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Mechanism of phase splitting in two coupled groups of suprachiasmatic-nucleus neurons
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The phase-splitting behavior of coupled suprachiasmatic-nucleus neurons has been observed in many mammals,
and its mechanism is still not completely understood. Based on our previous work [C. Gu, J. Wang, and
Z. Liu, Phys. Rev. E 80, 030904(R) (2009)] on the free-running periods of neurons in the suprachiasmatic
nucleus, we present here a modified Goodwin oscillator model to explain the mechanism of phase splitting. In
contrast to the previous phase model, the modified Goodwin oscillator model contains the information on both
the phase and amplitude and, thus, can show more features than the purely phase model, including all three
behaviors of synchronization, phase splitting, and amplitude death and the distributed periodicity in the regions
of synchronization and phase splitting, etc. An analytic phase model is extracted from the modified Goodwin
oscillator model to explain the dependence of periodicity on the parameters. Moreover, both the modified Goodwin
oscillator model and the analytic phase model show that the ensemble frequency can be enhanced or reduced by
the time delay.
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I. INTRODUCTION

Rhythm is a long-standing problem for people to understand
the biological activities, such as the effects of sight, sound,
touch, smell, and taste in almost all plants and animals [1],
hence, deserving extensive studies [2–6]. Most of the rhythms
are closely related to the 24-h circadian period of sunlight such
as the insect emergence, roosters crowing, and sleep-waking
behavior, etc. Through intense studies, it has been found that
the rhythm of mammals is controlled by the suprachiasmatic
nucleus (SCN) of the hypothalamus, i.e., a central circadian
clock in mammals [7–14]. The SCN is composed of about
20 000 neurons and is in charge of receiving light signals
from the retina and then controlling the circadian rhythms.
Thus, the fundamental function of the SCN is to transmit
time-of-day information to the rest of the body. To implement
this task, each SCN neuron has a molecular pacemaker,
which can be modeled by the Goodwin oscillator with a
negative transcription-translation feedback loop [15]. The
pacemaker will produce an output signal such as a change
in neuronal excitability or neurotransmitter production. The
output signal can be communicated to other brain regions
that directly or indirectly regulate activity at the system level
[16]. The interaction among the SCN oscillators is through
the neurotransmitter and can produce time-of-day dependent
changes in the properties of the SCN as a whole, i.e., the
rhythm.

On the other hand, it would be interesting to ask what
will happen if the 24-h circadian period of sunlight is
absent. It is pointed out that exposure to constant light may
disrupt overt rhythms somehow and it induces circadian
arrhythmicity in mammals and other species [17,18]. Two
kinds of consequences can be observed. The first one is that
the free-running periods will deviate from the 24-h circadian
period and scatter roughly in the range between 20 and 28 h for
different species. The second one is that the SCN neurons could
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double their frequency by spontaneously splitting into two
subgroups, each subgroup oscillating with common frequency
but now in antiphase, called phase splitting. To explain the
mechanism of free running, several approaches and models
have been presented [2,19–23]. It is revealed that the reason
for different free-running periods is because of the competition
between the desynchronizing effect caused by the constant
light and the coupling among the oscillators, which can
compensate the desynchronizing effect of the dispersion of
intrinsic frequencies. Recently, we have also studied this
problem [24]. We find that both the coupling strength and
its distribution can influence the free-running period, and the
free-running period is inversely proportional to the dispersion
of couplings.

