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Synchronization of chaotic networks with time-delayed couplings: An analytic study
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Networks of nonlinear units with time-delayed couplings can synchronize to a common chaotic trajectory.
Although the delay time may be very large, the units can synchronize completely without time shift. For networks
of coupled Bernoulli maps, analytic results are derived for the stability of the chaotic synchronization manifold.
For a single delay time, chaos synchronization is related to the spectral gap of the coupling matrix. For networks
with multiple delay times, analytic results are obtained from the theory of polynomials. Finally, the analytic
results are compared with networks of iterated tent maps and Lang-Kobayashi equations, which imitate the
behavior of networks of semiconductor lasers.
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I. INTRODUCTION

Chaos synchronization is a phenomenon which is of fun-
damental scientific interest in nonlinear dynamics and which
is being investigated in the context of secure communication
and neural activity [1–5]. In particular, networks of nonlinear
units which relax to a common chaotic trajectory are the focus
of recent research [6,7].

For many applications, the coupling between nonlinear
dynamical units is realized by transmitting a function of
their internal variables to their neighbors. In many cases, the
transmission time is larger than the internal time scales of the
units. One example are chaotic lasers which are coupled by
their mutual laser beams [5,8–11]. Thus, networks of nonlinear
units which are coupled by their time-delayed variables—
including time-delayed self-feedback—are a subject of recent
research activities [6,12–32].

The theoretical investigations of chaotic networks are
mainly based on numerical simulations. However, there
exists a powerful method to determine the stability of
the synchronization manifold (SM) of an arbitrary network:
the master stability function (MSF) [29]. This method con-
nects topology with function. Using the eigenvalues of the
connection matrix, a linear equation for a single unit is derived
which determines the stability of chaos synchronization for
the complete network. For the case of time-delayed couplings,
the MSF has been studied for few systems only [20,25,33].

The MSF is defined as the maximal Lyapunov exponent of
linear equations with time-dependent coefficients. In general,
it is not possible to derive analytic results for these equations
because the coefficients are given by the chaotic trajectory of
the network. Thus, one has to rely on numerical simulations of
the linear system of differential equations (for chaotic flows)
or difference equations (for coupled map lattices).

The purpose of this paper is to derive analytic results
for chaotic networks with time-delayed couplings. Thus, we
concentrate on a coupled map lattice, a network of chaotic
iterated Bernoulli maps, which allows an analytic calculation
of the MSF. The corresponding linear difference equations
have constant coefficients. Therefore, stability of the solution
is related to the roots of polynomials. Results from graph
theory, control theory, and algebra will help to derive analytic
statements about chaos synchronization.

The linear stability equations of Bernoulli networks may
be considered as approximations for linear equations with
time-dependent couplings. Thus, we compare our analytic
results with numerical results for other iterated maps and
with simulations of rate equations for coupled semiconductor
lasers. In the following section, the MSF for chaotic networks
with time-delayed couplings is introduced. We concentrate on
networks where chaos is generated by the couplings and/or
self-feedback, similar to semiconductor lasers. Afterward,
analytic results are derived for Bernoulli networks with single
and multiple delay times. The last section compares these
results with networks of iterated tent maps and networks of
laser rate equations.

II. MASTER STABILITY FUNCTION (MSF)

A. MSF with time delay

One powerful method to analyze the stability of synchro-
nization in networks of coupled systems with identical units
is the MSF proposed by Pecora and Caroll [29]. A network
of coupled identical dynamical units can be analyzed by
linearizing the dynamical equation around the synchronization
manifold.

In order to obtain analytic results, we restrict our investiga-
tion to coupled map lattices, and we use an identical function
f (x), x ∈ [0,1] for the internal dynamic, the self-feedback,
and the couplings. We extend the master stability function
of [29] for a system without time delay to a system with
arbitrarily many different time delays [27,34–36], where each
term with delay time τl is weighted with a positive coupling
parameter σl and a positive self-feedback parameter ηl . The
network consists of N units with variables xi

t ∈ [0,1], where
i = 1, . . . ,N is the index of the unit and t is a discrete time
step. The system is defined by

xi
t = η0f

(
xi

t−1

) +
M∑
l=1

ηl f
(
xi

t−τl

) +
M∑
l=1

N∑
j=1

σl Gl,ij f
(
x

j
t−τl

)
.

(1)

Without loss of generality, we order the coupling terms with
ascending delay times, so that τM is the maximum time delay.
Each coupling delay time τl has its own coupling matrix, the
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normalized weighted adjacency matrix Gl with
∑

j Gl,ij = 1
and Gij � 0 [24,31]. Therefore, the coupling is invasive and
nondiffusive; it changes the trajectory of the coupled system
in comparison to a noncoupled system. We assume that the
coupling matrices Gl commute; otherwise, the MSF method
cannot be applied. The self-feedback of the system is not
included in Gl ; hence Gl,ii = 0.

