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Symmetry-breaking bifurcations have been studied for convection in a nonrotating spherical shell whose outer
radius is twice the inner radius, under the influence of an externally applied central force field with a radial
dependence proportional to 1/r5. This work is motivated by the GeoFlow experiment, which is performed under
microgravity condition at the International Space Station where this particular central force can be generated.
In order to predict the observable patterns, simulations together with path-following techniques and stability
computations have been applied. Branches of axisymmetric, octahedral, and seven-cell solutions have been
traced. The bifurcations producing them have been identified and their stability ranges determined. At higher
Rayleigh numbers, time-periodic states with a complex spatiotemporal symmetry are found, which we call
breathing patterns.
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I. INTRODUCTION

Motivated by the geophysical and astrophysical relevance
of large-scale convection in planets and in outer zones
of celestial bodies, the idealized model of spherical shell
convection has long been the subject of intensive research
in fluid dynamics. The motion of a fluid confined in a
spherical shell under the influence of a central force and
heated by a constant temperature from within is the classical
Rayleigh-Bénard problem in spherical geometry. The question
of pattern selection has been extensively studied by Busse
and coworkers for both the nonrotating and rotating situations
[1–4]. In particular, for nonrotating convection, the symmetry
of the bifurcating branches and their stability are essentially
determined by the degree � of the spherical harmonics of the
mode which becomes unstable.

The case we have investigated is motivated by the space
experiment GeoFlow [5–8]. Our aim is to predict and an-
alyze the convective patterns generated under microgravity
conditions on the International Space Station (ISS). By means
of the dielectrophoretic effect, a central force field with
a 1/r5 radial dependence is generated and the experiment
seeks to investigate thermal convection for both rotating
and nonrotating spheres. The first theoretical investigations
for this particular type of force field by exploitation of the
dielectrophoretic mechanism for central field generation were
performed by Yavorskaya et al. [9]. We will focus on the
nonrotating case with special attention to symmetry-breaking
pattern selection which is governed by the properties of the
full spherical group.

Convection of a fluid in a spherical shell with radii Ro > Ri

heated from within and driven by buoyancy due to the
central force field is governed by the Boussinesq equations
in spherical geometry. By scaling length by Ro, time by
the thermal diffusion time Ro

2/κ , where κ is the thermal
diffusivity, and temperature by the imposed temperature
difference between outer and inner sphere, the equations can
be cast in nondimensional form:

Pr−1

[
∂u
∂t

+ (u · ∇)u
]

= −∇p + ∇2u + RaT

β2r5
er , (1a)

∂T

∂t
+ u · ∇T = ∇2T , (1b)

∇ · u = 0, (1c)

where er is the radial unit vector and β = (Ro − Ri)/Ri is
the ratio of the thickness of the fluid shell to the inner radius.
Corresponding to the GeoFlow experiment, the Prandtl number
is set to Pr = 64.64, that of the silicone oil used. The aspect
ratio β of the spherical shell is set to β = 1.0 so that the
inner and outer surfaces are located at nondimensional radii
ri = 1/2 and ro = 1. The boundary conditions imposed at
the spherical surfaces are those corresponding to rigid and
perfectly conducting spheres:

u = 0 at r = ri,ro; (2a)

T = 1 at r = ri and T = 0 at r = ro. (2b)

The objectives of this paper are to study the dynamics of the
convection patterns, their bifurcations, and their stability as a
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function of the Rayleigh number. For this purpose, a combined
approach of simulations, linear stability computations, and
bifurcation analysis has been applied. We use a spectral time-
dependent code [10] to follow the evolution of the system from
various initial conditions. In order to perform a bifurcation
analysis, a path-following algorithm is incorporated which
efficiently computes the stationary solutions via Newton’s
method [11,12].

In Sec. II we present several convection patterns which are
obtained as time-asymptotic states by simulations. Starting
from these states, essential parts of the bifurcation diagram
were computed. A particular type of time-dependent solution
with a complex spatiotemporal symmetry is examined in
Sec. III. We finish in Sec. IV with a short summary and a
discussion of some open questions.

