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Vesicle electrohydrodynamics
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A small amplitude perturbation analysis is developed to describe the effect of a uniform electric field on the
dynamics of a lipid bilayer vesicle in a simple shear flow. All media are treated as leaky dielectrics and fluid
motion is described by the Stokes equations. The instantaneous vesicle shape is obtained by balancing electric,
hydrodynamic, bending, and tension stresses exerted on the membrane. We find that in the absence of ambient
shear flow, it is possible that an applied stepwise uniform dc electric field could cause the vesicle shape to evolve
from oblate to prolate over time if the encapsulated fluid is less conducting than the suspending fluid. For a vesicle
in ambient shear flow, the electric field damps the tumbling motion, leading to a stable tank-treading state.
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I. INTRODUCTION

Membranes that encapsulate cells and internal cellular
organelles are composed primarily of lipid bilayers [1]. Giant
unilamellar vesicles (GUVs), which are cell-size membrane
envelopes, have gained popularity as models of protocells [2]
and systems to study membrane biophysics [3]. Because of
their large size (10–100 μm), direct observation is possible
of the dynamic features of individual membrane vesicles in
real time with optical microscopy. GUVs exhibit rich dynamic
behavior in flow or electric fields—see, for example, the
reviews in Refs. [4–7]. Understanding the effects of flow on
GUVs and cells is fundamental to many naturally occurring
biological processes, e.g., blood flow. Applied electric fields
are of interest because of their use in biomedical technologies,
e.g., gene transfection. In particular, a controlled application
of an electric pulse can induce transient pores in the cell or
vesicle membrane, which can reseal after the pulse is turned
off but may allow the delivery of exogenous molecules. Here
we also investigate the combined effect of both flow and an
applied dc electric field on the dynamics of a vesicle, which
is motivated by the potential use of vesicles as microreactors
in micro- and nanofluidic designs, in which complex networks
of lipid nanotubes connect vesicle containers [8]. Unlike the
conventional microfluidic structures, these “soft” networks can
be reconfigured and manipulated by flow or electric fields.

In simple shear flow, a vesicle exhibits several different
types of motions. A key physical parameter affecting the
dynamics is the viscosity ratio between the fluid outside
to the fluid inside the vesicle. With varying viscosity ratio,
three of the observed dynamics are [9–13]: (1) tank treading
(TT), in which the vesicle deforms into a prolate ellipsoid
and the membrane rotates as a tank tread, the vesicle major
axis is tilted with respect to the flow direction and the
inclination angle remains fixed in time; (2) tumbling (TB),
in which the vesicle undergoes a periodic flipping motion; and
(3) vacillating breathing (VB) also called trembling, where the
vesicle is trembling in the flow direction with periodic shape
deformations.

A vesicle deforms into an ellipsoid when subjected to a
uniform electric field [14–18]. Depending on the conductivity
mismatch between the inner and outer fluids, and in the case
of the ac field, its frequency, the ellipsoid is prolate or oblate

and its major axis is either collinear with or perpendicular to
the applied electric field [17,19]. In this paper, we investigate
vesicle response to a dc field and the time evolution of the
vesicle shape.

If a simple shear flow and electric field are simultaneously
applied, vesicle deformation and orientation become depen-
dent on the relative strength of the electric and shear stresses.
For example, an electric field applied along the velocity
gradient acts to elongate and align the vesicle perpendicularly
to the flow direction, while the shear flow tends to orient the
vesicle along the flow direction. This problem, however, has
been analyzed only to a limited extent for drops and capsules
[20–23]. Thus, another goal of this paper is to theoretically
investigate the effect of the competition between electric stress
and shear stress on vesicle dynamics. While the behavior of
an isolated vesicle in either a uniform electric field [24] or a
shear flow [25–28] has been extensively studied, the effect of
a combined uniform electric field and fluid flow on vesicle
dynamics has, to the best of our knowledge, received no
attention. Our study is also motivated by the possible use of
electric fields to modulate rheology of vesicle suspensions,
and in a more general context to use electrohydrodynamics for
cell manipulation.

The theoretical analysis of vesicles in external flows is
complicated by the elasto- and electromechanics of the lipid
bilayer membrane. Several features of lipid membranes can
be identified which underlie the complexity of the problem:
(1) Lipid molecules are free to move in the plane of the
membrane thus the lipid bilayer behaves as a fluid. (2) Under
stress, lipid bilayers store elastic energy in bending, while
membranes made of crosslinked polymers are more likely
to be stretched and sheared. (3) The lipid bilayer contains
a fixed number of molecules and the membrane is nearly area
incompressible. In response to in-plane stresses, it develops
nonuniform tension, which adapts itself to the forces exerted
on the membrane in order to keep the local area constant.
(4) The lipid membrane is essentially an insulating shell
impermeable to ions. When an electric field is applied, charges
accumulate on both sides of the bilayer and the membrane
acts as a charging capacitor. In addition, since membranes
are embedded in a fluid environment, changes in membrane
conformation are coupled to a motion in the surrounding fluids.
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Since membranes are molecularly thin, to describe the
membrane-fluid coupling it is convenient to use an effective
two-dimensional description of the membrane mechanics
[29]. The simplest account for the bending stresses comes
from the classic Helfrich–Canham energy [30,31]. In this
paper we develop an effective zero-thickness model for a
fluid-embedded lipid membrane in an electric field and apply
it to study vesicle dynamics in a combined shear flow and
uniform electric fields.

II. PROBLEM FORMULATION

A. The physical picture: Characteristic time scales, relevant
parameters, and their magnitudes

Let us consider a neutrally buoyant vesicle made of
a charge-free lipid bilayer membrane with conductivity
σm and dielectric constant εm. The bilayer thickness is
h ∼ 5 nm, thus on the length scale of a cell-size vesicle
(radius a ∼ 10 μm) the bilayer membrane can be regarded
as a two-dimensional surface with capacitance Cm = εm/h

and conductivity Gm = σm/h. The vesicle is filled with a fluid
of viscosity μin, conductivity σin, and dielectric constant εin,
and suspended in a different fluid characterized by μex, σex,
and εex. To characterize the mismatch in the fluid physical
properties, we introduce the ratios

� = σin

σex
, S = εin

εex
, η = μin

μex
. (1)

The departure of the vesicle shape from a sphere is
quantified by the excess area, which is the difference between
the vesicle area and the area of an equivalent-volume sphere
[32],

� = A/a2 − 4π, a =
(

3v

4π

)1/3

. (2)

Here A and v are the true surface area and volume of the
vesicle.