Complete zero-lag synchronization x1
t = · · · = xN

t = st is
a solution of these equations. The synchronized trajectory is
given by

st = η0 f(st−1) +
M∑
l=1

(ηl + σl)f(st−τl
). (2)

The stability of the SM is determined by linearizing Eq. (1)
in the vicinity of the SM, Eq. (2). With δxi

t = xi
t − st , we

obtain

δxi
t = η0 f ′(st−1)δxi

t−1 +
M∑
l=1

ηl f
′(st−τl

)δxi
t−τl

+
M∑
l=1

N∑
j=1

σl Gl,ij f ′(st−τl
)δxj

t−τl
. (3)

For a network with N nodes, we obtain N coupled linear
equations with time-dependent coefficients. Since the coupling
matrices Gl commute, we can expand the N -dimensional per-
turbation δ�xt to the common eigenvectors �wk with eigenvalues
γl,k , k = 1, . . . ,N , l = 1, . . . ,M of the matrices Gl . For each
mode k of the perturbation, with δ�xt = ξk,t �wk , we obtain

ξk,t =
M∑
l=0

(ηl + σl γk,l)f
′(st−τl

)ξk,t−τl
, (4)

where we have defined σ0 = 0 and τ0 = 1. ξk,t is the amplitude
of the perturbation corresponding to the eigenvalue γk,l of the
coupling matrix Gl .

To gain analytic results, we focus on a chaotic map with
constant slope, namely the Bernoulli map, which is given by

f (x) = (α x) mod 1 (5)

and is chaotic for α > 1. Since f ′(st ) = α is constant, Eq. (4)
becomes

ξk,t =
M∑
l=0

(ηl + σl γk,l)α ξk,t−τl
. (6)

With the ansatz ξk,t = zt
k ξk,0, the whole stability problem

becomes a problem of solving the polynomial of degree τM ,

z
τM

k =
M∑
l=0

(ηl + σl γk,l)α z
τM−τl

k =
M∑
l=0

βk,l z
τM−τl

k , (7)

with βk,l = (ηl + σl γk,l)α.
For each eigenvalue γk , Eq. (7) yields τM roots, which we

label with zk,r with r = 1, . . . ,τM . Our goal is to find coupling
parameters βk,l such that the following points are true:

(1) For γ0,l = 1, l = 1, . . . ,M , there exists at least one z0,rm

and |z0,rm
| > 1. This guarantees a chaotic dynamic of the SM.

(2) For each γk(k > 1), all roots zk,r lie inside the unit circle
|zk,r | < 1. This guarantees a stable SM. In this case, the MSF
is defined as

λ = max
k>0,r

ln|zk,r |. (8)

Equation (7) allows an analytic investigation of chaos synchro-
nization. Later, we discuss to what extent Eq. (7) is a good
approximation for other iterated maps with time-dependent
slopes f ′ and even for corresponding differential equations
with time-dependent Jacobi matrices.

B. Concept of local Lyapunov exponents

The stability of the SM of the complete network is
determined by the linear equation (4). This equation yields
the Lyapunov exponents of the network parallel (γ0 = 1) and
perpendicular (γk , k > 0) to the SM. As we see later, it is
useful to consider the contributions of individual terms in
Eq. (4) to the stability of the SM separately. Hence, we define
“local Lyapunov exponents” to discuss these contributions.
For example, the local Lyapunov exponent is defined as the
maximal one of the equation

ξk,t = η0 f ′(st−1)ξk,t−1, (9)

where st is the trajectory of the complete network, including
time-delayed terms.

For the case of large delay times τl , one finds the following
result: When the instantaneous Lyapunov exponent is positive,
the network cannot synchronize [25]. Note that local Lyapunov
exponents are not the Lyapunov exponents of the isolated units,
since the network changes the trajectory. Only for the Bernoulli
network, the linear equations do not depend on the trajectory;
in this case, the local Lyapunov exponents are identical to the
ones of the corresponding isolated units.

C. Graph spectrum

The stability of the SM is determined by the eigenvalues of
the coupling matrices Gl , according to the MSF Eq. (8). We
consider matrices with unit row sum,

∑
j Gl,ij = 1. Since we

consider self-feedback separately, we have Gl,ii = 0.
We restrict our discussion to non-negative matrices [37],

Gl,ij � 0, and to completely connected graphs. One eigen-
value is unity, γ0,l = 1, and according to the Perron-Frobenius
theorem γ0,l is not degenerate and has the largest modulus of
all eigenvalues of Gl . Therefore, we order the eigenvalues such
that 1 = γ0,l � |γ1,l| � |γ2,l| � · · · � |γN−1,l |.

The eigenvector for the largest eigenvalue γ0 = 1 is �w0 =
(1, . . . ,1). It corresponds to a perturbation parallel to the
SM. Since we discuss only chaotic networks, the Lyapunov
exponent λmax of the mode γ0 is positive; the dynamics in the
SM, Eq. (2), is chaotic. As we show later, for large single delay
time τ , the spectral gap � = 1 − |γ1| determines the stability
of the SM. Complete zero-lag synchronization is possible in
the limit of weak chaos, λmax → 0, if and only if the spectral
gap is nonzero, |γ1| < 1.

The theory of non-negative matrices [37] relates the
eigenvalue gap to the loop structure of the corresponding
graph: � is nonzero if and only if the greatest common divisor
of the length of loops of the graph is unity. Hence, for a
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FIG. 1. Schemata of bidirectionally coupled pair, spectral gap
� = 0; bidirectionally coupled triangle, � = 1

2 ; unidirectional tri-
angle, � = 0; square, � = 0.1215; and combination of triangle and
square, � = 0.1215. These are the values for equal coupling weights.

single large time delay, it is easy to see whether a network can
synchronize in the limit of weak chaos. In fact, this result has
been extended to networks with multiple delay times τl by a
self-consistent physical argument based on mixing information
of the chaotic trajectories of the nodes [23].