II. STATIONARY CONVECTIVE PATTERNS

A. Background

For low Rayleigh numbers, the trivial heat conduction state
is the only stable solution. The fluid is at rest and the spheri-
cally symmetric temperature profile is T (r) = 1/r − 1. The
critical mode number characterizes the symmetry-breaking
bifurcation by means of the equivariant branching lemma,
which states necessary criteria for the existence of bifurcating
branches with a given isotropy subgroup; an overview of this
topic can be found in [13,14].

The implications for the spherical group by computing the
dimensions of the fixed-point subspaces were first explored
for SO(3) by Michel [15] and extended to O(3) by Ihrig
and Golubitsky [16]. Further comprehensive reviews about
spherically equivariant systems, their bifurcating branches,
and their stability were published recently by Matthews
[17,18]. In the case of O(3) and � even, all isotropy subgroups
have an additional point inversion symmetry r → −r , which
commutes with all other group elements and is always present,
and so will not be mentioned explicitly in the following.

The linear stability analysis carried out by Travnikov et al.
[6,19] for aspect ratio β = 1.0 is summarized in Table I, which
shows that the primary state becomes unstable at Ra = 2491
with critical mode number � = 4.

The equivariant branching lemma implies that for critical
mode number � = 4, two branches, one axisymmetric with
O(2) symmetry and the other with octahedral symmetry,
bifurcate transcritically. According to Chossat et al. [20] both
branches must be unstable; however the octahedral branch is
less unstable. Hence one expects that the octahedral branch,
influenced by the nonlinear terms, would become generically
stable near the primary bifurcation, via a turning point.

Another relevant investigation is that of Busse and Riahi
[21]. These researchers predicted that when the thresholds of
modes � = 4 and � = 5 were close, their interaction could yield

TABLE I. Critical Rayleigh numbers corresponding to the lowest
spherical harmonic modes.

� 1 2 3 4 5 6 7 8

Ra 9074 3897 2751 2491 2618 3018 3677 4618

a planform containing seven cells. The solution has fivefold
rotational symmetry and an additional reflection symmetry
about the meridional plane generating a D5 symmetry. In
addition there is a further reflection symmetry about the
equatorial plane. Five cells are arranged around the equator
and two at the north and south poles, leading to a total of seven
cells.

B. Time-dependent simulations

The basis of our numerical tools is a spectral solver [10]
which relies on the decomposition of the velocity field in
toroidal and poloidal potentials:

u(r,θ,φ,t) = ∇ × f Torer + ∇ × ∇ × f Poler . (3)

These potentials, as well as the temperature T , are further
decomposed in terms of spherical harmonics Ym

� for the
angular dependence and Chebyshev polynomials Tk for the
radial dependence:

f (r,θ,φ,t) =
∑
k�m

Tk

[
2r − (ro + ri)

ro − ri

]
P m

� (cos θ )

× [fk�m(t)eimφ + f ∗
k�m(t)e−imφ]. (4)

Spatial resolutions up to (30, 40, 40) in (r,θ,φ) were used, and
time steps of �t = 10−4. The time-stepping algorithm uses a
modified Crank-Nicolson formula for the diffusive terms and
a second-order Runge-Kutta scheme for the remaining terms.

We will use several target functions to demonstrate some
of the dynamical features. The total kinetic energy of the fluid
Ekin, the energies E(�) associated with modes of degree �,

Ekin = 1

2

∫
|u|2dV =

∑
�

E(�), (5)

and the Nusselt number Nu,

Nu = 1

4π

∫
r=1

∂T

∂r
dS, (6)

are global quantities. The particular coefficient

|A|2 ≡ ∣∣f Tor
k=0,�=2,m=2

∣∣2
(7)

of the expansion (3)–(4) is used to distinguish between fields
which differ only by their angular orientation, and so have the
same Ekin, E(�), and Nu. [Note that while the decomposition
of a field into different degrees � is well defined, the further
decomposition into different orders m depends on the choice
of axis. It is for this reason that (7) is useful in distinguishing
fields with different orientations.]