The vesicle is subjected to a linear flow with strain-rate
magnitude γ̇ and a uniform dc electric field with magnitude
E0,

u∞ = γ̇ yx̂, E∞ = E0ŷ. (3)

The vesicle shape can be described by the radial position of
the interface rs = a(1 + f (θ,φ,t)), where f (θ,φ,t) is to be
determined as part of the solution. The problem is sketched in
Fig. 1.

When an electric field E(t) is applied to an electrolyte
solution, ions move. The ion redistribution leads to inhomo-
geneities in the bulk charge density, which decay on a time
scale related to bulk conduction [33,34],

tc,in = εin

σin
, tc,ex = εex

σex
. (4)

Free charges accumulate at boundaries that separate media
with different electric properties as illustrated in Fig. 2. The
rate of charge buildup at the interface of a macroscopic object,
e.g., a sphere, is given by the Maxwell-Wagner polarization
time [35],

tMW = εin + 2εex

σin + 2σex
. (5)

FIG. 1. Sketch of the the problem: a vesicle subjected to a
combination of shear flow and a uniform electric field.

The polarization depends on tc,in/tc,ex = �/S. Consider,
for example, a droplet suspended in another liquid. The charge
relaxation time, tc, measures how fast conduction supplies
charges to restore equilibrium. If tc,in < tc,ex, the conduction
in the drop is faster than the suspending liquid. As a result, the
interface acquires charge dominated by ions brought from the
interior fluid and the induced dipole is aligned with the electric
field. In this case, charges at the poles are attracted by the
electrodes, pulling the drop into a prolate shape. In the opposite
case, tc,in > tc,ex, the charging response of the exterior fluid
is faster than the interior fluid. Hence, the interface charge is
dominated by the exterior ions and the polarization is reversed.
In this induced-charge configuration, a drop can become an
oblate ellipsoid [36]. The lipid membrane, however, represents
a more complex boundary compared to fluid-fluid interfaces. It
is impermeable to ions and, therefore, charges accumulate on
both the inner and outer physical surfaces. Hence, the vesicle
acts as a capacitor that charges on a time scale given by [37–39]

tm = aCm

(
1

σin
+ 1

2σex

)
. (6)

For simplicity, the vesicle is modeled as a spherical insulating
shell. The membrane capacitance gives rise to a potential
difference across the membrane and a capacitive current
through the membrane.

If the electric field is not normal to the interface, its
tangential component acts on the induced free charges at
the interface and gives rise to a shearing force. This is
illustrated in Fig. 2 on the example of a spherical droplet. The
electrical force drags the interface in motion. The resulting
electrohydrodynamic (EHD) flow is characterized by a time

FIG. 2. Surface charge distribution and direction of the surface
electric force for a sphere with (a) tc,in > tc,ex and (b) tc,in < tc,ex.
(c) Sketch of the induced charge distribution around a spherical
insulating shell.
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scale, which corresponds to the inverse of the shear rate
imposed by the tangential electric stress,

tel = μex(1 + η)

εexE
2
0

. (7)

The straining component of the external shear flow also
distorts vesicle shape by elongating it along the extensional
axis of the flow, which is oriented at a 45◦ angle relative
to the flow direction. The corresponding time scale is te =
(1 + η)γ̇ −1.

Vesicle deformation by electric and flow stresses is limited
by the membrane’s resistance to bending and stretching. A
distortion in the vesicle shape relaxes on a time scale

tκ = μex(1 + η)a3

κ
, (8)

where κ is the bending modulus. The curvature relaxation
depends on the average viscosities of the bulk fluids, because
viscous dissipation on length scales greater than a micrometer
takes place in the bulk [40].

The ratio of distorting electric and restoring bending time
scales defines a capillarylike number,

Ca = tκ

tel
≡ εexE

2
0a

3

κ
. (9)

It is convenient to introduce a dimensionless number, which is
independent of the membrane properties:

Mn = εexE
2
0

μexγ̇
. (10)

The Mason parameter, Mn, compares the strength of electric
and viscous stresses.

Let us estimate the magnitude of the above time scales
involved in the process of vesicle electrodeformation. Typical
experimental conditions involve solutions with conductivities
in the range σ ∼ 10−4 S/m and electric fields of the order
of E ∼ 1 kV/cm [14–19,41–46]. The typical size of a giant
vesicle is a ∼ 10 μm. The inner and outer fluids are essentially
water: viscosity μ ∼ 10−3 Pa s, and density ρ ∼ 1000 kg/m3.
The membrane capacitance is Cm ∼ 10−2 F/m2 [47] and bend-
ing rigidity κ ∼ 10−19 J. Therefore, for vesicles, we estimate
the basic charging time and the Maxwell-Wagner polarization
time to be of the same order tc ∼ tMW ∼ 10−6 s, the membrane
charging time is tm ∼ 10−3 s, the electrohydrodynamic time
is tel ∼ 10−2 s, and the bending relaxation time is tκ ∼ 10 s.
Typical shear rates range from γ̇ ∼ 0.1 to 100 s−1 [48–51].

We see that the vesicle electrohydrodynamics involves
processes that occur on very different time scales. Bulk
phases become electroneutral on a time scale given by charge
relaxation time (4), and charging of the interface occurs
on a similarly fast time scale (5). Hence, we can assume
a quasistatic electric field. However, the electric field can
vary with time as the membrane capacitor charges. These
variations can take place on a time scale comparable to vesicle
response to imposed shear flow (tm ∼ γ̇ −1), or electric field
(tm ∼ tel), rendering the problem intrinsically nonlinear and
time dependent.

B. Governing equations

We adopt the leaky dielectric model, which combines the
Stokes equations to describe fluid motion with conservation of
current described by Ohm’s law [34]. Under the assumption
of charge-free fluids, the electric and hydrodynamic fields are
decoupled in the bulk.

The pressure, p, and the fluid velocity, u, fields obey

μin∇2uin = ∇pin, ∇ · uin = 0,
(11)

μex∇2uex = ∇pex, ∇ · uex = 0.

In the absence of bilayer slip and membrane permeability,
the velocity is continuous across the interface. The shape
evolution is determined from the kinematic condition that
the interface moves with the normal component of the fluid
velocity uin(rs) = uex(rs) ≡ us ,

∂rs

∂t
= us · n. (12)

The quasistatic electric field, E, in the absence of bulk
charges is irrotational and the electric potential, �, satisfies

E = −∇�, ∇2� = 0. (13)

The potential undergoes a jump across a capacitive interface,

�in − �ex = Vm. (14)

The transmembrane potential, Vm, is determined as part of
the problem; in general, it is a complex function of the
geometry, and fluid and membrane physical properties. Far
away from the vesicle, the velocity u and electric fields E tend
to the unperturbed flow, u → u∞ and electric field, E → E∞,
respectively.

