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Wave turbulence on the surface of a ferrofluid in a horizontal magnetic field
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We report observations of wave turbulence on the surface of a ferrofluid submitted to a magnetic field parallel
to the fluid surface. The magnetic wave turbulence shows several differences compared to the normal field case
reported recently. The inertial zone of the magnetic wave turbulence regime is notably found to be strongly
increased with respect to the normal field case and to be well described by our theoretical predictions. The
dispersion relation of linear waves is also measured and differs from the normal field case due to the absence of
the Rosensweig instability.
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I. INTRODUCTION

Wave turbulence concerns the dynamical and statistical
properties of numerous nonlinearly interacting waves within
a dispersive medium. Contrary to hydrodynamical turbulence,
out-of-equilibrium solutions for the power spectrum of waves
can be analytically computed by the wave turbulence theory in
nearly all fields of physics (e.g., oceanic surface or internal
waves, elastic waves on a plate, plasma waves, and spin
waves) [1–3]. This theory assumes strong hypotheses such
as weak nonlinearities and infinite size systems. Although the
number of wave turbulence experiments has strongly increased
in the last decade (see [4] for a review), they are still lagging
behind the theory. New experimental systems are thus expected
to check the validity domain of the theory in experiments and
to benefit from the wave turbulence theoretical framework.

For instance, an operator can easily change the dispersion
relation of linear waves propagating on the surface of a
magnetic fluid by applying a uniform magnetic field [5].
Magnetic wave turbulence can then be achieved on a ferrofluid
surface submitted to a vertical field [6]. When the vertical
field is high enough, the so-called Rosensweig instability
occurs, leading to a hexagonal pattern of peaks on the surface
of the ferrofluid [5]. Waves on the surface of a magnetic
fluid submitted to a horizontal magnetic field are much less
studied. In this geometry, the dispersion relation of linear
waves is always monotonous whatever the field intensity, and
the Rosensweig instability is absent [5]. To our knowledge,
only one experimental test of the dispersion relation has
been performed in this configuration [7] although striking
phenomena occur: strong anisotropy of propagating waves,
shifting onsets of the Kelvin-Helmholtz and Rayleigh-Taylor
instabilities [5,7], and a new pattern of the magnetic Faraday
instability [8].

In this paper, we report observations of wave turbulence on
the surface of a ferrofluid submitted to a horizontal magnetic
field. We show that it displays significant qualitative differ-
ences with respect to the vertical field case. The most striking
one is the extension of the inertial zone of the magnetic wave
turbulence regime. Moreover, the magnetic wave turbulence is
found to be isotropic (whatever the tangential magnetic field
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direction). The frequency-power-law scalings of the spectra of
the magnetic and capillary wave turbulence regimes are also
found to depend on the magnetic field applied, contrary to the
predictions based on noninteracting regimes. The dispersion
relation of linear waves is also measured and discussed.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. It consists
of a cylindrical container, 120 mm in inner diameter and
40 mm in depth, half filled with a ferrofluid. The ferrofluid
used is a ionic aqueous suspension synthesized with 8.5%
by volume of magnetic particles (Fe2O3; 7.6 ± 0.36 nm in
diameter) [9]. The properties of this magnetic fluid are density
ρ = 1324 kg/m3, surface tension γ = 59 × 10−3 N/m, initial
magnetic susceptibility χi = 0.69, and magnetic saturation
Msat = 16.9 × 103 A/m. The container is placed between two
coaxial coils, 250 mm (500 mm) in inner (outer) diameter,
70 mm apart as in Fig. 1. The container and the coil axes are
perpendicular, leading to an applied magnetic field parallel to
the ferrofluid surface. The orientation of the magnetic field
is thus different from that in Ref. [6], where the field was
normal to the fluid surface. A dc current is supplied to the
coils in series by a power supply (50 V, 48 A), the coils
being cooled with water circulation. The horizontal magnetic
induction generated is up to 780 G and is measured by a
Hall probe. To make easier the comparison with the normal
magnetic field case [6], one will normalize in the following
the value of the parallel magnetic induction B by the critical
value of the normal magnetic induction Bc for the Rosensweig
instability, which is found to be Bc = 294 ± 2 G [6]. Surface
waves are generated on the surface of the ferrofluid by the
horizontal motion of a rectangular plunging Teflon wave maker
driven by an electromagnetic vibration shaker (see Fig. 1). The
motion of the wave maker is collinear with the direction of the
horizontal magnetic field (i.e., in the x axis, see Fig. 1) unless
otherwise stated. The shaker is either driven sinusoidally in
a range 5 � f � 100 Hz to measure the dispersion relation
of linear waves, or with a random vibration between 1 and
6 Hz for wave turbulence experiments. This latter forcing
generates stochastic waves on the surface of the ferrofluid [6].
The amplitude of the surface waves η(t) at a given location is
measured by a capacitive wire gauge plunging perpendicularly
to the fluid at rest (see Fig. 1) [10]. The signal η(t) is
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FIG. 1. (Color online) Experimental setup.

analogically low-pass filtered at 1 kHz and is recorded for
800 s using an acquisition card with a 4 kHz sampling rate.