The nonlinear computations confirm that the conductive
state loses stability for a Rayleigh number Ra > 2491 where
the � = 4 mode becomes excited. In Fig. 1 the onset of
convection is demonstrated by a simulation ramping the
Rayleigh number above its critical value to Ra = 2500
starting from the conductive regime. The contour plots present
snapshots of the radial velocity component, which is closely
related to the temperature field in the middle of the spherical
gap. This simulation agrees with the mathematical results
discussed in Sec. II A in that both axisymmetric and octahedral
components play a role in this transition, and that only the
octahedral state is asymptotically stable at Ra = 2500. The
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FIG. 1. Snapshots of the transient after ramping the Rayleigh
number to Ra = 2500 from the conductive state. The contour plots
depict the radial velocity component in the middle of the spherical gap
at time t1 = 80 (left top) and t2 = 120 (right top). The corresponding
time-dependence of the kinetic energy and of the Nusselt number,
respectively, are presented at the bottom.

long-lasting axisymmetric phase indicates both the dominance
of axisymmetric perturbations in the initial condition and also
the existence of a weakly unstable axisymmetric solution;
this will be confirmed in Sec. II C. The time dependence
of the Nusselt number depicted in Fig. 1 demonstrates the
enhancement of the heat transfer in the last phase when the
octahedral mode becomes dominant.

Searching for other stationary solutions, we have performed
further simulations with different initial conditions and at
various Rayleigh numbers. We have located another stable
solution branch with fivefold rotational symmetry, shown in
Fig. 2, which we take to be the seven-cell pattern mentioned

FIG. 2. Time-asymptotic stationary states at Ra = 9000. Both
upper and lower rows depict the radial velocity at mid-gap, with
dark levels corresponding to down-welling motion. Upper row:
simple contour plot. Lower row: shadow contour plot. From left to
right: octahedral, axisymmetric, and fivefold symmetric (seven-cell)
patterns.

in Sec. II A predicted by Busse and Riahi [21] resulting
from the interaction between � = 4 and � = 5 modes. Indeed,
a decomposition into spherical harmonics of our solution
shows that the most important kinetic energy contributions
are from � = 4 followed by � = 5. For Ra = 9000, the � = 5
contribution to the kinetic energy is about half that of � = 4.

Summarizing the simulations, three stable solutions have
been found. These are presented in Fig. 2 at Ra = 9000 where
all three patterns are stable simultaneously. The octahedral
group leaves both the octahedron and the cube invariant
with respect to its symmetry operations. Identifying the dark
patches of the lower left plot in Fig. 2 with surfaces of a cube,
one recognizes this feature. The seven-cell structure of the
fivefold rotational pattern in the right column of Fig. 2 can also
be identified. As mentioned in Sec. II A, the axisymmetric state
in the middle of Fig. 2 is unstable near onset; indeed, Fig. 1
shows the axisymmetric solution appears only as a transient,
demonstrating its unstable nature at Ra = 2500. Since it is
found as a time-asymptotic pattern at Ra = 9000, a stabilizing
bifurcation must occur at some intermediate Rayleigh number.

In order to clarify the generation and stabilization of
different solution branches, a more systematic bifurcation
analysis will be presented in the next subsection.

C. Bifurcations and stability of stationary solution branches

In order to better understand the bifurcations, a path-
following method was applied by means of which the
stationary branches can be traced systematically. To do so,
the time-stepping code is modified as described in [11,12]
and summarized briefly below. We write Eqs. (1a)–(1c)
schematically as

∂U
∂t

= (L + N )U , (8)

where U ≡ (u,T ). The time-stepping code is first modified
to carry out first-order Euler time stepping, implicit for the
diffusive operators and explicit for the remaining terms, which
we write as

U(t + �t) = U(t) + �t(LU(t + �t) + NU (t)). (9)

Equation (9) is rearranged to read

U(t + �t) − U(t) = (I − �tL)−1(I + �tN )U(t) − U(t)

= (I − �tL)−1�t(L + N )U(t). (10)

The roots of the operator on the right-hand-side of (10) are
found by using Newton’s method, each step of which calculates
a decrement δu to the current estimate U by solving

(I − �tL)−1�t(L + DNU ) δu

= (I − �tL)−1�t(L + N )U , (11)

U ← U − δu.