The electric and flow fields are coupled through the
boundary condition for stress balance and current conservation
at the interface. The hydrodynamic and electric tractions are
discontinuous and are balanced by membrane forces,

n · [
(Tex − Tin) + (

Tel
ex − Tel

in

)] = τm at r = rs, (15)

where n is the outward pointing normal vector. The membrane
stresses τm are discussed in Sec. II C. Here Tij = −pδij +
μ(∂jui + ∂iuj ) is the bulk hydrodynamic stress and δij is the
Kronecker delta function. The electric stress is given by the
Maxwell stress tensor T el

ij = ε
(
EiEj − EiEiδij /2

)
.

The current density is continuous across the membrane [52],

n · (σexEex) = n · (σinEin) = Cm

dVm

dt
. (16)

The effective induced charge on the membrane is formally
defined as a jump in the displacement fields across the
interface,

Q = n · (εexEex − εinEin). (17)

In our model of the membrane as a zero-thickness capacitive
interface, Q is not the charge of the capacitor; for a fully
charged capacitor, Q = 0. Q represents the difference between
the charge densities on the inner and outer physical surfaces
of the membrane. This imbalance occurs because if bulk
conductivities differ, charges at the physical surfaces of the
membrane are supplied at different rates.
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C. Membrane forces

Fluid membranes made of lipid bilayers are governed by
resistance to curvature changes. The membrane free energy is

F =
∫ [

κ

2
(2H )2 + �

]
dA, (18)

where κ is the bending modulus. The membrane tension, �, is
a Lagrange multiplier that enforces the area incompressibility.
The quantity H is the mean curvature of the surface, given by

H = 1
2∇ · n. (19)

The corresponding membrane forces are found by taking a
variational derivative of (18) [40]

τm = [ − 2κ
(
2H 3 − 2KgH + ∇2

sH
) + 2�H

]
n − ∇s�,

(20)

where Kg is the Gaussian curvature of the surface given by

Kg = 1
2∇ · [n∇ · n + n × (∇ × n)]. (21)

∇s = Is · ∇ is the surface gradient operator, Is = I − nn is the
surface projection, and Iij ≡ δij .

III. SOLUTION FOR A NEARLY SPHERICAL VESICLE

In order to make analytical progress, we consider a vesicle
with a small excess area, � � 1. In this limit the deviation
from sphericity, f , scales as �1/2. We proceed to determine
the leading-order solution. Assuming that the applied electric
field scales as �1/4 allows us to find the electric field by
solving for the potential about a sphere with the boundary
condition (16) independent of the flow and vesicle asphericity.
The corresponding electric stresses are then inserted in the
stress conditions (15) to find the velocity field and the vesicle
deformation.

A. Solution outline

Due to the linearity of the Stokes equations, the velocity
field can be decomposed into two components: a flow about
a vesicle subject to a shear flow (in absence of electric field)
and a flow about a vesicle in electric field (in absence of
applied shear). The first problem has been solved in Refs. [25]
and [26]. Here we derive the solution for the second problem,
namely, the electrodeformation of a spherical particle with a
capacitive interface. Then we combine the two solutions and
explore the vesicle dynamics resulting from the interplay of
shear and electric stresses. The solution of the hydrodynamic
part is summarized in Appendix E.

As noted earlier, in a spherical coordinate system centered
at the vesicle, the position of the interface is

rs(θ,φ,t) = a[1 + f (θ,φ,t)], (22)

where f measures the deviation from sphericity. All variables
are expanded in spherical harmonics Yjn (D1). For example,

f (θ,φ,t) =
∑
j�2

j∑
n=−j

fjn(t)Yjn. (23)

The j = 1 modes have been omitted because they describe
translation of the center of mass. The order of magnitude of the
asphericity (f ∼ �1/2) becomes evident from the expression
for the vesicle’s excess area,

� = 1

2

∑
j,n

(j + 2)(j − 1)fjnf
∗
jn + O(f 3). (24)

where the
∑

j,n is shorthand notation for the double sum in (23)
and the ∗ denotes the complex conjugate, f ∗

jn = (−1)nfj−n.
The quasistatic electric field is irrotational, i.e., E = −∇�,

and the electric potential � is a solution of the Laplace
equation. Hence, the solutions for the electric field are
growing and decaying spherical harmonics, which derive from
∇(rjYjn) and ∇(r−j−1Yjn),

Eex = E∞ −
∑
j,n

P ex
jn∇(r−j−1Yjn),

(25)
Ein = −

∑
j,n

P in
jn∇(rjYjn).

A uniform electric field applied in the y-z plane (perpendicular
to the flow direction) is defined by

E∞ = E0(αŷ + β ẑ) = −E0

1∑
n=−1

e∞
1n∇(rY1n), (26)

where

e∞
10 = β

√
4π

3
, e∞

1±1 = αi

√
2π

3
. (27)

B. Electric field and the transmembrane potential

The solution for the electric potential around a sphere
placed in a uniform electric field is

�ex = −E0

[
r + Pex

a3

r2

] 1∑
n=−1

e∞
1nY1n,

(28)

�in = −E0Pinr

1∑
n=−1

e∞
1nY1n.

Applying the boundary conditions (16) we find

Pex = (−� + 1) + �V̄ (t)

� + 2
, Pin = 3 − 2V̄ (t)

� + 2
, (29)

where V̄ (t) is the amplitude of the transmembrane potential,
Vm = �in(r = a) − �ex(r = a) = V̄ (t)E0a

∑
e∞

1nY1n,

V̄ (t) = 3

2

[
1 − exp

(
− t

tm

)]
, (30)

where tm is the membrane charging time defined by Eq. (6).
Note that the transmembrane potential is position dependent.
Its absolute value is maximal at the poles, i.e., closest to
the electrodes. At the equator the transmembrane potential
is zero. At steady state, the vesicle interior is “shielded,” i.e.,
the interior electric field is zero, and the maximal potential
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drop across the membrane is V̄ = 1.5. The effective charge
density is calculated from (17)

Q(t) = εexE0(1 − 2Pex − SPin)
1∑

n=−1

e∞
1nY1n

= εexE0
� − S

� + 2
[3 − 2V̄ (t)]

1∑
n=−1

e∞
1nY1n

= εexE0Q̄(t)
1∑

n=−1

e∞
1nY1n. (31)

We see that the effective charge on the membrane decreases
as the transmembrane potential increase. At long times, when
the capacitor becomes fully charged, the imbalance between
the inner and outer surface charge density vanishes and
Q = 0.

