudden-expansion channel is verified [9,18] to
be the pitchfork bifurcation. Notably, we observe here a
similar symmetry-breaking bifurcation to persist in the flow
downstream of a three-dimensional sudden contraction. In
addition, note [Figs. 3(a) and 3(b)] the considerable shrinkage
of separation length L; (streamwise elongation of the salient
eddy, as sketched in Fig. 1) with the increase of aspect ratio A.
For the sake of further clarity, Fig. 4 exhibits the persistence
of pitchfork bifurcations in the contraction channel flows not
only with a larger aspect ratio [A = 48, Fig. 4(a)], but also ata
higher Reynolds number [Re = 1750, Fig. 4(b)]. These lengthy
but careful simulations with a number of values of aspect ratio
(A) are particularly conducted to ensure that the bifurcations
are not really end-wall induced. In contrary, as it turns out,
the wider we take the channel span (aspect ratio), the easier
it becomes to maintain a sustainable bifurcating solution. We
now also make it clear that the longer reattachment length
(L3) can form randomly either on the floor or along the roof
of the symmetric channel with equal probabilities, although
direction biasness here is determined presumably by the
algorithm used in the computation [18]. Importantly, however,
the demonstrated findings [Fig. 4(b)] at Re = 1750 (and high
Reynolds number flows presented later) seem to suggest that
the onset of flow transition in sudden contraction channels
must occur in association with a pitchfork bifurcation. We
would also like to state here that, while the critical flow
features (e.g., Figs. 3 and 4) are being presented for the
near field of the plane of contraction (the actual upstream
channel length is at least five times larger, and the downstream
length is twenty times larger), extensive experimentation
has been done to ensure that the inlet and the exit loca-
tions/conditions have no influence on the internal vortical flow
development.

Notably, the critical value of Re (leading to pitchfork
bifurcation) in a setup depends both on the aspect ratio (A)
and the contraction ratio (C). However, extracting such a
critical Re from the lengthy 3D simulations seems to appear
an unfeasible task. On the other hand, based on our recent 2D
computations [19], the estimates (Fig. 5) of critical Reynolds
numbers for channels with contraction ratios C = 2 and C =
4 are evaluated as 3080 and 1350, respectively. On the basis
of experience gained from these reference 2D solutions, we
conducted a series of 3D simulations in the full domain with
various channel aspect ratios (0.5 < A < 48) to confirm that the
observed pitchfork bifurcation is indeed an inseparable phys-
ical characteristic of the sudden contraction channel flows;
and subsequently, we explored possibilities of coexistence of
other spanwise bifurcating type [20] solutions in the setup. For
the sake of improved reliability/clarity the sequential variation
of separation/attachment lengths L;,L,, and L3, with A of
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FIG. 5. Bifurcation diagram obtained from the simulated reat-
tachment lengths L; of the downstream tip eddy. (a) C = 2 and
(b) C=4.

the developed salient/tip eddies corresponding to (C, Re) =
(4, 1500) are extracted in Table II along with the 2D reference
value. It clearly shows a consistent sharp increase of L3 goor
over L3 .0f (of the tip eddies) for channels having aspect
ratios A > 5, signifying the onset of pitchfork bifurcation in
sudden-contraction flows.

In an effort to unfold detailed three-dimensional physical
evolution characteristics of the flow in association with
observed salient/tip eddies and to investigate the unknown
physics, in Fig. 6 we extract critical flow dynamics surrounding
the topologically important core lines of the various vortices.
The vortex core lines A; B; (e.g., thick lines in Fig. 6) for the
investigated various cases (see also Ref. [21]) are computed
based on the velocity gradient eigenmode method, namely,
the A, definition of Jeong and Hussain [22], and they seem
to carry much of the inner flow physics. Notably, in the A,
method the velocity gradient tensor Vu is decomposed into
its symmetric part, the rate of deformation or strain tensor
S, and its antisymmetric part, the spin tensor 2. Then three
eigenvalues A, A, and A3 of the tensor M = S? 4 Q? are
determined and ordered such that A; < A, < A3. Note that M
has only real eigenvalues, since it is symmetric. According to
the A, definition [22], a vortex is a region in space for which
the matrix M has two negative eigenvalues. The surface of the
vortex is defined by the set of points for which A;< 0 and
A2 = 0. The method successfully captures the pres-
sure minimum in a plane perpendicular to the vortex
axis at high Reynolds numbers (Re), and accurately de-
fines vortex cores at low Re, unlike a pressure minimum
criterion.
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TABLE II. Variation of separation and reattachment lengths L,
L,, and L3, with channel aspect ratio A.