For some single graphs, the eigenvalues are known ana-
lytically. Figure 1 shows the eigenvalue gap for some graphs.
Note that a directed triangle and a directed square have zero
gaps, but if one connects them, the greatest common divisor
of loops 3 and 4 is unity and the gap is nonzero [37].

III. ANALYTIC RESULTS

In this section, we present analytic results for Bernoulli
networks. We focus on complete zero-lag synchronization.
According to the previous section, the stability of the SM is
determined by the roots of the following polynomials:

zτM =
M∑
l=0

(ηl + σl γk,l)α zτM−τl =
M∑
l=0

βl z
τM−τl . (10)

Note that each βl includes γk,l and that we omitted the index
k in our notation.

The network contains M + 1 different delay times τl , and
τM is the largest one. For each mode k of perturbation,
we have a set of eigenvalues γk,l of the coupling matrices
Gl corresponding to the delay times τl . Hence, we have to
calculate the roots of Eq. (10) with βl = (ηl + σl γk,l)α for
each mode of perturbation, where σl is the coupling strength
and α is the slope of the Bernoulli map. Equation (10) includes
the local dynamics with τ0 = 1 and σ0 = 0 and self-feedbacks

with delay time τl and strength ηl . The mode parallel to the
SM has eigenvalues γ0,l = 1 for all terms of Eq. (10).

Some results can be derived immediately. The polynomial
Eq. (10) has τM roots zr and the theorem of Vieta gives∏

r |zr | = |βM |. Hence, for |βM | > 1, at least one root is
outside of the unit circle. Consequently, all modes k with
|(ηM + σM γk,M )α| > 1 are unstable. If the coupling σM

and the self-feedback ηM of the largest delay time τM are
such that there exists one eigenvalue γk,M with k > 0 and
|ηM + σM γk,M | > 1/α, the network cannot synchronize and
the SM is unstable.

Equation (10) denotes the roots of a polynomial P (z), which
can be written as

P (z) = zτM −
M∑
l=0

(ηl + σl γk,l)α zτM−τl . (11)

If the mode k is unstable, P (z) has at least one root with
|z| > 1. Let us assume

∑M
l=0(ηl + σl γk,l)α > 1, which gives

P (1) = 1 −
M∑
l=0

(ηl + σl γk,l)α < 0. (12)

Furthermore, on the real axis we have

lim
z→∞ P (z) → ∞. (13)

Since P (z) is continuous, we can conclude that P (z) has a root
on the real axis with z0 > 1. Hence, the mode k is unstable if

M∑
l=0

(ηl + σl γk,l)α > 1. (14)

Gershgorin’s circle theorem [38] states that all roots of P (z)
lie inside a circle with radius R given by the inequality

R � max

{
1,

M∑
l=0

|(ηl + σl γk,l)α|
}

, (15)

Hence, the mode k is stable if
M∑
l=0

|(ηl + σl γk,l)α| < 1. (16)

Equations (14) and (16) give the parameter regime for chaos.
Note that this is valid for all perturbation modes k.

For a chaotic trajectory, the perturbation mode parallel to
the synchronization manifold, γ0,l = 1, has to be unstable. This
is the case for

M∑
l=0

(ηl + σl)α > 1, (17)

whereas for
M∑
l=0

(ηl + σl)α < 1 (18)

the perturbation mode for k = 0 is stable. Hence, the border
to a chaotic trajectory is given by

1 =
M∑
l=0

βl =
M∑
l=0

(ηl + σl)α. (19)
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If the sum of couplings is larger than 1, the system is chaotic.
Note that this transition to chaos does not depend on the delay
times τl , in contrast to the region of synchronization, which is
very sensitive to the values of the delay times τl . In this work,
we consider only parameters where the network is chaotic.
Another conclusion from this result is the fact that for some
networks it is always possible to find coupling parameters
and Bernoulli slopes for which stable chaos synchronization is
possible. This networks have to have eigenvalues k > 0, which
fulfill Eq. (16) for parameters, which ensure Eq. (17). This is
the case for |γk,l| < 1, where k > 0.

A. Single delay time

For a network with a single delay time τ , including coupling
and self-feedback, we have to find the roots of

zτ = β0 zτ−1 + β1 = η0 α zτ−1 + (η1 + σ1 γk)α (20)

in the chaotic region

(η0 + η1 + σ1)α > 1. (21)

For each mode k, Eq. (20) has τ roots zk,r , which define a
spectrum of τ Lyapunov exponents λk,r = ln|zk,r |. Figure 2
shows this spectrum as a function of the parameters β0 and β1.
For β0 + β1 > 0, the maximal Lyapunov exponent is positive.
Using the Schur-Cohn theorem [39], the region of stability
can be calculated numerically. Figure 3 shows the results for
τ = 2,4 and τ → ∞. With increasing delay time, this region
shrinks to the symmetric triangle |β1| < 1 − β0.