C. Electric stresses

The tractions that the electric field exerts on a sphere, r = a,
are

tel = εex
[
(r̂ · Eex)Eex − 1

2 Eex · Eexr̂
]

− εin
[
(r̂ · Ein)Ein − 1

2 Ein · Einr̂
]
. (32)

A uniform electric field with j = 1 symmetry generates
electric tractions with j = 0 and j = 2 (see Appendix D). The
isotropic part j = 0 is balanced by the hydrostatic pressure
and does not lead to deformation. Only the position-dependent
stress leads to vesicle deformation,

tel = εexE
2
0(pelr̂ + τ s). (33)

The dimensionless electric pressure is

pel = −p̄
[
3α2 cos 2φ sin2 θ + 1

2 (α2 − 2β2)(1 + 3 cos 2θ )
]
.

(34)

The dimensionless tangential electric traction is

τ s = τ̄ s{−α2 sin θ sin 2φeφ + 1
2 [α2(cos 2φ − 1)

+ 2β2] sin 2θeθ }. (35)

We have explicitly shown the angular dependence of the
pressure and tangential stress; the amplitudes p̄ and τ̄ s depend
solely on the physical parameters of the system such as �, S.
The amplitude of the radial (pressure) component is given by

p̄ = 1
12

[
2 − 2Pex + 5P 2

ex − 2SP 2
in

]
, (36)

and the tangential (shearing) component is

τ̄ s = 1
2

[ − 1 + Pex + 2P 2
ex + SP 2

in

]
. (37)

With the electrostatic problem solved, we next proceed
to compute vesicle deformation in response to an electric
field.

IV. VESICLE DYNAMICS IN ABSENCE OF APPLIED
SHEAR FLOW

In this section, all quantities are nondimensionalized
using the capacitor charging time tm, and the characteristic

magnitude of the bulk electric stress εexE
2
0 . Casting equations

in dimensionless form helps capture the physical picture
in a broader class of situations rather than just one set of
dimensional parameters.

At leading order (linear response), the vesicle shape has the
same symmetry as the deformation-inducing electric stresses,
i.e., j = 2. The evolution equations for the shape parameters
f2n for a vesicle in an electric field oriented in an arbitrary
direction are [7,24,53]

δm
df2n

dt
= Cel

2n − Ca−1R2f2n. (38)

where δm = tel/tm compares the time it takes to deform the
vesicle relative to the time it take to charge the membrane
capacitor.

The inhomogeneous term represents shape distortion by
the applied electric field. For simplicity, let us consider a field
oriented along the z direction (the corresponding expressions
for a field in the y direction are listed in Appendix A):

Cel
20 = 16

√
5π (3p̄ − τ̄ s)

5(32 + 23η)
, (39)

The full expression for Cel
20 is given by (A1).

The term proportional to Ca−1 in (38) describes the
relaxation of the shape by bending stresses and the isotropic
part of the membrane tension,

R2 = 24(6 + �h)

32 + 23η
. (40)

The membrane tension �h depends on the instantaneous vesi-
cle shape and is determined self-consistently with deformation
to keep the total area constant [26]—see Appendix E for
details. The leading-order shape evolution equation becomes
quadratic in the shape parameter f in contrast to the corre-
sponding results for drops [36]. This feature of nonequilibrium
vesicle dynamics has been noted by several authors in relation
to vesicle dynamics in shear flow [25–27].

Inserting (40) and the expression for the tension �h (E20)
in (38) leads to

δm
df20

dt
= Cel

20(t)
(
1 − 2�−1f 2

20

)
,

(41)

δm
df2n

dt
= −2Cel

20(t)�−1f20f2n.

Note that rescaling the time by the membrane capacitor
charging time collapses all curves for vesicle shape as function
of time on a universal plot for a given δm.

The f2n modes are slaved to the f20 shape mode, which is
forced to change by the electric field. An analytic solution for
f20 can be found from the first equation in (41),

f20(t) =
√

�

2
tanh

[√
2

�

1

δm
J (t)

]
, (42)
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t = 0

t = 0

t = 0.8

t = 0.8

t = 1.8

t = 1.8

t = 10

t = 10

FIG. 3. Contours of the vesicle shape in the x-z plane. The top row
is for a conductivity ratio of � = 10, and the bottom is for � = 0.1.
Both solutions are with δm = 1 and η = 1. The initial conditions for
the f2±2 = f ′

22 ± if ′′
22 are f ′

22(0) = f ′′
22(0) = √

0.1�. The f20 mode
is determined from Eq. (24) with � = 0.2.

where f20(0) = 0 was chosen as the initial condition, and

J (t) =
∫ t

0
Cel

20(s) ds = B1{B2 + B3t

+ exp(−2t)[B4 − B5 exp(t)]}. (43)

The constant Bk terms are listed in Appendix B [see Eq. (B1)].
Equations (41) and (42) show that the maximum possible
deformation of f20 is

f max
20 = ±

√
�

2
, (44)

which simply states that all excess area is transferred into the
f20 mode at long times, t → ∞. A positive f20 is characteristic
of the prolate configuration, while when f20 < 0, the vesicle
is in the oblate configuration.

Figure 3 illustrates the time-dependent shape dynamics
obtained from (41) upon a stepwise application of an uniform
dc field. We observe that if � < 1 (and S = 1), the vesicle
deforms initially into an oblate ellipsoid and then into a prolate
ellipsoid. Equation (42) and (43) [or just (41)] show that
the type of deformation can only change from oblate to prolate
if Cel

20(t) changes sign. Setting Cel
20(t) = 0 and solving for the

time t we find that

tob = tm log

[
4
√

S − �

2 + �

]
. (45)

Since time cannot be negative, the argument of the log function
has to be greater than 1. Hence, this condition shows that a
change in shape is possible if

� < 2
√

S − 1. (46)

If S = 1, which is the typical case for vesicle experiments, we
find that � < 1 in order to have oblate-prolate transition. This
conclusion also is in accordance with similar analysis for the
oblate-prolate transition of vesicles in a uniform ac electric
field with decreasing frequency [24,54,55].

Equation (45) also shows that increasing the membrane
capacitance δm increases the time the vesicle spends in the
oblate state. Fixing S and δm and decreasing � toward zero,
also prolongs tob.