A L (roof / floor) L, (roof / floor) L5 (roof / floor)
0.5 0.2060, 0.2059 0.2402, 0.2403 0.4107, 0.4154
0.6 0.2675, 0.2675 0.2434, 0.2435 0.4205, 0.4258
0.7 0.3152,0.3153 0.2454, 0.2455 0.42006, 0.4264
0.8 0.3578, 0.3579 0.2467, 0.2468 0.4149, 0.4212
1.0 0.4277,0.4279 0.2485, 0.2486 0.4007, 0.4068
1.2 0.4869, 0.4871 0.2494, 0.2495 0.3918, 0.3980
1.5 0.5506, 0.5510 0.2491, 0.2492 0.3873, 0.3936
1.7 0.5800, 0.5804 0.2480, 0.2481 0.3883, 0.3947
2.0 0.6138,0.6143 0.2454, 0.2456 0.3933, 0.3997
2.5 0.6367, 0.6374 0.2387,0.2388 0.4054, 0.4135
3.0 0.6272, 0.6280 0.2302, 0.2303 0.4201, 0.4293
4.0 0.5425, 0.5435 0.2097, 0.2099 0.4431, 0.4580
5.0 0.4410, 0.4422 0.1898, 0.1901 0.4572, 0.4835
6.0 0.3747,0.3765 0.1745, 0.1750 0.4542,0.5146
7.0 0.3361, 0.3388 0.1642, 0.1651 0.4255, 0.5620
8.0 0.3127,0.3161 0.1577,0.1584 0.4017, 0.5964
9.0 0.2969, 0.3000 0.1516, 0.1527 0.3910, 0.6190
10.0 0.2861, 0.2890 0.1477,0.1486 0.3841, 0.6338
12.0 0.2719, 0.2749 0.1414, 0.1426 0.3753, 0.6535
15.0 0.2577, 0.2605 0.1357,0.1366 0.3684, 0.6728
18.0 0.2499, 0.2525 0.1319, 0.1331 0.3654, 0.6839
24.0 0.2413, 0.2436 0.1268, 0.1278 0.3622, 0.6963
30.0 0.2369, 0.2391 0.1244, 0.1252 0.3606, 0.7030
36.0 0.2344, 0.2364 0.1231,0.1238 0.3597, 0.7070
42.0 0.2328, 0.2349 0.1225, 0.1230 0.3592, 0.7095
48.0 0.2318, 0.2339 0.1217,0.1226 0.3588,0.7110
2-D 0.2296, 0.2323 0.1204, 0.1215 0.3583,0.7136

vorticity along
corelines Ai Bi
m3.01
2.48
11.96
1.43
Moo

préssure along
streainlines 81,8
.25

o

FIG. 6. (Color online) Extracted core lines A;B;/A3;B3; and

A, B,/ A4 By of the salient and tip eddies along the roof/floor. Spanwise
opposite spatial evolution of (s,s2), (s3,84) reveals symmetry-
plane flow bifurcates along the core lines A;B; and A3;B; of
the salient roof/floor eddies. 3D spatially converging growth of
(ss,8¢) surrounding A, B, confirms no bifurcation occurs along
the vortical core line of a tip eddy. C = 4, Re = 1500, and
A=4.
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In Fig. 6, the thick lines A;B;/A3B; are the spanwise
extended core lines of the salient roof and floor eddies, and
A, By/A4By are the vortical core lines of the corresponding
tip eddies [Fig. 3(a)(a)]. Notably, the downstream moving
fluid particles, as evidenced by the physical dymanics (Fig. 6)
of the streamlines (sy,s,), upon approaching the vortex core
line A By, spiral along it in spanwise-opposite directions and
gradually move away from the symmetry plane (y = 0). Note
also that the fluid particles that originate from the left of s;
(as exhibited by the streamline s7) continue to roll toward the
left (A1), and those issuing from the right of s, (as revealed
by sg) continued to spiral toward the right (B;) of the vortex
core line A B;. Therefore, the phenomenon of occurrence of
symmetry-plane (y = 0) flow bifurcation over the core line
A1 B of the salient roof eddy remains well defined. Moreover,
the spanwise opposite spiraling dynamics of the streamlines
(s3,54) surrounding Az B3 confirms the occurrence of a similar
spanwise bifurcation of the symmetry-plane flow along the
vortical core line A3 Bj3 of the salient floor eddy. The present
study thereby demonstrates the clear occurrence of local span-
wise bifurcations of the developed 3D (steady) flow along the
topological cores of the salient roof and floor eddies. As we will
soon observe, such a bifurcation phenomenon occurs in plane
3D contraction channel flows virtually with all aspect ratios,
suggesting that bifurcations are indeed not end-wall induced.
In an effort to reveal the inner flow physics, in Fig. 6 we also
extract pressure variation along the two near-symmetry-plane
bifurcating streamlines (s;,s,) in the shedded form. It clearly
shows the occurrence of a local pressure maximum at a
spanwise bifurcation point over A;B;. On the other hand,
it is indeed interesting to note that the gradually converging
(inward) flow dynamics surrounding A, B, as demonstrated
by spatial evolution characteristics of the streamlines (ss,S¢),
reveals that no spanwise flow bifurcation surrounding the
vortical core lines of the tip eddies takes place.

