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Onset of convection in a porous medium in the presence of chemical reaction
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Using scaling, we show that the stability of a buoyant boundary layer in a porous medium in the presence of a
first-order chemical reaction is fully determined by the nondimensional number Da/Ra2 = kraDφμ2/(k�ρ0g)2,
where Da = kraL2

Z/(Dφ) is the Damköhler number and Ra = k�ρ0gLZ/(μDφ) is the solutal Rayleigh number.
The time for onset of convection is shown to increase with rising Da/Ra2. Above a critical Da/Ra2 ≈ 2 × 10−3,
no convection occurs as reaction stabilizes the diffusive layer at a finite thickness. This thickness decreases with
increasing Da/Ra2, becoming zero at Da/Ra2 ≈ O(1). As applied to CO2 geostorage, our results suggest distinct
regimes for CO2 transport in saline aquifers.

DOI: 10.1103/PhysRevE.83.046312 PACS number(s): 47.20.Bp, 47.56.+r, 47.70.Fw, 82.33.Ln

I. INTRODUCTION

The behavior of buoyancy-driven flows in porous media
has relevance in fields as diverse as petroleum and environ-
mental engineering, ground water hydrology, geophysics, and
biomedical engineering. When a fluid in a porous medium
is heated from below, a thermal boundary layer of less
dense, hot fluid develops and grows with time. This boundary
layer eventually becomes unstable and breaks up, driving
bulk convection in the fluid above. Horton and Rogers [1]
and Lapwood [2] independently proposed a critical Rayleigh
number, RaC = 4π2, as a criterion for the onset of such
natural convection in a porous medium. This theory was later
confirmed by experimental results [3].

In recent years, more complex flows with chemical reaction
have considered the effects of reaction kinetics at a fluid
interface or boundary. Interfacial reactions have been revealed
to prevent the elongation of a moving chemical front at large
times, thus yielding dispersion curves independent of time,
and finger growth rates which are smaller than the initial
growth rate of density-dependent instabilities in the absence
of reaction [4,5]. The interaction between diffusion and
reaction at an interface has been found to induce convection
in an otherwise stably stratified system, as well as affect
the formation of symmetric patterns in buoyantly unstable
systems [6]. Numerical work on the onset of convection in a
system where thermal convection is driven by an exothermic
surface reaction on the bottom boundary suggests that RaC is
affected by the Lewis number, based on the diffusivity of the
reactant, as well as the nondimensional reaction rate [7].

Others have investigated natural convection arising from
heat generated by a chemical reaction occurring throughout
the bulk fluid in a porous medium. In a problem formulated
in Ref. [8], convection following the Darcy-Boussinesq model
is driven by a zero-order exothermic reaction taking place in
a cylinder filled with porous material. Their numerical results
showed that this chemically driven convection increased crit-
ical thermal ignition temperatures, and is capable of delaying
or averting thermal ignition when the Rayleigh number is
sufficiently large. The bifurcation and stability behavior of
a similar, but simplified, system was studied numerically for a
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two-dimensional rectangular geometry [9], while the authors
of Ref. [10] performed a stability analysis for similar reaction-
driven convection in both cylindrical and three-dimensional
rectangular geometries. Stability analysis of an inert horizontal
porous layer where thermal convection develops due to cooling
from the top, as well as from a weakly exothermic zero-order
gas-phase reaction, found that RaC decreases with increasing
values of the Frank-Kamenetskii number, thus showing that
instability is enhanced by the presence of such reactions, in
comparison with cases in which reactions do not occur [11].

In this work, we examine the effect of a first-order chemical
reaction on the stability of a buoyant diffusive boundary layer
in a porous medium. We identify conditions for which even
a simple chemical reaction may significantly delay or inhibit
the breakdown of the boundary layer and the onset of natural
convection in the underlying bulk fluid. Using scaling, we
show that the basic interaction between fluid flow and chemical
kinetics is governed by a ratio of the well-known Damköhler
and Rayleigh numbers. We also determine the time for onset
of convection in a reactive medium as a function of the new
dimensionless number.