To gain better physical insight into the mechanisms of the
oblate-prolate transition, Fig. 4 parallels the time evolution
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FIG. 4. (a) Evolution of the ellipsoidal deformation f20/f
max

20 of
a quasispherical vesicle upon application of a uniform dc electric
field. The solid and dashed curves are with � = 0.1, and 10,
respectively. (b) Evolution of the transmembrane potential, computed
from (30), and the effective charge computed from (31) [dotted line
(� = 0.1) and dotted-dashed line (� = 10)]. (c) Electric pressure
(solid line) and shear stress (dashed line). Parameter values are � =
0.1, S = 1. Time is nondimensionalized by the capacitor charging
time and for all calculations, δm = 1.

of the f20 shape mode, the induced charge, and the trans-
membrane potential. In the case � < 1, initially the induced
effective surface charge is nonzero and the deformation is of
oblate type. As time progresses and the membrane capacitor
charges, the imbalance in the charge densities on the two
membrane surfaces diminishes. Once the capacitor becomes
fully charged, the effective surface charge vanishes, and the
transmembrane potential reaches its steady-state maximum
value. The interior electric fields also vanishes and the vesicle
assumes a prolate shape.
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V. VESICLE DYNAMICS IN A COMBINED ELECTRIC
FIELD AND SHEAR FLOW

In this section, the time scale is γ̇ −1, the velocity scale is
aγ̇ , and bulk flow stresses are scaled with μexγ̇ . The scaling
of the electric charge and electric stresses remains unchanged.

The evolution equation for the shape deformation modes
f2n is obtained from (E17) in conjunction with (E18)–(E20).
In the absence of an electric field, these equations are derived
in Ref. [26]. The electric field modifies the forcing term and
the tension [23,53],

df2n

dt
= in

2
f2n + Cshear

2n + Mn Cel
2n

− Ca−1
γ̇

24[6 + �h(f2n)]

23η + 32
f2n. (47)

where Caγ̇ compares the magnitude of the bending and
shear flow stresses, Caγ̇ = μexγ̇ a3/κ . The Mason number Mn
defined by (10) compares the relative strength of the applied
shear and electric fields; Mn = 0 corresponds to vesicle in
shear flow and no electric field [26].

The forcing by the electric field is given by (A1) for a field
applied in the vorticity (z) direction and (A2) for a field applied
in the velocity gradient (y) direction. The contribution from
the simple shear flow has been derived in Ref. [26]:

Cshear
2n = −in

2
√

30π

23η + 32
. (48)

The electric field adds to the shear flow forcing, thereby
increasing the membrane (TT) velocity. Moreover, the electric
field decreases the membrane tension (E20), because it excites
deformation along the vorticity direction (specified by f20

mode),

�h = −6 + Caγ̇

32 + 23η

12

[
Mn Cel

20f20

+ (
Cshear

22 + Mn Cel
22

)
f2−2

+ (
Cshear

2−2 + Mn Cel
2−2

)
f22

]
. (49)

Physically, in the presence of electric field the vesicle’s contour
in the shear plane is rounder due to the additional electric
pressure (34). It perturbs the applied shear streamlines less
and hence the vesicle’s propensity to tumble decreases. We
will see in Sec. V B that indeed the electric field suppresses
the TT-TB transition.

Inserting (49) in (47) leads to

df2n

dt
= in

2
f2n + C2n − 2�−1f2n

2∑
n=−2

f ∗
2nC2n, (50)

where

C2n = Cshear
2n + Mn Cel

2n. (51)

Instead of shape modes, the vesicle dynamics can be also
conveniently described in terms of the orientation angle, ψ ,
and R, which measures the ellipticity of the vesicle contour in
the x-y plane [25],

f2±2 = R exp(∓2iψ). (52)

The f20 mode can be determined from the area constraint (24),

f20 =
[
�

2
− 2f22f2−2

]1/2

=
[
�

2
− 2R2

]1/2

. (53)

Thus we obtain for the evolution equations for the shape and
orientation of a fluid membrane vesicle,

dψ

dt
= −1

2
− C ′′

22

2R(t)
cos[2ψ(t)] − C ′

22

2R(t)
sin[2ψ(t)], (54)

dR

dt
=

(
1 − 4

R(t)2

�

)
{C ′

22 cos[2ψ(t)] − C ′′
22 sin[2ψ(t)]}

− 2C20R(t)�−1

[
�

2
− 2R2

]1/2

, (55)

where C22 = C ′
22 + iC ′′

22. Note that in the absence of an
electric field (C20 = C ′

22 = 0) and R constant, (54) reduces
to the Keller-Skalak equation describing the dynamics of a
TT ellipsoid [56]. In the next sections we analyze the vesicle
motions described by the above equations in the absence and
presence of electric field.

A. No electric field

For the sake of completeness, here we summarize the results
for vesicle dynamics in simple shear flow. In the absence
of electric field, C20 = C ′

22 = 0, and C ′′
22 = −4

√
30π/(23η +

32) [25]. In this case, the set of coupled nonlinear equations
has a stable fixed point corresponding to the TT state [R∗ =√

�/2, cos(2ψ∗) = −√
�/2C ′′

22] or a closed orbit centered at
(ψ∗ = 0,R∗ = −C ′′

22) describing the breathing mode. Tum-
bling does not correspond to an equilibrium point. The TT
fixed point loses stability at a critical viscosity ratio,

ηc = −32

23
+ 120

23

√
2π

15�
. (56)

Physically, in the absence of electric field, at η < ηc the torque
of the applied shear flow is transmitted via the TT membrane
into circulation of the interior fluid and the vesicle assumes a
stationary TT state. However, at high interior fluid viscosity,
η > ηc, the fluid flows less readily and the interior fluid
circulation cannot compensate the shear torque; the vesicle TT
state becomes unstable and the vesicle responds by executing
rigid body rotation (tumbling).

If there is no deformation along the vorticity direction,
i.e., f20 = 0 at all times, Eq. (53) implies that R remains
constant and equal to its maximum value

√
�/2. This situation

resembles the Keller-Skalak model [56]: The vesicle shape is
a fixed ellipsoid and the vesicle dynamics is described only
by the variations of the angle ψ (note, however, that unlike
the Keller-Skalak solution, our velocity field is strictly area
incompressible). The nonlinear dynamics (either VB or TB)
for η > ηc will depend on the amplitude of the oscillation and
the value of η. For example, in Ref. [26], results are presented
which show a VB motion with large amplitude variation in f20

for η slightly greater than critical, while the dynamics become
TB, with small amplitude variation of f20, for values of η

much larger than critical. In the breathing mode, the vesicle
undergoes periodic shape deformations along the vorticity
direction and appears to tremble in the flow direction.
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B. Combined electric field and shear flow

The presence of the electric field modifies the vesicle
dynamics in shear flow. Let us consider the case of an electric
field applied in the velocity gradient (y) direction.