For the phase splitting, there are evidences to show that
rodents such as hamsters will show phase-splitting behaviors
if they are exposed for several weeks to constant light
[17,25–29]. For example, for arctic ground squirrels under
constant light, their activity bands split into two clear bands
and the animals run with two different circadian periods with a
phase difference of 180◦ [26–28]. For golden hamsters housed
in constant light after two months, their single daily bout
of locomotion activity dissociates into two components that
become stably coupled about 12 hours apart [25]. This problem
recently has been addressed by Indic et al., wherein two groups
of phase oscillators are used to simulate the neurons in the left
and right clock nuclei cycle [18]. They constructed a modified
Kuramoto phase model containing the contribution of time
delay to show that the phase splitting can show up from two
coupled groups of phase oscillators. This kind of phase model
fits for huge assemblies of oscillatory elements with natural
frequencies, and is thus a general approach. Note that the phase
model is only a simplification of the SCN oscillators where
only the message on rotation remains. It is pointed out that the
amplitude of SCN oscillators is also important as it influences
the communication among the SCN oscillators [2,20,24,30].
Thus, the phase splitting of SCN oscillators may also be
related to the amplitude of the oscillator. In this sense, it is
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interesting and necessary to reveal the mechanism of phase
splitting directly from the SCN oscillators, in contrast to its
simplified phase model. To the best of our knowledge, this
problem has not been addressed so far and is thus the purpose
of this paper.

In this paper, we first present a modified Goodwin oscillator
model to show the existence of phase splitting in two coupled
groups of SCN oscillators. By choosing the sets of coupling
weights from the same group, a different group, and the part
due to time delay, we show that the collective behaviors may
be synchronization, antisynchronization, and phase splitting,
and even amplitude death [31,32]. We further reveal that, in
the regions of synchronization and phase splitting, the period
of coupled SCN neurons depends on the coupling weight from
the part of time delay. Then, we consider the influence of
nonidentity of oscillators and find that the observed collective
behaviors are robust to the diversity from both the nonidentical
oscillators and the coupling strength distribution. After that,
we present an analytic phase model to explain the periodic
dependence of coupled SCN neurons on the weight from the
delay part, which is based on our previous work [24]. Finally,
we make a brief summary.

II. A MODIFIED GOODWIN OSCILLATOR MODEL FOR
PHASE SPLITTING

The Goodwin oscillator model was presented to simulate
circadian rhythms in SCN cells [2,20,30]. In this model, within
each clock cell, a clock gene mRNA (x) produces a clock
protein (y) which, in turn, activates a transcriptional inhibitor
(z). The latter inhibits the transcription of the clock gene,
closing a negative feedback loop. The interaction among the
SCN cells is through a neuropeptide denoted by V , induced by
the activation of x. The mean-field levels of the neuropeptide
(F ) then act as a synchronizing factor and are added as an
independent term in the transcription rate of x. To explain
the diversity of the free-running period of mammals, we
recently reconsidered this model [24]. Based on the fact that
the individual neurons in SCN are not identical with the same
period, we assumed that their coupling strengths are different
and satisfy a distribution. Thus, we obtained the following
model:

ẋi = α1
kn

1

kn
1 + zn

i

− α2
xi

k2 + xi

+ αc

giF

kc + giF
,

ẏi = k3xi − α4
yi

k4 + yi

,

żi = k5yi − α6
zi

k6 + zi

, (1)

V̇i = k7xi − α8
Vi

k8 + Vi

, i = 1,2, . . . ,N

F = 1

N

N∑
i=1

Vi,

where xi , yi , and zi constitute a negative feedback
loop in the clock cell−i. The intercellular coupling is
implemented through the global neurotransmitter F ,
which acts as a mean field. The coupling strength gi

describes the sensitivity of the individual SCN oscillator

to the neurotransmitter and satisfies a distribution.
Following Ref. [20], we take the parameters as α1 =
0.7nM/h, k1 = 1nM, n = 4, α2 = 0.35nM/h, k2 = 1nM,

k3 = 0.7/h, α4 = 0.35nM/h, k4 = 1nM, k5 = 0.7/h,α6 =
0.35nM/h, k6 = 1nM, k7 = 0.35/h,α8 = 1nM/h, k8 = 1nM,

αc = 0.4nM/h, and kc = 1nM . For nonidentical oscillators,
their different periods can be implemented by dividing the
parameters α1, α2, k3, α4, k5, α6, k7, and α8 by a scaling
factor τi [20,30]. Reference [24] showed that the results
obtained from the constant τi = 1 also work for the case with
distributed τi .