In fact, one can derive the region of stability analytically
for τ → ∞. In this limit, we have to consider two cases:
(a) the Lyapunov exponent is of order 1 and (b) it is of order 1/τ

[40,41]. We omit the index k of the root zk,r of the perturbation
mode k since γk is included in β1. From Eq. (20), we obtain

|zr |τ = | β1 zr

zr − β0
|. (22)

For case (a), |zr |τ diverges for τ → ∞ in the region of
instability, and hence we find zr = β0 for τ → ∞. If β0 > 1,
the SM is unstable for any perturbation mode with eigenvalue
γk . However, β0 > 1 means that the uncoupled units are
chaotic. Thus, we reproduce the result already found in [25]:
If the local Lyapunov exponent defined in the previous section
is positive, a network cannot be synchronized by time-delayed
couplings if the delay time is much larger than the local time
scales.

a
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FIG. 2. (Color online) Spectrum of Lyapunov exponents for the
system of Eq. (20) and τ = 40. (a) β0 = 0.5 and (b) β1 = 0.5. There
is at least one positive Lyapunov exponent for β0 + β1 � 1.

FIG. 3. (Color online) Synchronization regime for zτ =
β0 zτ−1 + β1 and τ = 2 (light blue), τ = 4 (medium blue), and
τ → ∞ (dark blue). Note that τ → ∞ regime is a subset of τ = 2
and τ = 4 regime and that τ = 4 regime is a subset of τ = 2 regime.

For case (b), we write zr = eλr ei φr with λr = r/τ .
Equation (22) gives

er = |β1|er/τ

|er/τ ei φr − β0| . (23)

For τ → ∞, we obtain

e2 r = |β1|2
β2

0 − 2 β0 cos φr + 1
. (24)

For τ → ∞, the phases φr are uniformly distributed on
the circle [0,2π ] [42,43], and hence the maximal Lyapunov
exponent is given for φr = 0, which yields the region of
stability

|β1| < 1 − β0. (25)

Consequently, the network can synchronize if for all k > 0

|(η1 + σ1 γk)α| < 1 − η0 α. (26)

For large delay times and without self-feedback η1 = 0, Eq.
(26) reduces to

|σ1 γ1 α| < 1 − η0 α, (27)

where γ1 is the eigenvalue with the second largest absolute
value, 1 � |γ1| � |γ2| . . .. Neither the sign nor the complex
phase of the eigenvalue γ1 have an influence on the region of
stability. This is different for small values of τ where the region
of stability depends on the complex phase of γ1. Note that this
symmetry for large delay times has recently been proven for
general chaotic networks with a continuous dynamics [30].
Equation (27) has interesting consequences. The network is
chaotic if

σ1 α > 1 − η0 α. (28)
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It can synchronize if

σ0 α + |σ1 γ1 α| < 1. (29)

Thus, if |γ1| = 1, Eq. (27) is identical to Eq. (28) and the
chaotic network cannot synchronize for any set of parameters.
For bipartite networks, one finds γ1 = −1, hence bipartite
networks cannot synchronize completely; only sublattice or
cluster synchronization is possible [24,31]. According to
Fig. 1, a pair, a square without diagonals, or any directed
ring cannot synchronize completely for large delay times.
A sublattice or cluster synchronization, however, is possible
[23,24,31]. On the other hand, a triangle with bidirectional
couplings can synchronize completely, since γ1 = − 1

2 .
We exemplify this result by a system consisting of two

bidirectionally coupled Bernoulli units with one time delay τ

for the coupling and the same time delay τ for self-feedback.
By adding a self-feedback with delay time τ , one can achieve
complete synchronization in a bidirectionally coupled pair.
The dynamical equation of unit i is defined as

xi
t = (1 − ε) f

(
xi

t

) + ε κ f
(
xi

t−τ

) + ε (1 − κ) f
(
x

j
t−τ

)
, (30)

with i,j ∈ {1,2}. According to Eq. (28), the system is chaotic
for any parameters f ′(x) = α > 1 and ε,κ ∈ [0,1]. The pair
has the eigenvalue γ1 = −1, which gives β0 = (1 − ε) α,
β1 = ε (2 κ − 1) α. Equation (25) yields two synchronization
borders for τ → ∞:

κ+(ε) = 1 − α − 1

2 α ε
,

κ−(ε) = α − 1

2 α ε
. (31)

For a triangle with corresponding equations, we obtain
with γ1 = − 1

2 the coefficients β0 = (1 − ε) α, β1 = ε κ α −
1
2 ε (1 − κ), and α = ε

2 (3 κ − 1) α, which gives

κ+(ε) = 1 − 2 (α − 1)

3 ε α
,

κ−(ε) = (2 − ε) α − 2

3 ε α
. (32)

Both results are shown in Fig. 4. Without self-feedback (κ =
0), a bidirectionally coupled pair cannot synchronize, whereas
a triangle synchronizes for ε > 2 (α − 1)/α.

Note that the upper boundaries κ+ do not depend on the
delay time τ , whereas with decreasing delay time the lower
boundary moves down and the region of synchronization
increases.