The steady TT state of the vesicle depends on strength
of the electric field, as seen in Fig. 5. For example, the
inclination angle of the vesicle major axis with respect to the
flow direction increases. This effect is illustrated in Fig. 5(b).
As Mn increases, ψ increases toward π/2, the orientation
of the applied electric field with respect to the flow direction
(x axis).

In the previous section we saw that in the absence of the
electric field, increasing the viscosity contrast η brings the
vesicle into the tumbling regime which is characterized by
a periodic variation of the f2n modes. In the presence of
an electric field, this periodic motion is damped because the
electric field generates a torque, which opposes the shear one.
The electric field acting to align the vesicle major axis with
the field stabilizes the TT state.

Figure 6(a) illustrates the vesicle tumbling with decaying
amplitude toward the TT configuration. Increasing the viscos-
ity of the vesicle, which enhances the viscous forces acting on
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FIG. 5. (a) Contours of the vesicle viewed in the x-y plane for
η = 1. The vesicle is stressed by the combined shear flow, and electric
field in the y direction (α = 1, β = 0). The solid, dashed, and dotted
contours are with Mn = 0, Mn = 5, and Mn = 12, respectively. The
remaining parameters are � = 10, S = 1, δm = 10, and � = 0.2.
The initial conditions are the same as those in Fig. 3. (b) Inclination
angle of vesicle at various Mn. The solid, dashed, and dotted curves
are with η = 1, 3, and 5, respectively.
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FIG. 6. (a) Time dependence of the f2n modes in the damped
tumbling state. The solid, dashed, and dotted curves are f ′′

22, f ′
22, and

f20, respectively with η = 10. The remaining parameters are � = 10,
δm = 10, S = 1, Mn = 0.25, and � = 0.2. (b) Time dependence of
ψ . The solid, dashed, and dotted curves are, respectively, with η = 8,
9, and 10. The remaining parameters are the same as those in (a).

the vesicle, only lengthens the time required for the electric
stresses to fully dampen the tumbling motion. This effect is
seen in Fig. 6(b), where ψ is shown at various η. During
the damped tumbling motion, the vesicle rotates clockwise,
and ψ will increase negatively until the electric stresses have
overcome tumbling motion, and the major axis can no longer
make a complete rotation. The total number of rotations is
therefore given by ψ/2π .

A linear stability analysis can be performed for Mn > 0 in
the long-time limit where the time-dependent coefficients are
constant. Here the analysis is performed using the 3 × 3 system
of Eq. (50). This choice was made in order to remain consistent
with the discussion at the end of Sec. IV, where the system
given by (41) (dynamics described by shape modes) was used
in the stability discussion. Figure 7 illustrates the stability of
the system by examining the dependence of the eigenvalues on
the viscosity ratio. For viscosity ratios η less than some critical
value ηe, there are three negative real eigenvalues, implying
stability. For η > ηe, two of the real eigenvalues become
complex conjugates; however, the real part is negative, which
implies stability. From these numerical results, we conclude
that the same steady-state solution is stable for all values of η,
but how this solution is approached depends on η. For small
η we see a stable node, while if η > ηe, there is a damped
oscillation into the TT solution. It is interesting to note that
the computed value of ηe ≈ 4 is less than the critical η for the
Mn = 0 case given in Eq. (56), ηc = 6.15, implying the ηe
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FIG. 7. The magnitude of the real (a) and imaginary (b) com-
ponents of the eigenvalues of the system (50) linearized about
its steady state, as a function of η. In (b), the solid and dashed
curves represent the magnitude of the two unique imaginary com-
ponents. The remaining parameters are � = 10, S = 1, δm = 1, and
Mn = 1.

depends on the other physical parameters in addition to the
excess area �. Finally, note that this linear stability analysis
yields results consistent with the numerical solution of the
system as presented in Figs. 5 and 6.

VI. CONCLUSIONS

In this study we considered the effects of a steady uniform
electric field on the dynamics of a vesicle in a simple shear
flow. We have developed a model which accounts for the
fluidity and incompressibility of the interface in addition to
bending resistance. The interface is treated as a capacitor and
thus the boundary conditions at the membrane have intrinsic
time dependence. In the limit of a nearly spherical vesicle
and weak electric field, we derived a system of coupled
nonlinear ordinary differential equations with time-dependent
coefficients which describe the evolution of the vesicle shape.

The solution of the evolution equations shows that in the
absence of an applied shear flow, the vesicle either remains
a prolate ellipsoid at all times, or temporarily enters a oblate
state before becoming prolate. The oblate-prolate transition is
related to the charging of the membrane capacitor. Initially the
vesicle interior participates in the conduction process because
of the displacement current through the membrane. Vesicle
deformation is determined by the polarization, which depends
on the ratio of conductivities between the inner and outer fluids.
If the inner fluid is less conducting than the exterior solution,
the induced dipole is directed oppositely to the applied field
and the resulting deformation is oblate. Once the capacitor is

fully charged, the electric field is expelled from the interior
and the vesicle deforms as an ideally polarizable particle into
a prolate ellipsoid.

In the absence of electric field, at low viscosity ratios, the
torque of the applied shear flow is transmitted via the TT
membrane into circulation of the interior fluid and the vesicle
assumes a stationary TT state. However, at high interior fluid
viscosity the fluid flows less readily. When the viscosity ratio
becomes sufficiently large, the stress exerted by the flow is
no longer sufficient to drive the TT motion while preserving
area incompressibility, the membrane becomes solidlike and
the vesicle tumbles. The electric field exerts additional stress
on the membrane which aids TT.

Our theoretical results are consistent with available exper-
imental data [19], albeit some of the theoretical predictions
such as the oblate-prolate transition in absence of applied flow
and the suppressed tumbling under shear when an electric
field is present remain to be experimentally tested. Another
interesting problem is the effect of thermal fluctuations on the
morphological transitions.
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APPENDIX A: FORCING TERM FROM THE ELECTRIC
FIELD IN THE SHAPE EVOLUTION EQUATION

For an electric field in the z direction,

Cel
20 = 4

√
5π

5(32 + 23η)
�(t), (A1)

and for an electric field in the y direction,

Cel
20 =

√
2

3
Cel

2±2 = − 2
√

5π

5(32 + 23η)
�(t), (A2)

where

�(t) = −4SP 2
in + (−2 + Pex)2 = 1

(� + 2)2
[(�V̄ (t)

− 3(� + 1))2 − 4S(3 − 2V̄ (t))2]. (A3)

The amplitude of the transmembrane potential V̄ (t)is given by
Eq. (30).