We now modify Eq. (1) to fit for the case of phase
splitting. Following Ref. [24], for simplicity, we also limit
our discussion to the case of scaling factor τi = 1 but let the
distributed gi reflect the property of nonidentity of individual
SCN oscillators. To discuss the phase splitting, we divide the
oscillators into two groups, representing the left and right SCN
clock cells of the hypothalamus. Suppose the first group has
N1 oscillators and the second group has N2 oscillators with
N1 + N2 = N . Considering that the mean field F will be the
same in one group and different in another group, we let the
F in Eq. (1) be F1 for the first group and F2 for the second
group. As a necessary condition to observe the phase splitting
in the long time constant light, we need to consider the effect
of constant light to get the correct expression of F1,2.

In general, the circadian oscillators in the SCN couple
together to generate a circadian output signal to regulate
the day-night rhythm. Then, the output signal feeds back to
alter the phase of the SCN itself [33], and the presence of
light can modify the strength and timing of this feedback
signal [34]. Considering that the feedback signal will have
some time delay, the constant light will make this time delay
become larger and then weaken the coupling among the
SCN oscillators. This effect of weakening coupling can be
also implemented by another way of increasing light in the
light-dark (LD) cycle, where light represents the daytime and
dark the nighttime. It was pointed out that, as increasing light
may result in a transition from a rhythmic to an arrhythmic
behavior, the coupling strength may be inversely dependent
on the light intensity, i.e., the larger the light intensity, the
weaker the coupling [35,36]. We only focus here on the effect
of constant light. Compared with the LD cycle, the constant
light can be considered as a light-light (LL) cycle. That is,
the dark in LD is replaced by the light in LL, which is the
source for the constant light to contribute to the F1,2. We may
assume that the time delay in F1,2 is very large. An evidence
to support this assumption is that the reference [18] took the
time delay as large as 12 h, and also theoretically proved that
the phase splitting can be observed only when the time delay
is in between T/4 and 3T/4 with T = 24 h. Motivated by
this work, we think that a contribution with time delay should
be included into F1,2 to reflect the effect of constant light.
Therefore, we assume that F1,2 can be expressed as

F1 = a

N

N1∑
i=1

Vi + b

N

N∑
i=N1+1

Vi + c

N

N∑
i=1

Vi,−τ ,

(2)

F2 = b

N

N1∑
i=1

Vi + a

N

N∑
i=N1+1

Vi + c

N

N∑
i=1

Vi,−τ ,
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FIG. 1. (Color online) The collective behaviors for the coupling
strength g = 0.5, the time delay τ = 11 h, and the oscillator
numbers N1 = N2 = N/2 = 50 where the unit of t is hours and (a)
represents the case of synchronization with a = 1.64 and b = 0.32;
(b) represents the case of antisynchronization with a = 1.64 and
b = 0.16; and (c) represents the case of amplitude death with
a = 1.16 and b = 0.28.

where the parameters a, b, and c represent the coupling weights
from the same group, a different group, and the part due to time
delay, respectively, and satisfy the relationship

(a + b)/2 + c = 1. (3)

Thus, the first equation of (1) can be rewritten as

ẋi = α1
kn

1

kn
1 + zn

i

− α2
xi

k2 + xi

+ αc

giF1

kc + giF1
,

i = 1,2, . . . ,N1
(4)

ẋi = α1
kn

1

kn
1 + zn

i

− α2
xi

k2 + xi

+ αc

giF2

kc + giF2
,

i = N1 + 1,N1 + 2, . . . ,N

and the other equations in (1) remain unchanged. This is the
modified Goodwin oscillator model for phase splitting and will
be used in this paper. It is easy to see from Eq. (2) that, when
the two groups merge into one with a = b and τ = 0, we have
F1 = F2 = F , i.e., Eq. (2) returns to the previous F in Eq. (1).