II. MODEL SYSTEM

A. Geological CO2 sequestration

The principal motivation for this study has been to under-
stand the behavior of CO2 stored in deep saline aquifers [12].
Determining the onset of natural convection in subsurface
CO2-brine systems is crucial to establish definite time scales
for potential leakage scenarios, complete CO2 dissolution,
and long-term mineral dissolution and precipitation. Figure 1
depicts the problem in the context of CO2 sequestration. Upon
injection into a saline reservoir, supercritical CO2, being less
dense than aquifer brine, rises and spreads laterally under
an impermeable cap rock. Some of this CO2 dissolves in
the brine below it, causing a small density increase which
may eventually cause instability in the diffusive boundary
layer. This instability drives convection in the fluid below and
accelerates further dissolution as the CO2-rich brine sinks and
is transported away from the interface [13,14]. By increasing
CO2 mass transfer rates into the brine, convection shortens
the time needed to completely dissolve the CO2 [13,15].
Convection also enhances contact between dissolved CO2
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FIG. 1. Injected CO2 (shaded) rises in a brine-saturated aquifer
and spreads laterally under a caprock. Inset: Free CO2 (shaded)
gradually dissolves and diffuses in the underlying brine, resulting
in a denser CO2-rich solution (shaded gradient) which may later sink
into the pure brine as fingers, enhancing further dissolution.

and rock minerals as they react to form ionic species and
precipitates, thus facilitating permanent CO2 sequestration. It
has been suggested that fast chemical reactions may increase
the time for onset of convective mixing [16], but such an effect
has not been quantified in a general manner.

B. Governing equations

We consider a two-dimensional homogeneous, isotropic
porous medium with dimensions and orientation as shown in
the inset of Fig. 1. A simple A→B reaction occurs between
a dissolved species (aqueous CO2) and a chemical species in
the porous matrix (rock), with reaction rate kra[T −1] per unit
volume of fluid, where the solid-based kinetic rate constant
is kr[mol L−2T −1] and the reactive surface area per mole of
the solid is a[L2 mol−1]. The system may be described by
the continuity equation (1) and Darcy’s law (2) for the fluid
transport velocity v[LT −1], coupled with the conservation of
dissolved species (3) with concentration C[ML−3]:

∇ · v = 0, (1)

v = − k

μ
(∇p − ρrβCgi), (2)

Dφ ∇2C − v · ∇C = φ
∂C

∂t
+ kraC. (3)

Density changes are assumed to be small [17] and therefore
neglected except in the buoyancy term in (2) under the
Oberbeck-Boussinesq approximation [18]. The permeabil-
ity of the porous medium k[L2] and the fluid viscosity
μ[ML−1T −1] are constant, while the reduced pressure p =
P − ρrgz[ML−1T −2] is obtained by eliminating the hydro-
static pressure from P [ML−1T −2], the pressure in the liquid.
We assume the density ρ[ML−3] to depend linearly on C

as ρ = ρr(1 + βC), where the reference density ρr[ML−3]
and the coefficient of density change due to concentration
β[−] are constant. The acceleration due to gravity is g[LT −2]
and i is a vertical unit vector codirectional with the positive
z axis. In systems where diffusion dominates over convective
dispersion and where tortuosity is low, the effective diffusivity
of the dissolved species in the porous medium is simply taken
as the product of the molecular diffusion coefficient D[L2T −1]
of CO2 in the brine and the porosity φ[−] of the aquifer. Time
is denoted by t[T ].

At t = 0, the entire domain is quiescent and CO2 free,
i.e., ∀x, ∀z : v = 0, C = 0. Boundary conditions are vX = 0
and ∂C/∂x = 0 at the walls (x = 0 and x = LX), and vZ = 0
and ∂C/∂z = 0 at the bottom (z = LZ), where vX and vZ are
the respective horizontal and vertical components of v. The
top boundary of the system (z = 0) is then instantaneously
exposed to an overlying layer of free CO2, expressed by the
boundary condition C(x,0,t) = Cs, where Cs is the solubility
of CO2 in brine [13,14]. Although there is a small downward
flux of CO2 at the top boundary, the associated fluid vertical
velocity is very small and has been shown to be negligible for
low solubility and concentration values, such as those for a
CO2 system [17].

C. Nondimensionalization

We note that the reservoir bottom boundary, and hence
vertical extent LZ, has no effect on the initial development
of convection in the top layer of diffusing CO2. This allows
us to use an internal length scale for the problem. We chose
the convective length scale LC = μDφ/(k�ρ0g), which is a
measure of the thickness of the boundary layer at the time
of instability, i.e., when the inhibiting effects of diffusion
and reaction balance the driving effect of buoyancy on the
development of fluid motion, making the solutal Rayleigh
number of order unity. Thus, when LZ/LC � 1, we expect
the onset of convection to be independent of the vertical extent
of the reservoir. This approach has been used previously by
Refs. [17] and [19] for inert systems.