APPENDIX B: FURTHER RESULTS FOR VESICLE
DYNAMICS IN ELECTRIC FIELDS

Expressions for the constants Bk in J (t) are

B1 = 9
√

5π/[5(32 + 23η)(2 + �)2],

B2 = −16S + �(8 + 5�), B3 = 2(2 + �)2, (B1)

B4 = 16S − �2, B5 = 4�(2 + �).

The stationary solution shown in (44) (which defines a
prolate vesicle) was obtained at by examining long-time
behavior of (42). It can also be derived by assuming that
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the time-dependent forcing from the electric field, Cel
20(t) has

reached its steady state, which makes Eqs. (41) autonomous.
Introducing the constant quantity, Cel∞

20 = Cel
20(t = ∞), setting

the left-hand side of (41) to zero, and solving for f20 yields
(44). However, a second stationary solution also exists,

f min
20 = −

√
�

2
. (B2)

This solution corresponds to an oblate spheroid. Linearizing
the system (41) about the prolate solution (44) and performing
a stability analysis reveals real, negative eigenvalues ω1 =
−Cel∞

20

√
�/2 and ω2 = 2ω1. This indicates that the prolate

state is characterized by a stable node at long times. On the
other hand, if the evolution equations (41) were linearized
about the oblate state (B2), the eigenvalues are positive, which
shows that at long times, the oblate state is an unstable
solution.

Lastly, if one were to freeze time in Cel
20(t) at t = 0, and

not the long-time state, the signs on the eigenvalues switch
depending on the value of �. In particular, if � < 1 and Cel

20(0)
is negative, the equilibrium solution (B2) is stable, and hence
initially an attractor. On the other hand, if � > 1 and Cel

20(0)
is positive, then (44) is the attractor. These predictions are
consistent with the dynamics shown in Fig. 4.

APPENDIX C: ELECTRIC FIELD ALONG THE
VORTICITY DIRECTION

Orientation of the electric field along other coordinate axes
results in similar time-dependent dynamics of the shape modes
seen in Fig. 6, i.e., the vesicle undergoes a damped tumbling
motion. We should note that when the electric field is directed
along the z coordinate axis (α = 0, β = 1) [see (26)], the
system reduces to a more compact form. Steady states can be
analytically obtained from (50) by solving

0 = −�f ′′
22 + 2f ′

22

(
2Cshear

22 f ′′
22 − Cel

20f20
)
, (C1)

0 = �
(
f ′

22 + Cshear
22

) + 2f ′′
22

(
2Cshear

22 f ′′
22 − Cel

20f20
)
, (C2)

0 = 4Cshear
22 f20f

′′
22 + Cel

20

(
� − 2f 2

20

)
, (C3)

for f ′
22, f ′′

22, and f20. Note that one must also assume the
time-dependent coefficients have reached their steady state. A
fourth order polynomial for f20 is found,

2f 4
20 + [

2
(
Cel

20

)2 + 4Cshear
22 − �

]
f 2

20 − �
(
Cel

20

)2 = 0. (C4)

The four steady states of f20 are

f20 = ± 1
2

[ − 2
(
Cel

20

)2 − γ − ζ
]1/2

(C5)

and

f20 = ± 1
2

[ − 2
(
Cel

20

)2 + γ + ζ
]1/2

, (C6)

where γ = 4(Cshear
22 )2 − �, and

ζ = [
8�

(
Cel

20

)2 + (
2
(
Cel

20

)2 + γ
)2]1/2

. (C7)

The two solutions given by (C5) are imaginary for physical
values of the parameters, and therefore are not valid. The two
solutions given by (C6) are real, and therefore valid solutions
of the system. We linearize the evolution Equation (50) about
the solutions given by (C6), and with the corresponding f ′

22 and
f ′′

22 [found from (C9) and (C8), respectively]. The eigenvalues
in this system are complex with either a positive or negative real
part, depending on the sign taken for f20 from (C6); adopting
the positive sign for f20 yields a stable system.

From (C1), the steady state of f ′′
22 is found to be

f ′′
22 = Cel

20

(
2f 2

20 − �
)

4Cshear
22 f20

. (C8)

Additionally, using (C2), the expression for f ′
22 can be found,

f ′
22 = �f ′′

22

2Cel
20f20 − 4Cshear

22 f ′′
22

. (C9)

Inserting (C8) into (C9) and using (C3) yields (C4).

APPENDIX D: SPHERICAL HARMONICS

The normalized scalar spherical harmonics are defined as

Yjn(θ,φ) =
[

2j + 1

4π

(j − n!)

(j + n)!

] 1
2

(−1)nP n
j (cos θ )einφ,

(D1)

where P n
j (cos θ ) are the associated Legendre polynomials. For

example,

Y10 =
√

3

4π
cos θ. (D2)

The vector spherical harmonics relevant to our study are
defined as [57]

yjn0 = [j (j + 1)]−1/2r∇�Yjn,
(D3)

yjn1 = −ir̂ × yjn0, yjn2 = r̂Yjn.

For example

y200 = −
√

15

32π
sin(2θ )eθ , y202 = 1

8

√
5

π
[1 + 3 cos(2θ )]r̂,

(D4)

y222 + y2−22 =
√

15

8π
(cos 2φ sin2 θ )r̂, (D5)

y220 + y2−20 =
√

5

4π

[
1

2
(cos 2φ sin 2θ )eθ − (sin 2φ sin θ )eφ

]
.

(D6)

Calculations of the electric tractions involve recoupling of
products of vector and scalar spherical harmonics. A detailed
presentation of general recoupling formulas is beyond the
scope of this paper and can be found in Ref. [58]. Here we
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list the formulas needed to complete the calculation in this
work:

Y1±1Y1±1 =
√

3

10π
Y2±20,

(D7a)

Y1−1Y11 = − 1

2
√

π
Y00 + 1

2
√

5π
Y20.

√
2Y1±1y1±10 = 3

2
√

10π
y2±2,

(D7b)√
2Y1±1y1∓10 = ∓1

2

√
3

2π
y101 + 1

4

√
3

5π
y200.

2y1±10 · y1±10 = −
√

3

10π
Y2±2,

(D7c)

2y1−10 · y110 = − 1√
π

Y00 + 1√
5π

Y20.