In numerical simulations, we take N = 100 and N1 = N2 =
50. Following Ref. [18], we make numerical integrations by
the fourth-order Runge-Kutta method with a time step of 0.1 h.
The initial conditions are chosen randomly from (0,1). We first
consider the case of identical oscillators with all the gi = g =
0.5. We find that, after the transient process, the oscillators
from the two groups will show some interesting behaviors such
as synchronization, antisynchronization, and even amplitude
death. As the antisynchronization has the same phase in one
group and a phase difference of 180◦ between the two groups,
it is in fact the phase splitting. Figure 1 shows the typical results
for six randomly chosen oscillators from the two groups where
(a)–(c) represent the synchronization, antisynchronization, and
amplitude death, respectively.

To show how the collective behaviors depend on the
coupling weights a, b, and c, it is necessary to figure out the
phase diagram. For this purpose, we define the amplitude death

FIG. 2. (Color online) Phase diagram in the ab plane with g =
0.5 and N1 = N2 = N/2 = 50 where the “squares”, “circles”, and
“pluses” denote the synchronization, phase splitting, and amplitude
death, respectively, and (a)–(d) represent the cases with time delay
τ = 4, 8, 11, and 14 h, respectively.

as the states with V max
i − V min

i < 0.01, where V max
i (V min

i )
represents the maximum (minimum) of Vi . Figure 2 shows the
phase diagram of the synchronization, antisynchronization,
and amplitude death for N1 = N2 = N/2 = 50 and different
time delays, respectively. It is easy to see that the anti-
synchronization occurs only in the area with larger a and
smaller b in all four panels, while the synchronized area is
very large in Fig. 2(a) and gradually decreases in 2(b)–2(d),
indicating the dependence of the collective behaviors on the
time delay. It is also noticed that the boundary regions in Fig. 2
are co-existing with dynamical regimes (synchronization,
split, death) where the collective behavior depends on the
initial conditions. Except for these co-existing regimes, our
numerical simulations show that the behaviors in other regimes
are robust to the initial conditions.

To see how the size of the ensemble influences the collective
behaviors, we have checked the cases of different N and found
that they are similar to Fig. 2, indicating the robustness to N .
Thus, in the following, we will only focus on the case of
N = 100, i.e., N1 = N2 = N/2 = 50.

We would like to provide some explanation for the observed
collective behaviors. For the amplitude death, we have Vi,−τ =
Vi = const. In this case, the part with time delay in the coupling
term F has the same function with the other two parts and,
thus, the delay has no influence on the system. While Vi is
in the oscillatory status, we generally have Vi,−τ �= Vi . That
is, the delay part Vi,−τ will have a different phase with the
nondelay part Vi and thus have a different function. Suppose
the oscillation solution exists in the range 0 < c < c0(b) where
c0 depends on b. As both the term with b and the term with c

in Eq. (2) have a different phase from the term with a in
Eq. (2), their mixture can be considered as a perturbation
to the term with a in F1,2. In this perturbation, the term
with c comes from the feedback of output signal and is thus
not very large. For the case of larger b, the perturbation
is mainly controlled by the term with b and, thus, c can
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be approximately considered as independent of b. In this
situation, c = 0 corresponds to the line a + b = 2, while
c = c0 corresponds to the line a + b = 2(1 − c0). That is, the
range for the oscillation solution is 2(1 − c0) < a + b < 2. In
the ab plane, both the lines a + b = 2 and a + b = 2(1 − c0)
have the same slope −1 and the oscillation region is the area
between these two lines. As the Vi,−τ is inconsistent with Vi in
the oscillatory region, the threshold c0 will be closely related to
the delay τ , confirming the results observed in Figs. 2(a)–2(d).
When a + b is beyond this area, i.e., c > c0, the delay term
c
N

∑N
i=1 Vi,−τ may be strong enough to make Fi tend to

uniform and thus reduce its oscillation amplitude and gradually
make it become a constant, i.e., reach the amplitude death.
However, when b is small, both the term with b and the term
with c in Eq. (2) will provide an equal contribution to the
perturbation. Then, c0 can not be considered as independent
of b, i.e., c0 = c0(b), which results in the speckles in the death
regime in Fig. 2. Theoretically, c0 can be considered as a
balance between the first term with normal phase and the
perturbation with delayed phase in Eq. (2). The system will be
oscillation when the first term can suppress the perturbation;
otherwise, the system will be the amplitude death.