Equations (1)–(3) are nondimensionalized using the scales
LC, vs = Dφ/LC, ts = L2

C/D, ps = μDφ/k, and Cs, giving

∇′ · v′ = 0, (4)

v′ = −∇′p′ + C ′i, (5)

and

∇′2C ′ − v′ · ∇′C ′ = ∂C ′

∂t ′
+ Da

Ra2 C ′. (6)

The initial conditions become v′(x ′,z′,0) = 0 and
C ′(x ′,z′,0) = 0, and the boundary conditions become
v′

X = 0 and ∂C ′/∂x ′ = 0 at the walls (x ′ = 0 and x ′ = LX/LC),
v′

Z = 0 and ∂C ′/∂z′ = 0 at the bottom (z′ = LZ/LC), and v′
Z =

0 and C ′ = 1 at the top (z′ = 0). Here, Ra = k�ρ0gLZ/(μDφ)
is the solutal Rayleigh number, where �ρ0 = ρrβCS is the
maximum density contrast between pure and CO2-saturated
brine, and Da = kraL2

Z/(Dφ) is the Damköhler number. We
have used here the vertical extent of the reservoir LZ to
calculate individual nominal values of Ra and Da, as this
will enable easier quantification and comparison with previous
investigations.

From the above analysis, it is clearly evident that the only
parameter determining flow and transport in this system is

Da

Ra2 = kraDφ

(k�ρ0g/μ)2
, (7)

when the penetration depth of the CO2-rich layer is
smaller than the reservoir depth. The CO2 mass flux
J [ML−2T −1] dissolving at the top boundary is given by
J = (Dφ/LX)

∫ LX

0 (dC/dz)dx or, in dimensionless form, J ′ =
JLC/(DφCS).
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FIG. 2. (Color online) Effects of Da/Ra2 on dimensionless CO2 concentration C ′ at dimensionless times (i) t ′ = 3.3 × 103, (ii) t ′ =
3.8 × 103, and (iii) t ′ = 5.7 × 103. Inert case A (Da = 0, Ra = 750, Da/Ra2 = 0) shows a faster growth rate of CO2-rich fingers than in
reactive cases B (Da = 86, Ra = 750, Da/Ra2 = 1.5 × 10−4), C (Da = 345, Ra = 1500, Da/Ra2 = 1.5 × 10−4) and D (Da = 571, Ra = 750,
Da/Ra2 = 1 × 10−3). Significant finger interaction is seen in A, B, and C, where larger merged fingers grow deeper, while reaction in D is
strong enough to inhibit growth of merged fingers, stabilizing their lengths at a constant depth. Dimensionless wavelength at onset of instability
is similar in all four cases. Each picture shows half of the domain width used in simulations, and pictures of C show only the active, upper half
of the simulated depth.

D. Numerical simulations

The governing partial differential equations (1)–(3), to-
gether with corresponding initial and boundary conditions,
were solved numerically using the finite-element partial dif-
ferential equation (PDE) solver FASTFLO [20]. The numerical
algorithm employs Picard’s method of successive approxi-
mations, a backward Euler time-stepping scheme, and the
augmented Lagrangian method [20]. The coupled momentum
and continuity equations were solved iteratively within each
time step m until v and p met two convergence criteria.
The first criterion required that the relative velocity change
between consecutive iterations n and n − 1, summed over
all mesh nodes, be ε1 = ∑ |vm,n − vm,n−1|/

∑ |vm,n| � 0.05.
The second ensured that the maximum acceptable dimension-
less velocity divergence ∇′ · v′ between iterations was ε′

2 =
5 × 10−4, thus satisfying continuity. With a dimensionless
time step 2.83 � �t ′ � 7.54, the coupled continuity and
momentum equations typically achieved convergence within
two iterations.

Tests were conducted to ensure that numerical results
were independent of mesh size and time-step interval. A
rectangular mesh of six-noded triangular elements was used for
each simulation. Simulations were run with meshes of 5710,
7710, 9454, 11 454, 13 422, and 15 678 triangular elements.
Results were deemed mesh independent when the relative
difference in local concentration values between successive
mesh resolutions fell below 2%. The minimum number of
required elements for convergence decreased weakly with
Da and, in general, increased with Ra. For Ra = 750, mesh
independence was achieved for a minimum of 7710 elements;
for higher Ra, 9454 elements were usually sufficient, except
when the aspect ratio (LX/LZ) was halved, in which case
mesh independence required 15 678 elements for Ra = 1500.
Regular time-step intervals were varied for inert cases, starting
with 2.83 × 102 � �t ′ � 7.54 × 102 and decreasing this by
50% in subsequent runs. Results were found to be independent
of time-step interval at 2.83 � �t ′ � 7.54.

The numerical algorithm was further validated against
salt-convection analogues of the Elder “short-heater problem”
[21–23], widely used as a benchmark for density-driven flow
simulations.