From Eq. (24), a relation between the MSF and the
maximal Lyapunov exponent in the limit of τ → ∞ can be
derived. We consider a network without self-feedback and with
local stability β0 < 1. The MSF (i.e., the largest transversal
Lyapunov exponent) is given by

λ = 1

τ
ln

|σ1 α γ1|
1 − β0

, (33)

whereas the maximal Lyapunov exponent, which is the
Lyapunov exponent parallel to the SM, is

λmax = 1

τ
ln

|σ1 α|
1 − β0

. (34)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ε

κ

FIG. 4. (Color online) Blue dashed line is the border to synchro-
nization for a bidirectionally coupled Bernoulli pair with α = 1.5,
self-feedback, τ → ∞, and ε,κ notation. The thick dashed line
denotes κ+, and the thin line denotes κ−. Red solid line is the border
to synchronization for a bidirectionally coupled triangle, with same
parameters as for the pair.

Hence, one obtains

λ = λmax + 1

τ
ln|γ1|. (35)

Thus, the SM is stable if

|γ1| < e−λmax τ , (36)

where the product λmax τ is finite for τ → ∞ if the local Lya-
punov exponent is negative. This equation has a fundamental
meaning. For any network with a stochastic coupling matrix G,
it relates the eigenvalue gap 1 − |γ1| to the synchronizability
of the network. If the second largest eigenvalue is smaller than
the largest one, |γ1| < 1, the SM is stable for sufficiently weak
chaos inside of the SM, that is, in the limit λmax → 0.

We believe that Eq. (36) holds for any chaotic network
of the structure defined in the previous section, even for
corresponding delay differential equations. In fact, Eq. (36) has
been derived for networks with periodic dynamics [44], and
our numerical results of laser equations confirm this condition
on chaos synchronization (see the following section).

Equation (36) has been derived in the limit τ → ∞. For
finite τ , one either has to solve Eq. (20) numerically or one
can calculate regions of stability with the Schur-Cohn theorem
[39]. Even in this case of finite τ , an analytic result is possible.
The border of stability is given by |zr | = 1, where |zr | is the
maximal root for the perturbation modes k transversal to the
SM. With zr = ei φr , one can decompose Eq. (20) into the real
and imaginary parts:

cos(φr τ ) = β0 cos[φr (τ − 1)] + β1,

sin(φr τ ) = β0 sin[φr (τ − 1)]. (37)
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The solution of Eqs. (37) gives boundaries β1(φ) and β0(φ).
The maximal value of β0(φ), the tip of the phase diagram of
Fig. 3, is obtained in the limit φ → 0, which gives

1 = β0 + β1, (38)

τ = β0 (τ − 1). (39)

The first part agrees with Eq. (19), and the second gives the
result

max β0 = τ

τ − 1
. (40)

In the limit τ → ∞, one can synchronize only for β0 < 1,
that is, if the local Lyapunov exponent (see previous section)
is negative. However, for finite delay times even chaotic units
(β0 > 1) can synchronize if

β0 <
τ

τ − 1
. (41)

B. Two delay times

Now consider a network with two delay times τ1 and τ2

(τ2 > τ1). Each delay time belongs to a coupling matrix G1 and
G2, which have identical eigenvectors (i.e., identical modes of
perturbation). The stability of the SM is determined by the
polynomials

zτ2 = β0 zτ2−1 + β1 zτ2−τ1 + β2. (42)

We consider only networks where β1 and β2 belong either to a
coupling or a self-feedback; therefore we rule out ηi �= 0 and
σi �= 0 for the same system. Each mode of perturbation has an
eigenvalue γk,l of the coupling matrices of Eq. (1), which gives
three possibilities for Eq. (42): a system with self-feedback τ1

and coupling τ2, a system with self-feedback τ2 and coupling
τ1, and a system with two couplings τ1 and τ2. For these three
cases, we obtain the equations

zτ2 = η0 α zτ2−1 + η1 α zτ2−τ1 + σ2 α γk,2, (43)

zτ2 = η0 α zτ2−1 + σ1 α γk,1 zτ2−τ1 + η2 α, (44)

zτ2 = η0 α zτ2−1 + σ2 α γk,1 zτ2−τ1 + σ2 α γk,2. (45)

For simplicity, we start the discussion omitting the local
term, η0 = 0, and considering a pair of coupled units with
γ0 = 1, γ1 = −1. Hence, Eq. (42) is reduced to

zτ2 = β1 zτ2−τ1 + β2. (46)

Let μ be the greatest common divisor of τ2 and τ1. We can
substitute w = zμ to obtain

wp = β1 wp−q + β2 (47)

with τ2 = p μ, τ1 = q μ, and (p,q) are relatively prime. Now,
all roots zr for k > 0 lie inside the unit circle if and only if
all roots wr for k > 0 lie in the unit circle, and hence only the
ratio τ2/τ1 = p/q determines the stability of Eq. (46). Figure 5
shows the regions of stability of Eq. (46) for different values
of p and q calculated with the Schur-Cohn theorem [39].
As shown before, the system is chaotic if (η1 + σ1)α + (η2 +
σ2)α > 1. For the mode γ0 = 1, this means β1 + β2 > 1. For

FIG. 5. (Color online) Synchronization regime for zτ2 =
β1 zτ2−τ1 + β2 and τ2/τ1 = p/q with p,q relatively prime and (a)
p

q
= 2, (b) p

q
= 3, (c) p

q
= 3

2 , and (d) p

q
= 4. Region I denotes the

region parallel to the synchronization manifold, and the other regions
are transversal to the synchronization manifold.

example, the point in region I in Fig. 5(a) belongs to a chaotic
system.