III. DISPERSION RELATION AND CROSSOVER
FREQUENCIES

In the deep fluid approximation, the dispersion relation of
linear inviscid surface waves on the surface of a magnetic fluid
submitted to a horizontal magnetic induction B collinear to the
vibration direction (i.e., in the x axis; see Fig. 1) reads [5,7]

ω2 = gk + F [χ ]

ρμ0
B2k2

x + γ

ρ
k3, (1)

with ω ≡ 2πf , f the frequency, k ≡
√

k2
x + k2

y ≡ 2π/λ, λ the

wavelength, g = 9.81 m/s2 the acceleration of the gravity,
μ0 = 4π × 10−7 H/m the magnetic permeability of the
vacuum, and F [χ ] ≡ χ2/[(2 + χ )(1 + χ )]. χ is the magnetic
susceptibility of the ferrofluid which depends on the applied
magnetic field, H , through Langevin’s classical theory [11]

χ (H ) = Msat

H
L

(
3χiH

Msat

)
, (2)

where L(x) ≡ coth(x) − 1/x, and thus on the magnetic induc-
tion, B, through an implicit equation, since

B = μ0(1 + χ )H. (3)

Note that if the horizontal magnetic field B is applied in the
y-axis direction normal to the direction of vibration, the second
term of the right-hand side of Eq. (1) vanishes [5]. Moreover,
the difference with the case where the magnetic induction is
normal to the fluid surface (i.e., in the z axis) is the sign
of the second term in Eq. (1). This prevents the Rosensweig
instability [5], and the dispersion relation of Eq. (1) is then
monotonous. This latter is dominated by the gravity waves at
small k, and by the capillary waves at large k whatever the
value of B. Magnetic waves are assumed to occur when the
quadratic term dominates the linear and the cubic term [6].
This arises when F [χ ]B2 > μ0

√
ρgγ that is using Eqs. (2)

and (3) and the ferrofluid properties when B/Bc > 0.65 [6].

Let us now compute the magnetic field dependence of the
crossover frequencies between gravity and magnetic waves,
magnetic and capillary waves, and gravity and capillary waves
for the case of an horizontal magnetic field. Crossovers are
derived by balancing the terms of Eq. (1) each to each. In
order to indicate the difference between the case when the
magnetic field is normal or parallel to the fluid surface, the
crossover frequencies are denoted by the subscript ⊥ and ‖,
respectively. For the gravity-capillary transition, one balances
the first and the third terms of the right-hand side of Eq. (1), that
is, gkgc = (γ /ρ)k3

gc, thus for kgc = √
ρg/γ which substituted

into Eq. (1) gives

ω2
gc‖ = ω2

gc⊥ + 2gF [χ ]B2

μ0γ
for F [χ ]B2 < μ0

√
ρgγ , (4)

with ω2
gc⊥ = 2

√
g3ρ/γ − gF [χ ]B2/(μ0γ ) the value found for

the normal field case [6]. Similarly, by balancing the first and
second terms, the gravity-magnetic crossover frequency reads

ω2
gm‖ = ω2

gm⊥ + 2ρμ0g
2

F [χ ]B2
for F [χ ]B2 > μ0

√
ρgγ , (5)

with ω2
gm⊥ = (μ0ρg/F [χ ]B2)3γ /ρ. Finally, by balancing the

second and third terms, the magneto-capillary crossover
frequency reads

ω2
mc‖ = ω2

mc⊥ + 2

ργ 2

(
F [χ ]B2

μ0

)3

for

(6)
F [χ ]B2 > μ0

√
ρgγ ,

with ω2
mc⊥ = gF [χ ]B2/(μ0γ ). The crossover frequencies for

the horizontal magnetic field configuration (denoted by the
subscript ‖) have thus an additional term [second term of
the right-hand side of Eqs. (4)–(6)] with respect to the ones
found in Ref. [6] for the normal field case (denoted by the
subscript ⊥). One can also compute a triple point in the (ω,
B) space where the three wave domains (gravity, magnetic,
and capillary) coexist. It can be derived by balancing the three
terms of Eq. (1), which leads to

ft‖ =
√

3ft⊥ and Bt‖ = Bt⊥ , (7)

with 2πft⊥ = (g3ρ/γ )1/4 and B2
t⊥ = μ0

√
ρgγ /F [χ (Ht )]. The

frequency of the triple point is thus increased in the parallel-
field configuration with respect to the normal-field one,
whereas the magnetic field at this point is independent of
the orientation of the field. By using the properties of our
ferrofluid, one thus predicts a triple point located at ft‖ =
18.7 Hz and Bt/Bc = 0.65.