The oscillation region of 0 < c < c0(b) can be further
divided into two parts. One is the synchronized region and
the other is the antisynchronized or phase-splitting region.
When F1,2 is mainly contributed by the coupling part from
the oscillators of the same group, i.e., a � b, the contribution
from a different group can be considered as a perturbation
and thus the two groups will be relatively independent. In this
case, F1 may have a significant difference from F2, resulting
in the fact that the two groups may have different status, i.e.,
antisynchronization. When b is not very small, F1 and F2 will
tend to be the same and thus result in the synchronization
status.

Furthermore, we find that even in the regions of synchro-
nization and phase splitting, the dynamical behaviors are not
always the same. That is, their periodicity will change with
the parameters a and b. Figure 3 shows the different periodic
bands where 3(a)–3(d) represent the cases with time delay

(c)

FIG. 3. (Color online) The periodicity corresponding to Fig. 2
where the different colors denote different periods, respectively, and
(a)–(d) represent the cases with time delay τ = 4, 8, 11, and 14 h,
respectively.

δ=0.04 δ=0.08

δ=0.12 δ=0.16

FIG. 4. (Color online) Phase diagram in the ab plane with τ =
14 h and N1 = N2 = N/2 = 50 where the “squares”, “circles”, and
“pluses” denote the synchronization, phase splitting, and amplitude
death, respectively, and (a)–(d) represent the cases with the standard
deviation δ = 0.04, 0.08, 0.12, and 0.16, respectively.

τ = 4, 8, 11, and 14 h, respectively. Considering that each line
with slope −1 in all the panels of Fig. 3 represents a fixed value
of c in the synchronization region, we conclude that the period
of coupled SCN oscillators in the synchronization region is
determined by the weight c. We will analytically explain this
in the next section.

We now turn to the case with distributed coupling strengths.
We consider the case of Gaussian distribution with the average
〈gi〉 = 0.5 and deviation δ. We find that the observed collective
behaviors are robust to the distribution. Figure 4 shows the
results of the delay τ = 14 h where 4(a)–4(d) represent
the situations of δ = 0.04, 0.08, 0.12, and 0.16, respectively.
It is easy to see that the four panels in Fig. 4 are very similar,
indicating the robustness of the synchronized region to the
distribution of coupling strengths. However, we find that the
periodicity is influenced by the distribution. Figure 5 shows
the corresponding periods. From the four panels of Fig. 5, we
see that the periods tend to decrease with the increase of the
deviation δ.

FIG. 5. (Color online) The periodicity corresponding to Fig. 4
where the parameters are the same with Fig. 4.
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III. AN ANALYTIC PHASE MODEL

In Ref. [24], we observed that larger gi corresponds to
larger T or, equivalently, small frequency ωi for individual
oscillators. Based on this observation, we suggested that the
intrinsic frequency of the ith oscillator can be assumed as ωi =
ω0 − dgi with constants ω0 and d. To consider the dispersion
of coupling, we assumed that the coupling gi satisfy a normal
distribution with average 〈g〉 and standard variation σ . Thus,
we obtained a phase model [24]

θ̇i = ω0 − dgi + gi

N

N∑
j=1

sin(θj − θi) (5)

with 1 � i,j � N . This model corresponds to Eq. (1). To
use it to explain the phase splitting, we need to make some
modification to it. According to the expression of F1,2 in
Eq. (2), we modify Eq. (5) into