In order to strengthen our understanding of near-contraction
flows, in Fig. 7(a) we extract symmetry-plane flow behavior
(streamlines and u-velocity profiles) in a channel with a
significantly lower contraction ratio C = 2 (and Re = 3150,
A = 7). Notably, flow in the setup is now seen to evolve in a
perfectly symmetric fashion. However, as the aspect ratio of
the channel was gradually increased, the pitchfork bifurcation
appeared again with its distinctive signature. To be precise, our
simulated results with A = 36 [Fig. 7(b), also at C =2, Re =
3150] reveal the occurrence of a notable relative enlargement
of the downstream floor reattachment length (recirculation
zone) compared to corresponding roof reattachment lengths,
suggesting the clear existence of a pitchfork bifurcating
solution beyond some critical aspect ratio. In contrary, a closer
look at Figs. 7(a) and 7(b) reveals that a decrease in the aspect
ratio has a stabilizing effect on the (downstream) flow. In an
attempt to demonstrate consistency/stability, near-transitional
flow behavior downstream of the three-dimensional sudden
contraction has also been simulated with a significantly higher
Reynolds number, Re = 3500 [while keeping C = 2 and
A = 36 fixed, as in Fig. 7(b)], and such results are presented
in Fig. 8(a). It clearly reveals a continued unequal inception
of separation bubbles (tip eddies) along the roof and floor
of the contraction zone owing to the persistence of pitchfork
bifurcation. For the sake of clarity, topological growth of the
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, Re=3150, C=2

Z axis

FIG. 7. Streamwise flow development in a contraction channel
with C = 2. (a) Streamlines over the symmetry-plane (y = 0)
and the extracted u-velocity profiles reveal nonbifurcating, perfectly
symmetric flow development at A = 7. (b) Flow features at higher
aspectratio (A = 36) reveal dominance of pitchfork bifurcation within
the contraction channel in the form of unequally grown tip eddies over
the channel roof and floor.

near-side-wall flow through a pair of spiral nodes and a pair
of saddles has been documented in Fig. 8(b). In addition, a
detailed convergence history of such a flow is extracted in
Fig. 8(c).

At this point, in an attempt to examine three-dimensional
structural flow mechanisms, in Fig. 9 we extract the simulated
vortical core lines of various floor and roof (salient/tip) eddies,
and the surrounding important flow dynamics corresponding
to C =2,Re =3150, and A = 7. Notably, spanwise opposite
spiraling behavior of the streamlines (s1,s2) surrounding the
core line A B; of the salient roof eddy reveals the occurrence
of a spanwise bifurcation of the oncoming flow over A;B;.
We mention here that a similar spanwise bifurcation of the
symmetry-plane flow along the core line of the salient floor
eddy has also been noted to occur (by virtue of the perfectly
symmetrical growth of roof and floor salient eddies and the
supporting physics). For the sake of enhanced clarity, the
occurrence of a local pressure maximum at the bifurcation
point over A B; has also been shown here (Fig. 9) with the
help of extracted pressure values along s; and s,. We would
like to state at this point that a similar spanwise bifurcation
phenomenon along vortical core lines of the salient (roof and
floor) eddies has been noted to occur for all other higher aspect
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FIG. 8. Presence of a steady pitchfork bifurcating solution in a contraction channel at Re = 3500. (a) Streamlines over the symmetry plane
(y = 0) reveal dominant bifurcating flow characteristics. (b) Limiting streamlines on the left sidewall. (¢) L, norm of the convergence history.