IV. EXPERIMENTAL RESULTS

A. Dispersion relation

Let us first measure the dispersion relation of linear waves
on the surface of a ferrofluid submitted to a horizontal
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FIG. 2. (Color online) Dispersion relation ω2 as a function of k

for different horizontal magnetic fields B/Bc = (•) 0, (�) 0.39, (�)
0.76, and (�) 1.13. Solid lines correspond to Eq. (1) for each value
of B (from bottom to top). Dashed lines correspond to the dispersion
relation when B is normal to the fluid surface for the same values of
B (from top to bottom). Arrows show that for a fixed f , k decreases
(increases) with B for the parallel-field (normal-field) case. Inset:
λ as a function of B/Bc for f = 25 Hz. Solid line is from Eq. (1).
Bc = 294 G.

magnetic field. The wave maker is driven sinusoidally at a
fixed frequency f . The wavelength λ of the surface waves is
measured by detecting the wave crests by using a camera. For
a fixed f , λ is measured for different values of the horizontal
magnetic field B. As shown in the inset of Fig. 2, λ is of the
order of a centimeter and is found to increase with B. One
also measures the dispersion relation ω2 vs k by varying f for
four values of B as shown in the main part of Fig. 2. The solid
lines are theoretical curves computed from Eq. (1) and show as
expected a rough agreement with the data with no adjustable
parameter. The theoretical dispersion relations for the normal
magnetic field case are also computed and displayed in dashed
lines in Fig. 2 (for the same values of B) for comparison.
The parallel-field case shows two main differences from the
normal-field case: (i) the dispersion relation is monotonous
underlying the absence of the Rosensweig (normal-field)
instability, and (ii) the wavelength λ increases with B at
a fixed frequency contrary to the normal-field case (see
arrows in Fig. 2). As shown below, different nonlinear wave
behaviors will also occur with respect to the magnetic field
orientation.

B. Wave turbulence power spectrum

Let us now focus on nonlinear surface waves in a turbulent
regime. The wave maker is now driven by a random vibration
both in amplitude and frequency in the range from 1 to
6 Hz. This leads to the generation of surface waves of random
amplitudes that mix each other erratically. The power spectrum
of the wave amplitude is shown in Fig. 3 for different horizontal
magnetic inductions applied, B/Bc.

For B/Bc = 0 (see inset of Fig. 3), it displays similar results
than those found with a usual fluid [10] (see also [6]): a
crossover between gravity and capillary regimes is observed
near fgc � 17 Hz, separating two power laws. These power
laws are a signature of gravity and capillary wave turbulence
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FIG. 3. (Color online) Power spectrum of wave amplitude for two
values of B. Inset: B/Bc = 0 showing gravity (G), and capillary (C)
wave turbulence regimes. Solid lines have slopes of −4.5 and −3.2.
Crossover: fgc = 15.8 Hz. Main: B/Bc = 1.1 showing gravity (G),
magnetic (M), and capillary (C) wave turbulence regime. Solid lines
have slopes of −5.2, −3.5, and −3.9. Crossovers: fgm = 9.8 Hz and
fmc = 51.4 Hz. Forcing parameters: 1–6 Hz. Bc = 294 G.

regimes, the end of the capillary power law being related
to the dissipation. The theoretical value of the crossover
is fgc = 1

2π

√
2g/lc � 15.2 Hz, where lc = √

γ /(ρg) [10].
However, it has been shown that this value slightly depends
on the forcing parameters [10]. The slope in the gravity and
capillary regimes are found to be −4.5 and −3.2, respectively.
These values are in pretty good agreement with the expected
values for the gravity (f −4 [12]) and capillary (f −17/6 [13])
wave turbulence regimes. Note that for the gravity regime, the
exponent is known to depend on the forcing parameters [10].

For B/Bc = 1.1 (see Fig. 3), one observes three wave
turbulence regimes and two crossover frequencies separating
these regimes. The gravity regime is roughly observed in
Fig. 3 below 10 Hz, the magnetic one between 10 and
50 Hz, and the capillary regime beyond 50 Hz. Despite
these small inertial ranges, the power spectrum is well fitted
by different frequency-power laws for the gravity, magnetic,
and capillary regimes of exponents −5.2, −3.5, and −3.9,
respectively.