θ̇i = ω0 − dgi + gi

N

⎡
⎣a

N1∑
j=1

sin(θj − θi) + b

N∑
j=1+N1

sin(θj − θi)

+ c

N∑
j=1

sin(θj,−τ − θi)

⎤
⎦ (6)

for the first group and

θ̇i = ω0 − dgi + gi

N

⎡
⎣a

N∑
j=1+N1

sin(θj − θi) + b

N1∑
j=1

sin(θj − θi)

+c

N∑
j=1

sin(θj,−τ − θi)

⎤
⎦ (7)

for the second group, where the parameters a, b, and c still
have the meaning of coupling weights from the same group, a
different group, and the part due to time delay, respectively, and
satisfy the relation (3). Equations (6) and (7) are our analytic
phase model.

To obtain the solution of Eqs. (6) and (7), we first focus
on the case of identical oscillators with intrinsic frequency
ω, coupling strength g, and oscillator numbers N1 = N2 =
N/2. We must point out that different from the modified
Goodwin model (4), the phase models (6) and (7) do not
have any oscillation amplitude but only phase, thus, we will
not observe the amplitude death again. That is, we will
only observe the synchronization and antisynchronization.
Based on the observed results, we can figure out the de-
pendence of periodicity on the parameters a and b or the
parameter c.

When the coupled oscillators are synchronized, they will
have a common frequency �. Letting t = 0 be the time for the
oscillators to be synchronized, the solution of Eqs. (6) and (7)
can be expressed as

θi = �t + θi0 (8)

FIG. 6. (Color online) The dependence of frequency � on the
parameters c, g, and τ with N1 = N2 = N/2 = 50. (a) and (b)
represent the case of synchronization with τ = 14 h in (a) and g = 0.5
in (b). (c) and (d) represent the case of phase splitting with τ = 14 h
in (c) and g = 0.5 in (d).

for all the oscillators, where θi0 is the phase of the oscillator i

right before synchronization. Substituting Eq. (8) into (6), we
have

� = ω − dg + g

N

⎡
⎣a

N1∑
j=1

sin
(
θj0 − θi0

)

+b

N∑
j=N1+1

sin
(
θj0 − θi0

) + c

N∑
j=1

sin
(
θj0 − θi0 − �τ

)⎤⎦
(9)

for the group-1. The similar form can be obtained for the
group-2. Taking the average to all the N oscillators, we have

� = ω − dg + g

N2

[
c

N∑
i,j=1

sin
(
θj0 − θi0 − �τ

)]

= ω − dg − cg

N2
sin �τ

N∑
i,j=1

cos
(
θj0 − θi0

)
. (10)

For the case of identical oscillators, we especially have
θj0 = θi0 and thus

� = ω − dg − cg sin �τ. (11)

Therefore, the frequency � is determined by the parameters c,
g, and τ , which explains the results observed in Figs. 3 and 5.
To check it numerically from the analytical models (6) and (7),
we let d = 0 and ω = 2π/T , where T = 23.5 h is the free
period of a single SCN oscillator of Eq. (1) [20]. Figure 6(a)
shows how � changes with the parameter c for τ = 14 h where
the “circles” and “squares” represent the numerical results for
the cases of g = 0.2 and 0.5, respectively, and the “red line”
and “black line” are the corresponding theoretical results from
Eq. (11). Obviously, the numerical results completely agree
with the theoretical predictions. This result can be explained
by Eq. (11) as follows. In the observed range of � in Fig. 6(a),
we have �τ > π and, thus, sin �τ < 0, indicating that �
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Ω

τ
τ

Ω

FIG. 7. (Color online) The results directly from the modified
Goodwin models (1)–(4) with N1 = N2 = N/2 = 50. (a) and (b)
represent the case of synchronization with τ = 4 h in (a) and g = 0.5
in (b).