The stability of the SM for a bipartite network, for example,
a pair of units, is determined by the mode γ1 = −1, which
changes the sign of β1 and/or β2 of the point in region I,
depending whether this term belongs to a coupling or to a
self-feedback. For self-feedbacks one has βi = ηi α, whereas
the coupling gives βi = −σi α. For example, if τ1 belongs to a
self-feedback, β1 is positive, since η and α are positive. For τ2

belonging to a bipartite coupling, G2 has an eigenvalue γ1 =
−1, so β2 is flipped to −β2, which gives the point in region
IV in Fig. 5(a), which is stable. When both delay times τ1 and
τ2 belong to the coupling, G1 and G2 are coupling matrices
with γ1 = −1, and we obtain the point in region III which
is stable, as well. In both cases, we find complete zero-lag
synchronization. However, when τ2 belongs to a self-feedback
and τ1 to a coupling, we obtain the point in region II, which
is unstable. In this case, we can never achieve synchronization
for any parameters σ1 and σ2 for which the system is chaotic.

Obviously, the symmetries seen in Fig. 5 prevent synchro-
nization for some cases depending on the values of p and
q. These symmetries of Eq. (42) can be derived as follows.
If we change the sign of the roots, w = −v, the conditions
of stability do not change, but Eq. (47) is changed to the
polynomial

vp = β1 (−1)q vp−q + β2 (−1)p. (48)

Now, we have to consider three cases:
If q is even and p is odd, the phase diagram has the reflection

symmetry β2 → −β2; see Fig. 5(c) for p = 3 and q = 2. Thus,
if τ1 belongs to the self-feedback and τ2 to the coupling, the
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system cannot synchronize, since the condition for stability of
the SM is identical to the condition for chaos.

If q is odd and p is even, the phase diagram has the reflection
symmetry β1 → −β1; see Figs. 5(a) and 5(d). Thus, if τ1

belongs to the coupling and τ2 to the self-feedback, the system
cannot synchronize.

If p as well as q are odd, the phase diagram has the point
symmetry β1 → −β1 and β2 → −β2. Thus, if both delay times
belong to couplings, the system cannot synchronize.

Therefore, the symmetries of the roots of the polynomials
Eq. (46) rule out some ratios of the two delay times for
which synchronization can occur. For the ratios which are
not forbidden by symmetries, synchronization is possible in a
limited paramter region, shown by the dark regions of Fig. 5
for a pair of Bernoulli units. From numerical calculations, we
observe that this region shrinks to zero when p and q increase,
and we later show that zero-lag synchronization is not possible
if τ1 and τ2 are large with a small difference.

These results are in agreement with [36,45] where a pair
with multiple feedback and multiple couplings with different
delay times was analyzed. The time delays which lead to
zero-lag synchronization follow [36], Eq. (29)],

∑Ms

i=1 li Ndi
+∑Mm

j=1 mj Ncj
= 0, where Ndi

are the delay times of the Ms

different self-feedbacks, Ncj
are the delay times of the Mm

different couplings, and li ,mj are whole numbers with a
restricted set of possible values which are specific for each
system.

Note, however, that Fig. 5 holds for any network with
eigenvalues γk . For example, if τ1 and τ2 belong to the mutual
couplings of a triangle without self-feedback, we have γ0 = 1
and γ1,2 = −1/2. Hence, the point in region I of Fig. 5(a)
is mapped to β1 → −β1/2 and β2 → −β2/2. This means
that the triangle can synchronize for any ratio p,q since the
perturbation modes are located in the interior square, which
is always stable. This result is due to Gershgorin’s circle
theorem (15) and the conclusion found earlier in this section.
Symmetries rule out synchronization for bipartite networks,
only.

Up to now, we have neglected the local term η0 α zτ2−1 in
Eq. (42). We show that the symmetries still hold in the limit
τ2 → ∞, τ1 → ∞, τ2/τ1 = p/q. The stability of the SM is
determined by the roots of

zτ2 = η0 α zτ2−1 + β1 zτ2−τ1 + β2. (49)

The border to synchronization is necessarily given by |z| = 1,
where |z| is the maximum of all roots zr . With z = ei φ , we
obtain

1 = η0 α e−i φ + β1 e−i φ τ2 q/p + β2 e−i φ τ2 . (50)

In the limit of τ2 → ∞, we use the fact that the phases φ of
the roots are uniformly distributed in [0,2π ] [42,43]. Hence,
there exists one root which is close to φ = nπ

p

τ2
= nπ

q

τ1
with

some integer n. Following this root in the limit τ2 → ∞, we
obtain

1 = η0 α + β1 e−i nπ q + β2 e−i n π p. (51)

Now the border to chaos

1 = η0 α + (η1 + σ1)α + (η2 + σ2)α (52)

FIG. 6. (Color online) Synchronization regime for zτ2 =
β0 zτ2−1 + β1 zτ2−τ1 + β2 and τ2/τ1 = 2 with β0 = 0.3. It is (a)
τ2 = 4, (b) τ2 = 8, (c) τ2 = 16, and (d) τ2 = 100. The symmetry
found for τ2/τ1 = 2 and β0 = 0 is restored for β0 > 0 and large
values of τi .

can be mapped to Eq. (51), depending on whether τ1 and τ2

belong to self-feedback or coupling delays. For example, if τ1

and τ2 belong to a coupling, Eq. (51) becomes

1 = σ0 α − σ1 α e−i nπ q − σ2 α e−i nπ p. (53)

If both p and q are odd, we choose e−i nπ = −1 and Eq. (52).
As synchronization regions calculated with the Schur-Cohn
theorem show, Eq. (51) is the border to synchronization.
Hence, synchronization is not possible. This shows that the
ratios τ2/τ1 = p/q for which synchronization is ruled out by
symmetry do not depend on the local term in the limit of large
delay times τi → ∞. In fact, the numerical simulations (Fig. 6)
show that the symmetries of the complete phase diagram are
the same as the ones proven before for η0 = 0, although the
phase diagram depends on the strength η0 of the local term.