Simulations were run for the range 0 < Da/Ra2 < 70,
with 0 < Da < 4 × 107 and 750 < Ra < 2000. Typically,
LZ/LC � 750 and LX/LC � 7500, so that the effects of the
bottom and side boundaries on the onset of convection can be
neglected.

III. SIGNIFICANCE OF Da/Ra2 ON THE DEVELOPMENT
OF INSTABILITY

A. Growth rate and initial wavelength of fingers

The effects of Da/Ra2 on the development of grav-
itational instability are illustrated in Fig. 2. Upon com-
paring a chemically inert case A (Da = 0, Ra = 750,
Da/Ra2 = 0) with a weakly reactive case B (Da = 86, Ra =
750, Da/Ra2 = 1.5 × 10−4), a reactive but more convective
case C (Da = 345, Ra = 1500, Da/Ra2 = 1.5 × 10−4), and
case D (Da = 571, Ra = 750, Da/Ra2 = 1 × 10−3) with
relatively strong reaction, we observe a distinct delay in the
onset of convection with increasing Da/Ra2. At the same
dimensionless time (ii), fingers in B, C, and D have only
respectively grown by ≈4/5, ≈4/5, and ≈1/3 of the depth
of those in A, indicating slower finger growth rate as Da/Ra2

increases. Note that C, with Ra higher than but Da/Ra2 equal
to that of B, exhibits finger growth rate similar to those of the
latter. In all four cases at early times (i), an identical number of
diffusive fingers n ≈ 56 are seen sinking individually across
the same dimensionless width LX/LC = 7.5 × 103, revealing
no change in the dimensionless wavelength of the instability
λ′ = LX/(LCn). This observation is general for all simulations
in the range explored and λ′ ≈ 1.3 × 102, corresponding to a
dimensionless wave number of 1/λ′ ≈ 8 × 10−3, which is in
agreement with previous numerical work for systems without
chemical reaction [24].

B. Finger interaction

While the diffusive fingers initially propagate without
interaction, the effect of Da/Ra2 on finger interaction is clearly
seen at later times. At time (iii), fingers in A, B, and C already
show significant merging, thus becoming wider but fewer.
The occurrence of these strong finger interactions in relatively
high-Ra cases where reaction is also present, such as shown
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in B and C, corroborates and complements previous studies
based on nonreactive media [13]. Similar to A, the merged
fingers of B and C at (iii) lengthen and continue to access
the CO2-rich solution at distinct “feeding sites” at the top,
forming preferred pathways down which the CO2 flows into
the brine. The location and depth of the CO2 pathways have
been observed to shift with time, so that newly merged feeding
sites form and elongate as previous ones diminish, sometimes
in fluctuating, irregular cycles. In some cases, these larger,
merged fingers may also at times split into several “branches”
at the tip, before one of the branches dominates the others as
the chosen pathway.

However, while strong finger interactions occur in inert and
low Da/Ra2 systems, for cases with higher Da/Ra2 such as D,
the finger interactions are significantly affected by the presence
of reaction. Even at time (iii), a strong reaction in D inhibits
the growth and merger of fingers and suppresses fluctuations
in finger depth. As such, the CO2 penetration depth reaches
a maximum, and the length of the fingers is approximately
uniform.

C. CO2 mass flux dissolving at the top boundary

In Fig. 3, we plot the evolution of the CO2 mass flux
at the top boundary, for a range of values of Da/Ra2.
As Da/Ra2 increases, the initial J ′ values become larger,
suggestive of higher CO2 dissolution rates from early times
as faster, stronger reactions consume more of the CO2 as it
enters the system. Furthermore, the mass flux curves tend
to flatten with increasing Da/Ra2 as the effects of reaction
steadily compensate for the decreasing flux due to diffusion,

causing J ′ to deviate from an otherwise diffusive −1/2 slope
and resulting in a less-pronounced minimum for J ′. With
increasing Da/Ra2, the system enters the convective regime
(i.e., when the flux rises from its minimum) at longer times,
and J ′ rises with increasingly smaller slopes. Above a value of
Da/Ra2 ≈ 2 × 10−3, reaction is strong enough to stabilize the
system and prevent convection from altogether occurring. As
previously discussed, the presence of strong reaction inhibits
the formation of larger, merged fingers which may otherwise
increase dissolution rates by channeling CO2 downward.
Instead, reaction favors smaller fingers with roughly uniform
lengths, resulting in mass flux values which become steadier
and more constant with increasing Da/Ra2. When Da/Ra2 ≈
O(1), reaction dominates both diffusion and convection: The
CO2 is consumed instantaneously as it enters the aqueous
solution, leading to a constant inward flux without a boundary
layer.