APPENDIX E: VESICLE DEFORMATION IN EXTERNAL
FIELD: SOLUTION

Here we outline the solution for the velocity field resulting
from electric tractions in the case of a sphere placed in an
uniform electric field. More details can be found in Refs. [26–
28,40,59]. The formalism was originally developed to study
droplets in flow [58,60,61].

Velocity fields are described using basis sets of fundamental
solutions of the Stokes equations appropriate for spherical
geometry [62], u±

jmq , defined in Appendix F:

vex(r) =
∑
jmq

cjmqu−
jmq(r), vin(r) =

∑
jmq

cjmqu+
jmq(r). (E1)

∑
jmq

≡
∞∑

j=2

j∑
m=−j

2∑
q=0

, (E2)

�(θ,φ,t) = �h +
∑
j�2

j∑
m=−j

�jm(t)Yjm, (E3)

where �h is the isotropic part of the tension used to enforce
a global constraint on the area. The local area conservation
implies that the velocity field at the interface is solenoidal [40],

∇s · v = 0. (E4)

Therefore the amplitudes of the velocity field (E1) are related:

cjm0 = 2√
j (j + 1)

cjm2. (E5)

The component of velocity that is normal to the interface,
cjm2, is determined using the stress balance, which in terms of
spherical harmonics reads

δj2δm0τ
el
jmq + τ

hd,ex
jmq − ητ

hd,in
jmq = Ca−1τm

jmq . (E6)

Tangential stresses correspond to the q = 0 component, and
the normal stresses to q = 2. δij is the Kronecker delta
function. The hydrodynamic tractions are given by (F6)–(F9).
The electrical tractions are given by (see Sec. III C)

τ el = 8

√
π

5
pely202(θ,φ) − 2

√
2π

15
τ el
s y200(θ,φ). (E7)

The membrane tractions are [26,40]

τm
jmq = τ κ

jmq + τ�
jmq. (E8)

The bending contribution to the membrane traction is

τ κ
jm2 = j (j + 1)(j − 1)(j + 2)fjm, τ κ

jm0 = 0, (E9)

the stresses due to membrane tension are

τ�
jm2 = 2�jm + �h(j − 1)(j + 2)fjm,

(E10)
τ�
jm0 = −

√
j (j + 1)�jm.

The nonuniform part of the membrane tension, �jm, is
determined from the tangential component of the stress balance
(E6), q = 0,

�jm = Ca[
τ el
jm0√

j (j + 1)
+ cjm2

2 + j + (j − 1)η

j (j + 1)
]. (E11)

It is then substituted into the normal component of the stress
balance (E6), q = 2, to obtain the normal velocity cjm2,

cjm2 = Cjm + Ca−1(�1 + �h�2)fjm, (E12)

where

Cjm = −
√

j (j + 1)

d(η,j )

[
2τ el

jm0 +
√

j (j + 1)τ el
jm2

]
, (E13)

�1 = −(j + 2)(j − 1)[j (j + 1)]2d(η,j )−1, (E14)

�2 = −(j + 2)(j − 1)j (j + 1) d(η,j )−1, (E15)

and

d(η,j ) = (4 + 3j 2 + 2j 3) + (−5 + 3j 2 + 2j 3)η. (E16)

Finally, the motion of the interface is determined from the
kinematic condition (12),

∂fjm

∂t
= cjm2 + im

2
fjm at r = 1. (E17)

Substituting cjm2 in (E17) yields the evolution equation for the
shape parameters (38),

�h = −
∑

jm a(j )[Cjmf ∗
jm + Ca−1�1fjmf ∗

jm]

Ca−1
∑

jm a(j )�2fjmf ∗
jm

, (E18)

where

a(j ) = 1
2 (j + 2)(j − 1). (E19)

The normal velocity (E12) and the shape evolution (E17)
include the yet unknown isotropic membrane tension. It is
expressed in terms of the shape modes and other known
parameters in the problem using the area constraint [26].

The complicated dependence of the tension on the shape
modes makes the shape evolution equations nonlinear.

In order to clarify the physical significance of the isotropic
tension, let us consider the particular case when only the
ellipsoidal deformation modes, j = 2, are present. (E18)
simplifies to

�h(t) = −6 + Ca
32 + 23η

12
[C20f20(t)

+C22f2−2(t) + C2−2f22(t)], (E20)
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where we have emphasized that the time-dependent shape
modes give rise to time-dependent membrane tension. We see
that the tension varies with deformation.

In absence of applied shear, and electric field along the
z axis, once all excess area is transferred to the f20 mode, the
tension increases with the field strength Ca as

�h ≈ Ca C20
(32 + 23η)

√
2

12
�−1/2 (E21)

APPENDIX F: FUNDAMENTAL SET
OF VELOCITY FIELDS

Following the definitions given in Blawzdziewicz et al.
[57], we list the expressions for the functions u±

jmq(r,θ,ϕ).
The velocity field outside the vesicle is described by

u−
jm0 = 1

2 r−j (2 − j + jr−2)yjm0

+ 1
2 r−j [j (j + 1)]1/2(1 − r−2)yjm2, (F1)

u−
jm2 = 1

2
r−j (2 − j )

(
j

1 + j

)1/2

(1 − r−2)yjm0

+ 1

2
r−j (j + (2 − j )r−2)yjm2. (F2)

The velocity field inside the vesicle is described by

u+
jm0 = 1

2 rj−1(−(j + 1) + (j + 3)r2)yjm0

− 1
2 rj−1[j (j + 1)]1/2(1 − r2)yjm2, (F3)

u+
jm2 = 1

2
rj−1(3 + j )

(
j + 1

j

)1/2

(1 − r2)yjm0

+ 1

2
rj−1(j + 3 − (j + 1)r2)yjm2. (F4)

On a sphere r = 1 these velocity fields reduce to the vector
spherical harmonics defined by (D3),

u±
jmq = yjmq . (F5)

Hence, u±
jm0 is tangential, and u±

jm2 is normal to a sphere. In
addition, u±

jm0 defines an irrotational velocity field.
The hydrodynamic tractions associated with the velocity

fields (E1) are [26]

τ
hd,in
jm0 = (2j + 1)cjm0 − 3

(
j + 1

j

) 1
2

cjm2, (F6)

τ
hd,ex
jm0 = −(2j + 1)cjm0 + 3

(
j

j + 1

) 1
2

cjm2, (F7)

τ
hd,ex
jm2 = 3

(
j

j + 1

) 1
2

cjm0 − 4 + 3j + 2j 2

j + 1
cjm2, (F8)

τ
hd,in
jm2 = −3

(
j + 1

j

) 1
2

cjm0 + 3 + j + 2j 2

j
cjm2. (F9)
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