The linear system (11) involves the Jacobian DNU of N
evaluated at U and is solved by the biconjugate gradient
method [22], which converges rapidly without requiring the
formation or storage of the Jacobian matrix.

The time-asymptotic states obtained in simulations were
used as initial estimates for Newton’s method and the resulting
branches were computed for both decreasing and increasing

046304-3



F. FEUDEL et al. PHYSICAL REVIEW E 83, 046304 (2011)

2500 2600 2700 2800 2900
1

1.05

1.1

1.15

N
us

se
lt 

nu
m

be
r

Rayleigh number

 

 
stable octahedral
unstable octahedral
unstable axisymmetric

2490 2492 2494
1

1.001

1.002

1.003

1.004

FIG. 3. Transcritical symmetry-breaking bifurcation at the criti-
cal Rayleigh number.

Rayleigh numbers. We are able to trace branches around
turning points and a complex net of stationary branches
can be constructed in this way. It is usually not possible
to construct a complete bifurcation diagram containing all
bifurcations and branches and so we restrict our search to
the branches connected to the patterns found in the time-
dependent simulations. For a more detailed description of
how this procedure can be effectively implemented in the
Navier-Stokes solver we refer to [23,24]. The stability ranges
were determined by calculating the growth or decay rates
of perturbations about the steady states and interpolating to
determine the Rayleigh numbers at which these rates cross
zero.

We begin by showing the onset of convection in Fig. 3,
which depicts the Nusselt number vs the Rayleigh number.
Four branches are visible for Ra > Racr in Fig. 3, one stable
and three unstable branches. As predicted by the mathematical
results cited in Sec. II A, the bifurcation is transcritical,
has critical mode l = 4, and leads to both octahedral and
axisymmetric branches. Both branches have turning points
slightly below the critical Rayleigh number. In accordance
with the predictions by Chossat et al. [20] the octahedral
branch becomes stable while the axisymmetric branch remains
unstable in these saddle node bifurcations.

Figure 4 is a continuation of Fig. 3. Since the Nusselt
number depends linearly on Ra and differs only weakly
between the different branches presented in Fig. 4, we plot
instead the function (Nu − 1)/Ra in order to better differentiate
the branches. In addition, we represent the bifurcation diagram
schematically in Fig. 5. The stable octahedral branch and both
axisymmetric branches are shown, but the unstable octahedral
branch is not involved in this portion of our study and so
is omitted from these figures. The stable octahedral branch
undergoes no bifurcations and remains stable over the entire
Ra interval presented, until Ra = 23 400.

One of the two initially unstable axisymmetric branches,
that with the smaller Nusselt number, becomes stable at
Ra = 4493 and remains so until Ra = 18 665. The flows along
this branch contain four toroidal rolls, with upwelling fluid at
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FIG. 4. The stable octahedral branch, both axisymmetric
branches, and the bifurcating fivefold symmetric (seven-cell) branch
are represented by the rescaled Nusselt number. Thick lines mark
stable solutions while thin lines designate unstable branches. The
open circle marks the subcritical pitchfork bifurcation leading to the
seven-cell state.

the poles and equator, and downwelling at midlatitudes. The
other axisymmetric branch remains unstable and the states
belonging to it have downwelling motion at the poles and
equator. It is from this branch that the fivefold symmetric
(seven-cell) state found in our simulations and seen in Fig. 2
originates, bifurcating subcritically at Ra = 6450. This branch
undergoes a turning point at Ra = 5194 and eventually
becomes stable at Ra = 7150, remaining so until Ra = 17 450.
Its Nusselt number increases along the branch, eventually
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FIG. 5. Schematic bifurcation diagram illustrating the stabiliza-
tion of one of the axisymmetric branches and the creation and
stabilization of the fivefold symmetric (seven-cell) branch. Thick
and thin curves indicate stable and unstable branches, respectively,
and dots indicate bifurcations. The square surrounds the primary
bifurcation generating the octahedral and axisymmetric branches
depicted in Fig. 3, whose transcritical nature is too weak to be resolved
on this scale.
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exceeding that of all the branches in Fig. 4. Except for the
subcritical bifurcation creating the fivefold symmetric branch,
the crossings of different branches in Fig. 4 are only projection
effects and do not correspond to genuine intersections.