increases with c. Moreover, | sin �τ | will nonlinearly increase
with � for π < �τ < 3π/2 and then decrease with � for
�τ > 3π/2. Thus, Fig. 6(a) is a combined effect from the
two factors of both c and sin �τ , which is nothing but just the
prediction of Eq. (11). Figure 6(b) shows how � changes with
c for g = 0.5 where the “circles” and “squares” represent the
cases of τ = 8 and 14 h, respectively, and the “red line” and
“black line” are the corresponding theoretical results from
Eq. (11). This result can be also explained by Eq. (11). In the
observed range of � in Fig. 6(b), we have �τ < 0 for the case
of τ = 14 h and �τ > 0 for the case of τ = 8 h, indicating
that � will increase with c for τ = 14 h but decrease with c

for τ = 8 h. Combining the factors of both c and sin �τ , we
can understand the observed phenomenon in Fig. 6(b).

To check the relationship between the analytic models (6)
and (7) and the modified Goodwin models (1)–(4), we
calculate the relationship between � and c directly from the

modified Goodwin model. Figure 7 shows the results where
(a) shows how � changes with the parameter c for τ = 4 h
where the “pluses” and “squares” represent the numerical
results for the cases of g = 0.2 and 0.5, respectively, and (b)
shows how � changes with c for g = 0.5 the “pluses” and
“squares” represent the cases of τ = 2 and 4 h, respectively.
Comparing Figs. 7(a) and 7(b) with Figs. 6(a) and 6(b),
respectively, we see that their varying tendencies are similar
although their values are different, indicating their qualitative
agreement.

When the coupled oscillators are antisynchronized or phase
splitting, they will also have a common frequency � but a
phase difference of π between the two groups. Letting t = 0
be the time for the oscillators to reach the phase splitting, the
solution of Eqs. (6) and (7) can be expressed as

θi = �t + θi0 (12)

for the group-1 with i = 1,2, . . . ,N1 and

θi = �t + θ ′
i0 + π (13)

for the group-2 with i = N1 + 1,N1 + 2, . . . ,N . Substituting
Eqs. (12) and (13) into (6), we obtain

� = ω − dg + g

N

⎡
⎣a

N1∑
j=1

sin
(
θj0 − θi0

)

+b

N∑
j=N1+1

sin
(
θ ′
j0

− θi0 + π
) + c

N1∑
j=1

sin
(
θj0 − θi0 − �τ

)

+c

N∑
j=N1+1

sin
(
θ ′
j0

− θi0 − �τ + π
)⎤⎦ (14)

for the group-1. The similar form can be obtained for the
group-2. Taking the average to all the N oscillators, we have

� = ω − dg + g

N2

⎡
⎣c

N1∑
i,j=1

sin
(
θj0 − θi0 − �τ

) + c

N∑
i,j=N1+1

sin
(
θ ′
j0

− θ ′
i0

− �τ
)

−c

N1∑
i=1

N∑
j=N1+1

sin
(
θi0 − θ ′

j0
− �τ

) − c

N1∑
i=1

N∑
j=N1+1

sin
(
θ ′
j0

− θi0 − �τ
)⎤⎦

= ω − dg − cg

N2
sin �τ

⎡
⎣ N1∑

i,j=1

cos
(
θj0 − θi0

) +
N∑

i,j=N1+1

cos
(
θ ′
j0

− θ ′
i0

)

−
N1∑
i=1

N∑
j=N1+1

cos
(
θi0 − θ ′

j0

)⎤⎦. (15)

For the case of identical oscillators, we especially have θj0 =
θi0 = θ ′

j0
= θ ′

i0
and, thus,

� = ω − dg. (16)

Therefore, the frequency � is independent of the parameters c,
g, and τ for the case of d = 0. Figures 6(c) and 6(d) show the
results from both the numerical simulations of the models (6)
and (7) and the theoretical prediction of Eq. (16) in the region
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of phase splitting. Obviously, they confirm each other well.
Furthermore, from Figs. 6(c) and 6(d), we see that the phase
splitting exists only in a small range of c, which theoretically
explains the results in Fig. 2.