A=36and C =2.

ratios (e.g., A = 48), however, their graphical representation
becomes difficult due to the large value of A (channel span)
with respect to the transverse width D. On the other hand,
remarkably, the spatially converging spiral evolution (Fig. 9)
of streamlines s3 and s4 surrounding the core line A, B, [of the
roof tip eddy, as noted in Fig. 7(a)] suggests that no spanwise
flow bifurcation over the vortical core lines of the tip eddies
takes place.

Figure 10 further unfolds the internal flow physics across
two important transverse sectional planes (x = —0.05 and

x = 0.25) passing through the salient and tip eddies [Fig. 7(a)].
Notably, pressure contours on x = —0.05 [Fig. 10(a)] reveal
symmetrical growth of two distinct relative high-pressure
regions extending along the roof and floor of the expansion
zone. In particular, note that the presence of a relative local
high-pressure zone [Fig. 10(a)] on the roof surrounding (y,z) =
(0.0,0.5) is clearly reflected in Fig. 9 by virtue of the demon-
strated occurrence of pressure maximum at the bifurcation
point over A Bj. On the other hand, note the development of
a core low-pressure region spanning over z = 0 [Fig. 10(a)].
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FIG. 9. (Color online) Symmetry-plane spanwise bifurcation at
C =2, Re = 3150, and A = 7. Spanwise opposite spatial evolution
of (s,s,) shows symmetry-plane flow bifurcates along the core line
A} B of the salient roof eddy. Spatial growth of (s3,s4) surrounding
A, B, confirms that no flow bifurcation occurs along the core line of
the tip eddy.
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FIG. 10. Pressure contours and cross-stream flow behavior
through different transverse sections. (a) Pressure contour on x =
—0.05, (b) streamlines on x = —0.05, (c) pressure contour on x =
0.25, and (d) streamlines on x = 0.25. C =2, Re = 3150, and A = 7.
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Interestingly, the stretching behavior of streamlines on
x = —0.05 clearly demonstrates the physically realistic fact
that the fluid (over the yz plane) gets accelerated from (roof
and floor) high-pressure zones to the (central) low-pressure
zone (a fact widely demonstrated in some of our recent works,
e.g., Refs. [12,23]). Note that the near-roof and near-floor
oppositely stretching dynamics [Fig. 10(b)] of the streamlines
is caused due to dominant locally recirculating 3D flow
surrounding two core lines of the salient (roof and floor) eddies.
Figures 10(c) and 10(d) exhibit the pressure distribution and
the associated streamline behavior, respectively, on a sectional
plane x = 0.25, which passes through the downstream (roof
and floor) tip eddies. In Figs. 10(c)-10(d), the scale along the
zaxis is magnified by a factor 2.4 in order to have a closer look
at the local physical flow characteristics. Notably, while the

(a)

z axis

A=1.5, Re=3150, C=2 pus=s3

z axis

-0.5 0
7 ()
o
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S
o L
=
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g o L
£ =
5]
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02 | L
DN
=
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los =
= vel.
] P
'S T T T T T T T T T
0 5000 10000
iterations

FIG. 11. Physically important splitting of salient eddies with low
aspect-ratio (A = 1.5) channels. (a) Streamlines (on y = 0) and
u-velocity profiles (at C = 4) reveal axial-symmetric flow devel-
opment with fractured salient roof/floor eddies; (b) symmetry-plane
flow evolution at C = 2; and (c) L, norm of the convergence history
atA = 1.5, C =2, and Re = 3150.
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FIG. 12. Aspect-ratio-dependent structural evolution of a salient eddy with C = 2 and Re = 3150.

vortical structures at four corners [Fig. 10(d)] correspond to the
presence of corner eddies [24] in the setup, the other two pairs
of relatively smaller symmetrical recirculations observed at the
spanwise ends (of the z = 0 line) seem to identify downstream
extension of the near-wall snecked eddies, as noted in Fig. 9.
On the other hand, once again, the depicted pressure contours
[Fig. 10(c)] on x = 0.25 in association with corresponding
sectional flow [Fig. 10(d)] patterns seem to confirm the realistic
fact that fluid gets accelerated from a high-pressure magnitude
zone toward a neighboring low-pressure zone.