The crossovers between gravity and capillary regimes fgc,
between gravity and magnetic regimes fgm, and between
magnetic and capillary regimes fmc have been measured for
different horizontal magnetic fields applied, as shown in Fig. 4.
The solid lines are the predictions from Eqs. (4), (5), and
(6) that correspond to fgc‖ (B) (middle blue line), fgm‖ (B)
(lower red line), and fmc‖ (B) (upper green line), respectively.
A rough agreement is obtained between the data and the
above predictions with no adjustable parameter: fgc increases
with B up to the onset of magnetic waves at B/Bc � 0.65.
This onset is also in good agreement with its predicted value
F [χ ]B2 > μ0

√
ρgγ (see above). For higher B/Bc, fmc is

found to strongly increase with B, whereas fgm slightly
decreases. The triple point coexistence of the three regimes
of wave turbulence is found at ft � 19 Hz and Bt/Bc � 0.65
and is also in good agreement with Eq. (7). The dependence
of these crossover frequencies on the parallel magnetic field is
strongly different from the ones found when the magnetic field
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FIG. 4. (Color online) Crossover frequencies fgc, fgm, and fmc (•)
as a function of the horizontal magnetic field B/Bc. Solid lines fgc‖
(middle blue line), fgm‖ (lower red line), and fmc‖ (upper green line)
are from Eqs. (4), (5), and (6), respectively. The triple point (ft‖ =
18.7 Hz, Bt/Bc = 0.65) is from Eq. (7). Dashed lines correspond to
the theoretical crossovers fgc⊥ , fgm⊥ , and fmc⊥ for the normal field
case [6]. Forcing parameters: 1–6 Hz. Bc = 294 G.

is normal to the surface of fluid [6]. Indeed, the dashed lines
shown in Fig. 4 represent the theoretical crossover frequencies
for the normal-field case, and leads to a qualitatively different
behavior for fgc⊥ and fmc⊥ (inversion of curvature) and a
quantitatively one for fgm⊥ . Notably, the inertial zone of
the magnetic wave turbulence is strongly extended for a
horizontal magnetic field. Note that when the direction of the
horizontal magnetic field is applied normally to the vibration
direction (i.e., in the y axis, see Fig. 1), the wave turbulence
results are not significantly changed (for our range of B) with
respect to the case where B is collinear to the vibration (i.e.,
in the x axis). Consequently, this underlies the isotropy of the
observed magnetic wave turbulence, although linear waves are
strongly affected by the orientation of the tangential field B

[see Eq. (1)].
Finally, the exponents of the frequency-power-law spec-

trum of the magnetic and capillary wave turbulence regimes
are shown in Fig. 5 for different B applied. The exponent of the
gravity wave regime is not reported here, because it occurs on
a frequency range too small. For small B, capillary waves are
dominant and the exponent of the capillary regime is roughly
found constant �3.3 (see � symbol) in rough agreement with
the capillary predictions [13]. When B/Bc � 0.65, magnetic
waves occur (see Fig. 4). The exponent of the magnetic
regime is then found to increase with B (see ◦ symbol in
Fig. 5) and departs from the value of 3, the one predicted
for the magnetic exponent [6]. Moreover, the evolution of
the third power-law exponent (that should correspond to the
capillary regime) also increases with B (see � symbol for
B/Bc � 0.65) and departs from the capillary exponent (�3.3)
found with no magnetic field. Surprisingly, the magnetic
field dependence of both magnetic and capillary exponents
is similar to the one reported for the normal-field case [6]
and cannot be thus ascribed to the Rosensweig instability as
suggested in [6]. This cannot be also ascribed to a possible
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FIG. 5. (Color online) Frequency-power-law exponents (absolute
value) of the power spectrum as a function of B/Bc for the magnetic
(black circle) and capillary (red diamond) wave turbulence regimes.
Dashed lines are a guide to the eye. Forcing parameters: 1–6 Hz.
Bc = 294 G.

anisotropy of nonlinear waves, since similar wave turbulence
results are obtained when the horizontal field is normal or
collinear to the vibration direction (see above). The origin
of the dependence of these exponents with B could be due
to a possible interaction between the capillary and magnetic
wave turbulence regimes, the exponents of each regime being
predicted assuming noninteracting regimes. This possible
origin could be checked by working at much higher values
of B and thus deserves further study.

V. CONCLUSION

We have observed wave turbulence on the surface of a
magnetic fluid submitted to a magnetic field parallel to the
fluid surface. It displays several differences with respect
to the normal-field configuration. The most striking one is
the extension of the inertial zone of the magnetic wave
turbulence regime. The magnetic wave turbulence is also
found isotropic, contrary to linear waves that depend on
the horizontal magnetic field orientation. Moreover, both
frequency-power-law exponents of the power spectrum of
the magnetic and capillary wave turbulence are found to
depend on the magnetic field applied. This suggests that
both regimes interact with each other when magnetic waves
occur.
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