In summary, as a result of this scenario, of the branches
presented in Fig. 2, three remain stable over a fairly large
interval of Ra: the octahedral branch (2489.7 < Ra < 23 400),
the axisymmetric branch (4493 < Ra < 18 665), and the
fivefold symmetric seven-cell branch (7150 < Ra < 17 450).
We note that in simulations of the Swift-Hohenberg equation
on a spherical surface with critical mode numbers � = 6, 8, or
10, Matthews [18] finds considerable ranges of multistability,
involving axisymmetric states and states with D� or icosa-
hedral symmetry. In conclusion, it is likely that multistability,
including stabilization of the axisymmetric branch, is a generic
feature of symmetry breaking of the full spherical O(3) group,
such as occurs in convection in a spherical layer in a central
force field.

The flows which are not stationary are the topic of the next
section.

III. TIME-DEPENDENT CONVECTION PATTERNS

Increasing the Rayleigh number further, the dynamics
eventually become time dependent. In order to describe this
regime in more detail we will examine a representative
simulation at Ra = 23 500.

Initializing the simulation at Ra = 23 500 with random
conditions leads to a time-asymptotic state, time series from
which are shown in Fig. 6. The kinetic energy of the fluid,
shown in the top row, and the Nusselt number of the heat
flux through the outer sphere, shown in the middle row, vary
periodically in time. Moreover the energy of each mode � has
the same frequency, corresponding to a period of τ = 1.075 in
dimensionless units, as shown in Fig. 7. This energy is a sum
over the poloidal and toroidal components and, beyond this,
the sum over all m ∈ [−�,�]. The bottom of Fig. 6 shows that
the coefficient defined in (7) has a periodicity which is five
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FIG. 6. The kinetic energy (top), the Nusselt number of the heat
flux through the outer sphere (middle), and the absolute square of a
particular mode amplitude |A|2 ≡ |f Tor
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time at Ra = 23 500.
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FIG. 7. Energy in modes � = 3, 4, and 5 as a function of time at
Ra = 23 500.

times that of the kinetic energy, the Nusselt number, and each
� mode. This would imply a spatiotemporal symmetry of the
flow, perhaps as a result of a Hopf bifurcation under certain
symmetry constraints.

Figure 8 presents contour plots of the radial velocity over
the smaller period, τ = 1.075. The first snapshot is taken at the
moment of maximum kinetic energy, at t0 = 4.13; see Fig. 6.
In order to trace the evolution of the pattern in time, these
snapshots are taken at nonuniform time intervals. Since the
kinetic energy varies rapidly at the end of its period, cf. Fig. 6,
a feature which is accompanied by more drastic changes of
the convection pattern, the three snapshots in the lower row
of Fig. 8 are chosen from this time range. Reconnections of
the contour lines give an impression of the evolution of the
pattern. The last snapshot presents the pattern at time τ after
the initial snapshot, but it differs from the initial snapshot.
This corroborates the last row of Fig. 6: The pattern, like the
individual spectral coefficients, varies over a period longer
than τ . However, by applying a rotation of the sphere, we have
verified that the convection pattern at time t = t0 is a rotated

FIG. 8. Contour plots of the radial velocity for Ra = 23 500 at
time points t0 = 4.13, t1 = t0 + 0.4τ , t2 = t0 + 0.8τ , t3 = t0 + 0.9τ ,
t4 = t0 + 0.95τ , and t5 = t0 + τ from left to right and from top to
bottom.
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FIG. 9. Contour plots of the radial velocity for Ra = 23 500 over
the entire spatiotemporal cycle: t0 = 4.13, t1 = t0 + τ , t2 = t0 + 2τ ,
t3 = t0 + 3τ , t4 = t0 + 4τ , and t5 = t0 + 5τ from left to right and
from top to bottom.

version of that at t = t0 + τ . For instance, the triangle-shaped
side surface in the last snapshot can be recovered in the first
snapshot on the back side of the sphere.