In Fig. 3, we also note that for cases B and C, which both
have Da/Ra2 = 1.5 × 10−4 but different individual Da and Ra
values, the J ′ vs t ′ curves overlap before and at the onset of
convection. These curves remain very similar even after the
onset of instability, and the small discrepancies between them
are likely due to numerical errors. Such overlap for cases B
and C shows equal kinetic and fluid dynamic interactions in
these cases, and that the group Da/Ra2 completely governs the
onset of convection in the presence of chemical reaction.

D. Time for onset of convection

From Fig. 3, we are also able to determine the time for
onset of convection, t ′oc. Following Ref. [17], we define t ′oc

FIG. 3. (Color online) Evolution of CO2 mass flux J ′ = JLC/(DφCS) dissolving at the top boundary for selected Da/Ra2, where t ′ =
tD/L2

C. Dimensionless time for onset of convection t ′
oc corresponds to t ′ at minimum J ′. Cases A–D refer to those shown in Fig. 2.
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FIG. 4. (Color online) Dimensionless time for onset of convection t ′
oc increases with Da/Ra2 until Da/Ra2 ≈ 2 × 10−3 (blue dashed line),

above which convection no longer occurs. Y-error bars reflect the error in locating the minimum value of J ′ in the curves in Fig. 3, i.e., flatter
J ′ curves bring about larger error bars. Results of cases A–D (from Fig. 2) are shown.

as the time corresponding to the minimum J ′, the point at
which the flux transitions from the diffusive to the convective
regime. In Fig. 4, we show that the time for onset of
instability t ′oc as a function of Da/Ra2 is well described by
t ′oc = 1.1 × 103 + 4.8 × 105Da/Ra2 for Da/Ra2 < 2 × 10−3.
As Da/Ra2 increases, t ′oc becomes larger, resulting in a clear
delay on onset of convection as the reaction becomes faster.
The increasing Y-error bars reflect the error in identifying
the minimum value of J ′ in the curves in Fig. 3. For inert
systems (Da/Ra2 ≈ 0), t ′oc ≈ 1.1 × 103, which is in agreement
with previous numerical work [24,25]. t ′oc for cases A, B,
C, and D are also identified in Fig. 4, where for both
B and C, t ′oc ≈ 1.2 × 103, which further indicates that the
group Da/Ra2 indeed completely governs flow and transport,
independent of the individual values of Ra and Da. Above
Da/Ra2 ≈ 2 × 10−3, reaction and diffusion dominate and
convection no longer takes place.

IV. SUMMARY AND CONCLUSIONS

In this study, we have demonstrated that the stability of a
buoyant boundary layer in a porous medium with a first-order
chemical reaction is fully determined by the nondimensional
number Da/Ra2 = kraDφμ2/(k�ρ0g)2. This parameter is a
measure of the rate of diffusion and reaction compared to
convection. For low Da/Ra2, the boundary layer breaks up
into fingers which subsequently grow and merge, driving
convection in the underlying fluid. As Da/Ra2 increases, the
growth rate of the instability decreases, the time for onset of
convection increases, and finger interaction is delayed and
suppressed. The dimensionless wavelength at the onset of

instability does not depend on the presence of reaction. Above
a critical value of Da/Ra2 ≈ 2 × 10−3, reaction stabilizes the
planar diffusive layer at a finite depth and no convection
develops in the fluid below. The depth of this stable diffusive
layer decreases with increasing Da/Ra2 until it approaches
zero thickness at Da/Ra2 ≈ O(1).

These results suggest that several regimes of transport of
CO2 stored in saline aquifers may occur, depending on how
strongly aqueous CO2 reacts with the porous rock. In weakly
reactive systems, transport of CO2 will occur throughout the
whole depth of the reservoir, but with stronger reactions, the
deeper part of the reservoir will be inactive.

Among deep saline reservoirs, the reaction strength can vary
significantly. Rock matrices naturally possess a wide range of
geochemical reaction rates depending on the mineralogy [16].
But even within the same mineralogy, approximations of over-
all geochemical rates, which take into account many factors
affecting reaction strength, have been found to considerably
vary, by up to several orders of magnitude [26]. In engineering
applications, the reaction rate can be altered by changing the
local temperature or the concentration of an active species
in the rock matrix. Furthermore, there currently exists the
technology to create and inject compounds to match specific
reservoir requirements, and so, altering the strength of reaction
by injecting a well-chosen reagent into a saline aquifer is
possible.
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