We now examine physical flow development in a signif-
icantly low aspect-ratio channel. For this, Fig. 11(a) first
captures the symmetry-plane flow details at A = 1.5, Re =
1500, and C = 4. The corresponding flow features with a
moderate aspect-ratio channel (withA =4,Re = 1500, and C =
4) have been described in Fig. 3(a). Interestingly, unlike with
moderate/high aspect-ratio channels (4 < A<48), as noted in
Figs. 3, 4, 7, and 8, the upstream salient roof and floor eddies
(at A = 1.5) are now seen to decompose into three smaller
constituents both at C = 4 [Fig. 11(a)] and C = 2 [Fig. 11(b)].
On the other hand, remarkably, the downstream flows show no
sign of asymmetry/pitchfork bifurcation (note in this context

the very symmetrical growth of the u-velocity profiles). A
similar fractured structural growth of salient eddies has also
been observed for a further lower aspect-ratio (A = 0.5)
channel. Figure 11(b) reconfirms a very consistent splitting
behavior of the salient roof and floor eddies with Re = 3150,
C =2, and A = 1.5. Corresponding flow characteristics with
a moderate aspect-ratio channel (e.g., with A = 7, Re =
3150, and C = 2) have been extracted in Fig. 7(a). Note
that the observed physical splitting [Figs.11(a) and 11(b)] of
upstream salient (roof and floor) eddies into multiple (two or
three) smaller constituents is an inherent feature of the low
aspect-ratio flows. For the sake of completeness, in Fig. 11(c)
we demonstrate the convergence characteristics of such a
flow in terms of the computed Lj-error norm. For a broader
understanding, Fig. 12 summarizes the aspect-ratio-dependent
structural evolution of a salient roof eddy over the symmetry
plane y = O (the corresponding salient floor eddy also evolves
exactly in the same manner as the roof eddy). To be explicit,
Fig. 12 clearly exhibits the triple vortex type structural growth
of the salient eddy within 0.5 < A < 2.0. It takes a double
vortex form within 2.75 < A < 3.5 before eventually attaining
the single vortex type evolution phase with A > 4. We will
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FIG. 13. (Color online) Symmetry-plane spanwise flow bifurca-
tion in a small aspect-ratio channel. Spanwise oppositely spiraling
evolution of (s3,54), (51,52), and (s5,5¢) shows symmetry-plane flow
bifurcates along each of the core lines A;By,A,B,, and A3B; of a
fractured salient roof eddy. Inward converging 3D spiral growth of
(s7,s3) surrounding A4 B4 shows that no flow bifurcation occurs along
the vortical core line of the tip eddy. A = 1.5, C = 4, and Re = 2000.

soon discover that the corresponding spanwise flows undergo
symmetry-plane (y = 0) bifurcation along the topological core
lines of each of these fractured salient roof and floor eddies.
In this context, readers may, however, note the persistence
of single-core structural evolution of the salient eddy for
semidilute polymer flows through an 8:1 contraction-ratio
planner microchannel [25].

Figure 13 demonstrates the complex near-contraction three-
dimensional structural features of a small aspect-ratio (A = 1.5)
channel flow in which multiple symmetry-plane bifurcations
occur along the vortical core lines of the fractured salient
eddies. The thick lines A;B;,A;B,, and A3B;3 in Fig. 13
represent the simulated vortical core lines of the three fractured
salient roof eddies. Notably, the oppositely spiraling dynamics
of streamlines (s3,54), (51,52), and (s5,5¢) along A By,A, B>,
and Aj3Bs, respectively, confirms the occurrence of three
simultaneous local spanwise flow bifurcations (in the vicinity
of y = 0) over the topological core lines of the (fractured)
salient roof eddies. For the sake of enhanced clarity, the
clear occurrence of local pressure maximum at the bifurcation
point on A;B, has also been confirmed here with the help
of extracted pressure magnitudes along s; and s,. We may
mention here that similar upstream spanwise triple bifurcations
(over the symmetry plane y = 0) are also observed to occur
along the vortical core lines of the corresponding (fractured)
salient floor eddies. However, for the sake of maintaining
cleanliness, those are not extracted in Fig. 13. On the other
hand, quite remarkably, the inward spiraling dynamics of the
streamlines (s7,sg) surrounding the core line A4 B, (of the roof
tip eddy) shows that there takes place no flow bifurcation
along the vortical core line of a tip eddy. Note also in Fig. 13
the variation of vorticity magnitude along A,B,. Vorticity
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FIG. 14. Spanwise-streamwise variations of reattachment length
L5 over the roof (dotted lines) and floor (solid lines) with different
aspect ratios exhibit the onset of pitchfork type flow bifurcation.
(a) C =2 and Re = 3150. (b) C =4 and Re = 1500.