As in Figs. 7(a) and 7(b), it is necessary to get corresponding
Figs. 6(c) and 6(d) directly from the modified Goodwin
models (1)–(4). However, we surprisingly find that we can not
obtain a constant � for varying c. This can be understood from
Fig. 2. Notice that the phase-splitting areas in Figs. 2(b)–2(d)
are irregular, indicating that all three parameters a, b, and c

are competitive to make a phase splitting. The resulted F1,2

will also be irregular and thus influences the frequency of the
system and results in a varying � in phase splitting, which can
not be given by the analytic model.

For the case of distributed gi , we go back to the Eqs. (6)
and (7). By performing the similar derivative process, we
obtain

� = ω − d〈gi〉 − c〈gi〉
N2

sin �τ

N∑
i,j=1

cos
(
θj0 − θi0

) + ξ (17)

for the region of synchronization and

� = ω − d〈gi〉 − c〈gi〉
N2

sin �τ

⎡
⎣ N1∑

i,j=1

cos
(
θj0 − θi0

)

+
N∑

i,j=N1+1

cos
(
θ ′
j0

− θ ′
i0

) −
N1∑
i=1

N∑
j=N1+1

cos
(
θi0 − θ ′

j0

)⎤⎦ + ξ

(18)

for the region of phase splitting, where 〈gi〉 represents the
average of gi and ξ denotes the fluctuation. Comparing
Eqs. (17) and (18) with Eqs. (10) and (15), respectively, we
see that they have similar forms, indicating the robustness to
the distribution of coupling strengths and the nonidentity of
oscillators.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have introduced both the modified
Goodwin models (1)–(4) and the analytic models (6) and (7).
Comparing these two models, we find that the modified
Goodwin model can show more features than the analytic
model. The first feature is that the modified Goodwin model
can show the amplitude death, while the analytic model can
not. It is reported that, under bright light, the endogenous
circadian amplitude will be suppressed and results in the
loss of rhythmicity, i.e., the amplitude death is related to the

loss of rhythmicity in animal or human [37,38]. The second
feature is that, in describing the phase splitting, the analytic
model shows a constant � for varying c while the modified
Goodwin model shows a varying �. The third feature is
that, in describing the synchronization, the analytic model is
qualitatively but not quantitatively consistent with the modified
Goodwin model. These differences make us believe that the
modified Goodwin model with information of amplitude can
explain more circadian rhythmic features than a phase model
without the information of amplitude.

In the modified Goodwin model, the phase space can be
divided into three different regions by the coupling weight
parameters a, b, and c. For each fixed delay τ , there is a
threshold c0. The death and oscillatory status are bordered
by the value of c0. It is death for c > c0 and oscillatory for
c < c0. In the oscillatory region, the collective behaviors can be
further divided into synchronization and phase splitting, which
is distinguished by the relative weights between a and b. When
a � b, i.e., b close to zero, Fi is mainly determined by the
contribution of the coupling part in a group and the contribution
from another group can be considered as a perturbation. In
this case, it is possible for the two groups to remain in a
different status, i.e., phase splitting. Compared to the previous
phase model [18], our modified Goodwin model can show
not only the phase splitting, but also the amplitude death and
the periodicity in the regions of synchronization and phase
splitting.

In conclusion, we have presented a modified Goodwin
model to better understand biological phase splitting observed
in mammals, such as hamsters. The model distinguishes the
contributions from the same group and a different group and
considers the factor of constant light by a part with time
delay in the coupling. We have revealed that, different from
the previous phase model, our model can show all the three
typical states observed in mammals, i.e., synchronization,
phase splitting, and amplitude death. Furthermore, we find
that the delay part will significantly influence the periodicity
of coupled SCN oscillators. An analytic phase model has been
extracted from the modified Goodwin model to explain the
dependence of periodicity on the parameters.
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