The dynamics of the entire spatiotemporal cycle are
illustrated in Fig. 9, which extends Fig. 8 by showing six
snapshots differing by intervals of τ . After 5τ , the original
convection pattern appears again at the same position on the
sphere, completing the spatiotemporal cycle.

Since the convection pattern does not move like a wave
along the sphere but rather changes its shape in time more
like a breather, we call these particular solutions breathing
patterns (BP). An interesting feature of these solutions is a
remnant of a tetrahedral structure in the convection pattern
which, while not perfect, can be seen in the last snapshot in
Fig. 8 and in the second, third, and fourth ones in Fig. 9. A
mode analysis yields a strong dominance of the � = 3 mode
in the spectrum followed by the � = 5 and � = 4 mode. These
exchange energy periodically in time as presented in Fig. 7.
All the other modes oscillate with a much smaller amplitude.
The � = 3 mode dominance is certainly correlated with the
tetrahedral-like structure, cf. Refs. [3,21].

In order to better understand the transition from the
stationary to the time-dependent solutions we traced this BP
branch downward diminishing the Rayleigh number stepwise.
In order to reveal qualitative changes in the limit cycles we
plot the kinetic energy of mode � = 5 versus that of � = 3
in Fig. 10 for six selected Rayleigh numbers. Starting with a
Rayleigh number of Ra = 23 500 the first subfigure presents
the solution of the BP branch for which the spatiotemporal
symmetry is described above. The closed orbit corresponds
to the smaller period (Figs. 7 and 8) which the trajectory
circles five times before completing the entire spatiotemporal
cycle (bottom panel of Figs. 6 and 9). The BP branch remains
stable, periodic in time, and does not change qualitatively until
Ra is lowered past 21 000. For lower Rayleigh numbers the
original orbit loses stability and the trajectories look chaotic, as
depicted for Ra = 20 900 and Ra = 19 500 in Figs. 10 and 11,
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FIG. 10. The kinetic energies of mode � = 5 vs. � = 3 for diminishing Rayleigh numbers from left to right and from top to bottom. The
star in the last panel (Ra = 18 710) marks the asymptotic position of the frozen states. The orbit structure reflects the nature and position of the
attractor.
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FIG. 11. Time series for chaotic regimes at Ra = 20 900 and at
Ra = 19 500. In the time series for Ra = 20 900, one recognizes the
nearly periodic dynamics with occasional excursions.

showing larger excursions away from the original region of the
BP branch. This chaotic region is interrupted by short windows
in which more complex periodic attractors can be found, e.g.,
at Ra = 20 000. The chaotic feature of the time-dependent
solutions disappears for Ra < 19 400 and a qualitatively new
periodic branch becomes stable for smaller Rayleigh numbers.
The shape of the closed orbit, an example of which is depicted
for Ra = 19 200 in Fig. 10, resembles the structure of the
original chaotic attractors. The smallest Rayleigh number for
which we could find a periodic attractor was for Ra = 18 720.

Figure 12 shows the Rayleigh number dependence of the
periods of the limit cycles depicted in Fig. 10 via the frequency
1/τ . The period shown is that of the Ekin or E(�) variation; we
do not take into account rotation of the pattern. Two features
of Fig. 12 are evident. First, the limit cycles that we have
computed belong to several different branches. The abrupt
variation of the frequency between Ra = 20 400 and Ra =
21 000 and between 19 400 and 20 000 coincides with the
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FIG. 12. Frequency of kinetic energy oscillation as shown in
Fig. 7 as a function of Rayleigh number.

FIG. 13. Convection pattern of the branch of frozen states (four-
cell pattern) at Ra = 18 600. Left: contour plot. Right: corresponding
shadow contour plot, with bright levels marking upwelling motion.

changing nature of the limit cycles seen in the phase portraits
of Fig. 10. Second, the frequency seems to approach zero (the
period seems to diverge) as Ra decreases. This would indicate
a disappearance via some type of global bifurcation.