appears to attain local maximum at the symmetry-plane
(y = 0) bifurcation point.

At this point, it may be appropriate to address the issue of
possible coupling between the downstream pitchfork bifurca-
tion (Figs. 4 and 8) and the upstream spanwise bifurcations
(Figs. 6 and 13) observed over the symmetry plane y = 0. It is
important to note here that for the investigated moderate range
of Re, the (bifurcated) flows remained stable/steady. Such a
steady character of the flow enforces a near-linear/smooth
variation of the downstream attachment lengths (L3) over the
major span of the channel [e.g., Fig. 14(a)], except near the
close vicinity of sidewalls, where viscous force dominates.
Moreover, at this moderate Re (steady regime) the formation of
a single symmetry-plane spanwise flow bifurcation over a core
line of an upstream salient eddy, owing to the occurrence of a
corresponding single-point pressure maximum over the eddy
core lines (while maintaining spanwise symmetry) is noted.
Once Re is slowly increased to (unsteady) near-transitional
states, these core lines of the salient eddies will start behaving
like vibrating strings (with pressure/velocity oscillating along
the spanwise extended core lines), initially with appearances of
equidistant multiple pressure maxima and the corresponding
uniformly spaced spanwise bifurcation points (over the core
lines). As a consequence, we expect to encounter wavy growth
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of L3 over the channel span. At a near-turbulent state, the
uniform length-scaled bifurcations (over the upstream salient
eddy core lines) are expected to be replaced by random
occurrences of bifurcation points and associated arbitrary
spatiotemporal growth of local pressure maxima along the
core lines of the salient eddies, leading to the formation
of coherent-like structures on the channel roof and floor. A
systematic study describing exactly how spanwise bifurcations
evolve in the case of transitional bluff body wakes has been
documented in some of our recent works [21,26]. On the other
hand, concerning the issue of stability of the contraction flow
(and a source of potential future investigation), the theoretical
method as proposed by Scarsoglio et al. [27] and Scarsoglio
and Tordella [28] may be suitably implemented to study
detailed bifurcation characteristics in the setup. However, this
appears to be beyond the scope of present investigation.

In order to provide a quantitative analysis concerning global
variation of Lj3(x,y), in Fig. 14(a) we extract distributions of
L3 o0 (solid lines) and L3 goor (corresponding dotted lines in
a loop) for some of the selected aspect ratios (by keeping
C = 4 and Re = 3150 fixed). Notably, while the distributions
of both L3 ;o0or and L3 goor (for the roof and floor tip eddies)
mostly remained flat over the major part of the channel span
(except in close vicinity of the sidewalls), their streamwise
gap (the projected difference, L3 oor — L3.fioor) continued to
decrease with the reduction of channel aspect ratio, clearly
suggesting that there remains a critical aspect ratio which
facilitates the onset of downstream pitchfork bifurcation.
For the sake of broader understanding, variations of L3 oof
and L3 goor (With A) for contraction flows corresponding
to (C, Re) = (4, 1500) have been extracted in Fig. 14(b).
Importantly, however, both Figs. 14(a) and 14(b) seem to
suggest that the reduction in the channel aspect ratio (spanwise
width) facilitates stabilization of the downstream flow (as the
projected gap between L3 oo and L3 goor; that is, asymmetry
continues to reduce steadily with decreasing A).