We have shown that the symmetries of the stability
equation, Eq. (49), rule out some ratios of the delay times. In
fact, these results support self-consistent arguments for general
chaotic networks. These arguments are based on the fact that
the information of each trajectory of each unit has to mix
after multiples of time intervals τ in order to achieve zero-lag
synchronization [23].

Finally, we consider the question to which extent the
network is sensitive to detuning the delay times τ2 and τ1.
It turns out that synchronization is extremely sensitive to a
tiny detuning for large delay times. For simplicity, consider
the case η0 = 0, τ1 = τ , τ2 = τ + � with τ → ∞ where �

remains finite. τ1 belongs to a self-feedback, and τ2 belongs
to the coupling of a bipartite network, for example, a pair of
Bernoulli units. The boundary to chaos is determined by

1 � η1 α + σ2 α, (54)
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FIG. 7. (Color online) Cross-correlation for a bidirectionally
coupled Bernoulli pair with self-feedback delay time τ1 and coupling
delay time τ2 = 10000. � = τ2 − τ1. The slope α = 1.1.

and the stability of the synchronization manifold is given by
the polynomial for γ1 = −1

zτ = η1 α z−� − σ2 α. (55)

The stability is determined by the largest root zk = ei φ e/τ ,
which gives

e2 = |η1 α e−i φ � − σ2 α|2
= (η1 α cos φ � − σ2 α)2 + η2

1 α2 sin2 φ �

= η2
1 α2 + σ 2

2 α2 − 2 η1 σ2 α2 cos φ �. (56)

In the limit τ → ∞, the distribution of the phase φ of the
roots is uniform in [0,2π ], and hence we always find one
root with cos(φ �) ≈ −1, which according to (54) gives a
positive transverse Lyapunov exponent /τ . Thus, even when
the self-feedback delay differs from the coupling delay by a
single time step, τ2 = τ1 ± 1, a pair of Bernoulli units cannot
synchronize for τ2 → ∞. In fact, Fig. 7 shows that the cross-
correlation immediately decreases to zero when the delay times
are detuned.

C. Multiple delay times

Some of the results of the previous paragraphs can immedi-
ately be extended to a network with M delay times [36,45]. In
particular, we can rule out complete zero-lag synchronization
for some networks in the limit of large delay times.

First, if one delay time is much larger than all other ones, we
find the following result: If the network without the long delay
does not synchronize, this network cannot be synchronized by
adding the long delay.

Second, if for a pair of coupled units all delay times are
much larger than the time scales of the isolated units, then
synchronization is ruled out for specific ratios of the delay
times.

Note that we restrict our discussion to networks defined
in the previous section: To each delay time τl there exists
a coupling matrix Gl with constant row sum, and all ma-
trices Gl have identical eigenvectors with eigenvalues γk,l ;
k = 0, . . . ,N − 1; l = 1, . . . ,M . The stability of the SM is
determined by the polynomials

zτM =
M∑
l=0

βl z
τM−τl . (57)

1. Long delay time τM

First we consider a network where the largest delay time
τM is much larger than all other delays τl ; that is, we discuss
the limit τM → ∞ with finite τl , l �= M . Equation (57) can be
rewritten as

z =
M−1∑
l=0

βl z
1−τl + βM z1−τM . (58)

If this equation has a root |z| > 1 in the limit of τM →
∞, this root is obviously determined by the first term of
Eq. (58). Hence, if the mode k is unstable for the network
without long delay, the last term of Eq. (58) cannot stabilize
this perturbation. If, however, the largest root of Eq. (58)
approaches the unit circle for τM → ∞, the long delay has
an influence. We rewrite Eq. (57) as

zτM = βM

1 − ∑M−1
l=0 βl z−τl

. (59)

In the limit of τM → ∞, we make the ansatz z = e/τM ei φ ,
which gives

e = |βM |∣∣1 − ∑M−1
l=0 βl z−i φ τl

∣∣ . (60)

As before, the Lyapunov exponents of the k mode depend
only on the modulus of the coupling βM = (ηM + σM γk,M )α.
However, the maximal Lyapunov exponent is not given by
φ = 0. Only if all parameters βl are positive do we obtain the
boundary to stability as

|βM | = ∣∣1 −
M−1∑
l=0

βl

∣∣. (61)

In this case, all βl belong to self-feedbacks and only βM is a
coupling.