The last subfigure in Fig. 10 supports this idea, since it
demonstrates for Ra = 18 710 how the trajectory escapes from
the periodic attractor and settles down to a nearly stationary
solution, whose position is depicted by a star. We denoted these
solutions frozen states. The trajectory seems to approach a
fixed point solution, converging, however, very slowly. The last
figures of the global functions are still changing systematically
after a simulation of hundreds of thermal diffusion times.
Figure 13 presents the final convection state after the pattern
no longer changes. The tetrahedral symmetry is obviously
discernible. A mode analysis gives a strong dominance of
the l = 3 mode combined with an additional excitation of the
l = 4 mode. This mixed-mode pattern caused by this mode
interaction was also predicted by Busse and Riahi [21] as an
additional stable solution in spherical geometry which they
called a four-cell pattern. It possesses a tetrahedral symmetry,
similar to the pure l = 3 pattern (cf. Ref. [3]). We were able to
reach these frozen states by diminishing the Rayleigh number
starting from time-dependent solutions. Moreover, these states
could not be used as initial estimates for Newton iteration. This
is probably because the very slow convergence implies that
states reached via time-dependent simulation are insufficiently
close to the underlying steady states.

Going upward in Ra, we have found that periodic or chaotic
solutions that are qualitatively similar to those in the interval
18 720 � Ra � 23 500 persist until at least Ra = 30 000.
However, a quantitatively accurate study of these solutions
would require increased spatial resolution.

In summary, the transition from the stationary states to time-
dependent solutions and its reverse route is very complex. It is
certainly also essentially governed by the spherical symmetry.
We were able to describe several of the time-dependent fea-
tures, such as the appearance of the spatiotemporal symmetry.
However, the transitions undergone by the time-dependent
states bring up in turn new questions which can only be
answered by more extensive future investigations.

IV. DISCUSSION

In this work, symmetry-breaking convection in a central
forced spherical fluid shell is described. By applying the equiv-
ariant branching lemma for a spherically symmetric geometry,
the nature of the primary bifurcation leading to the onset of
the convection can be classified. Our numerical computations
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FIG. 14. Stability ranges of steady and time-dependent states.
The upper limit of the periodic states has not been determined, nor
the intervals over which time-dependent states are chaotic.

confirm this transcritical bifurcation. The bifurcating branches,
an octahedral branch and an axisymmetric branch, both have
turning points slightly below the critical Rayleigh number. The
octahedral branch becomes stable at this turning point whereas
the axisymmetric branch remains unstable. Nevertheless, for
slightly supercritical Rayleigh numbers, one can observe
extremely long axisymmetric transients.

With respect to GeoFlow, in which a central force field
with a 1/r5 dependence was realized experimentally, the first
results showed the octahedral pattern which appears in the
supercritical region over a wide Rayleigh number range.

Further simulations starting with different initial conditions
at higher Rayleigh numbers produce several time-asymptotic
stationary solutions with different symmetries: octahedral,
axisymmetric, and fivefold symmetric, all coexisting and

stable over a large Rayleigh-number range. In order to
explain this multistability, a more systematic bifurcation
analysis by means of path-following tools has been per-
formed. Essential parts of the bifurcation diagram were
computed and the origin of the stable stationary solution
branches appear as the result of further symmetry-breaking
bifurcations.

For higher Rayleigh numbers, our simulations led to
an interesting time-dependent attractor, which we called a
breathing pattern (BP). The BP states possess a complex
spatiotemporal symmetry which is probably also dictated
by the spherical group. In an intermediate Rayleigh-number
range, time-dependent states—periodic and chaotic—coexist
with steady patterns. As a guide, Fig. 14 summarizes the
stability ranges of the various steady and time-dependent states
we have found and demonstrates the multistability present in
this system. The derivation of amplitude equations describing
the origin of the time-dependent states is left for future
investigation.

In conclusion, we believe that much of the scenario that
we have described is generic for convection problems in
nonrotating spherical shells. For the usual 1/r2 gravitational
force, we would not expect to find the same critical Rayleigh
number values, but we would expect qualitative agreement.
We hope that these detailed investigations can help to identify

the underlying mechanisms which drive the transitions from
laminar to spatiotemporal patterns in spherical geometry.
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