Figure 15 provides an explicit mapping for variations of
different separation/reattachment lengths L;,L,, and L3 (of
salient and tip eddies) with aspect ratio A. Importantly, the
separation length L (of salient eddies) continues to increase
exponentially [Fig. 15(a)] for small aspect-ratio channels
having A < 2.5; subsequently, steep streamwise reduction (of
L) of the separation bubbles occurs (for the moderate aspect-
ratio channels) within the parameter space 3 < A < 8, before
eventually asymptotically attaining the two-dimensional ref-
erence value in the range A > 25. Notably, the aspect ratio
A seems to have little bearing [Fig. 15(a)] on the attachment
length L,. On the other hand, interestingly, the reattachment
lengths L3 (of the tip eddies) over the channel roof and floor
are seen [Fig. 15(b)] to vary equally (exhibiting continuation
of the nonbifurcating flow regime) up to A < 5, then
their difference (L3 roof — L3.fl0or) CONtinues to grow steadily
(facilitating the onset and persistence [EDG1] of pitchfork
bifurcation in the setup) with increasing aspect ratio, before
eventually reaching an asymptotic state (coinciding with the
two-dimensional reference value) for A >40. Note that a
similar aspect-ratio dependence of the separation/reattachment
lengths L,L;, and L3 of salient and tip eddies in contraction
channels with contraction ratio C = 4 has been found to persist,
and such results are graphically presented in Figs. 16(a)—16(b).
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FIG. 15. Variations of symmetry-plane separation/reattachment
lengths L, L,, and L3 with aspect ratio A. (a) Dependence of L; and
L, on A; C =2 and Re = 3150. Large aspect-ratio values are seen to
asymptotically converge to the corresponding 2D reference solution.
(b) Variations of reattachment lengths L3 over the channel roof/floor
with respect to A. C = 2 and Re = 3150.

It is important to note, however, that the persisting difference
of L3 ro0of and L3 goor Values of the corresponding roof and floor
(tip) eddies for A > 5 [Figs. 15(b) or 16(b)] are obtained based
on a fixed Reynolds number, and we strongly feel a contraction
channel will continue to exhibit pitchfork/spanwise bifurcating
solutions irrespective of the spanwise extent A of the channel
(however small/large A may be), or its contraction ratio C, once
Re is increased sufficiently. The value of critical Re in a setup,
however, will depend on its aspect ratio (A) and the contraction
ratio (C). In other words, our findings strongly suggest that the
onset of flow transition in a sudden contraction channel should
inevitably occur through the presently documented pitchfork
and spanwise bifurcation modes.

IV. CONCLUSIONS

Within the framework of the present study we have com-
putationally revealed the important physical characteristics of
steady state flows in the vicinity of a three-dimensional sudden
contraction. While being consistent with the known symmetry-
plane solutions/measurements, the present 3D simulations
help to significantly enhance our knowledge on the issue of
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growth of asymmetric/bifurcating solutions in the physical
setup.

Physically, on the issue of entrainment in the upstream
region, the dominant salient (roof and floor) eddies are seen
to facilitate pumping out the oncoming near-symmetry-plane
fluid towards the channel sidewalls, whereas the downstream
tip eddies continued to effectively entrain the near-wall outer
fluid into the core of the contraction channel. In the process,
the upstream symmetry-plane flow is noted to get bifurcated
along the vortical core lines of each of the salient roof and floor
eddies, and much of the outer fluid moved inward along the
cores of tip corner eddies. Concerning the governing physics,
in the upstream, the streamwise extended localized growth of
relative high-pressure regions along the channel roof and floor
(while their cores remain aligned with the vertical plane of
symmetry) and development of a low-pressure region spanning
all along the horizontal symmetry plane seem to facilitate
the physical mechanism of growth of the near-contraction
flow. As the channel aspect ratio was reduced considerably,
we observed interesting splitting (fractured growth) of both
the salient roof and floor eddies in the form of triplets, and
the oncoming (vertical) symmetry-plane flow continued to
bifurcate along the spanwise extended vortical core lines of
each of these split salient eddies.

In contrary, once the channel aspect ratio was gradually
increased (beyond some critical value), we noted the on-
set/occurrence of symmetry-breaking pitchfork bifurcation
of the flow downstream of sudden contraction. Unequal
growths of tip-corner separation bubbles (tip eddies) and
their reattachment lengths along the roof and the floor of the
contraction zone confirm the occurrence of such a pitchfork
bifurcation in the symmetrical setup. Importantly, the observed
sustainable presence (persistence) of these spanwise/pitchfork
bifurcation modes both at higher Re and higher aspect ratios
suggests such bifurcations are indeed inherent critical features
of three-dimensional sudden-contraction flows, and possibly
indicate logical paths leading to eventual flow transition.
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