The stability of the SM is determined by negative or
complex eigenvalues γk,l . For this case, we find an interference
of different phases φτl in Eq. (60) resulting in a nonobvious
value φ0 for the maximal Lyapunov exponent λmax. For
example, for τ1 = 3 and τ2 = 300, we obtain the phase
diagram of Fig. 8. This means that a pair of units that is
chaotic (cross in Fig. 8) can be synchronized if τ1 belongs to a
coupling and τ2 to a coupling or a self-feedback. If, however,
τ1 belongs to a self-feedback, τ2 cannot synchronize this pair.
Note that the situation is different for networks with |γ1| < 1
(e.g., triangles).

2. Symmetry

Similar to the case of two delay times discussed before, the
symmetry of the polynomial Eq. (57) rules out synchronization
for a pair of units with specific ratios of the delay times τl .
This symmetry holds for β0 = 0 for general values of τl but
for β0 �= 0 only if all values of τl are large. For simplicity, we
discuss the case β0 = 0.

First, we consider the greatest common divisor τ of all delay
times τl ; that is, we define pl = τl/τ where the integers pl are
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FIG. 8. (Color online) Synchronization area of a system with two
time delays τ1 = 3, τ2 = 300 and β0 = 0.2. The red lines mark the
lines 1 − β0 = |β1| + |β2|. The black crosses exemplify a pair of
units which is chaotic and can synchronize if τ1 belongs to a coupling
and τ2 to a coupling or a self-feedback but not if τ1 belongs to a
self-feedback.

relatively prime. Second, we substitute w = zτ in Eq. (57) and
obtain

wpM =
M∑
l=0

βk,l w
pM−pl . (62)

If a root zr of Eq. (57) lies inside (outside) the unit circle, the
root wt of Eq. (62) lies inside (outside) as well. Hence, the
stability of the perturbation k can be discussed using Eq. (62).

The system is chaotic; Eq. (62) has at least one root |zr | > 1
for γ0 = 1, that is, for

wpM =
M∑
l=0

(ηl + σl)α wpM−pl . (63)

If we restrict our discussion to a pair of units where each
τl either belongs to a self-feedback βl = ηl α or a coupling
βl = −σl α, we can map the stability of the SM to Eq. (63)
for specific values of pl . We find the following result:
Synchronization is ruled out if pl is odd for a coupling and
if pl is even for a self-feedback. These results have been
previously seen [36,45]. If synchronization is not ruled out
by symmetry, the distinct synchronization area depends on the
couplings parameters of the network as well as on the slope of
the Bernoulli map.

IV. COMPARISON WITH OTHER SYSTEMS

The analytic results of the previous section were obtained
for networks of Bernoulli units. For this case, the linear
equations describing the stability of the SM have constant
coefficients. This fact allows a stability analysis with polyno-
mials of degree τM , the largest delay time.

For networks of general nonlinear units, however, the
stability equations have time-dependent coefficients generated
by the chaotic trajectory of the SM. For example, for general
coupled map lattices, the stability of the SM is determined by

Eq. (4), where the time-dependent coefficients are given by
the dynamics on the SM, Eq. (2). To our knowledge, these
equations cannot be solved analytically. Hence, we compare
our analytic calculations of Sec. II with numerical simulations
of the skewed tent map

f : [0,1] → [0,1] f (x) =
{

x
a

if x � a,
1−x
1−a

if x > a,
(64)

with 0 < a < 1. We choose a = 0.86, which results in the
same Lyapunov exponent for an isolated unit as the one of the
Bernoulli map

f : [0,1] → [0,1], f (x) =
(

3

2
x

)
mod 1. (65)

Coupled map lattices are special dynamical systems. Thus, it
will be interesting to compare the analytic results of Sec. II
with systems of nonlinear differential equations. In particular,
we consider the Lang-Kobayashi (LK) equations for coupled
semiconductor lasers [23,46]. In some cases, we even compare
our results with experiments on chaotic semiconductor lasers.

For networks of differential equations, the mathematical
structure corresponding to Eq. (1) is defined by

�̇xi(t) = �F [�xi(t)] +
M∑
l=1

ηl
�H [�xl(t − τl)]

+
M∑
l=1

N∑
j=1

σl Gl,ij
�H [�xj(t − τl)]. (66)

Now �x(t) is a multidimensional vector. For example, for the
LK equations �x(t) contains the real and imaginary parts of the
envelope of the electric field and the population inversion of
the charge carriers. Details are given in the Appendix A. The
dynamics of the SM is given by

�̇s(t) = �F [�s(t)] +
M∑
l=1

(ηl + σl) �H [�s(t − τl)]. (67)

The stability of the SM is described by linear equations for
each mode k with eigenvalues γk,l of the coupling matrix Gl .
The equations corresponding to Eq. (4) are

�̇ξk(t) = DF [�s(t)]�ξk(t) +
M∑
l=1

(ηl + σl γk,l)DH

×[�s(t − τl)]�ξk(t − τl) (68)

DF and DH are the Jacobian matrices of �F and �H respectively
evaluated at the SM. The MSF for the LK equations is defined
in the Appendix A. In the following paragraphs, we consider
networks with a single delay time, M = 1, and with double
delays, M = 2.

A. Networks with a single delay time

In the previous section, we obtained the analytic result
that the eigenvalue gap of the coupling matrix determines
the stability of the SM in the limit of large delay times τ ,
which will be realized in this section by τ = 100 ns for the LK
equations and τ = 100 for the tent map and the Bernoulli map.
The relation |γ1| < exp(−λmax τ ) of Eq. (36) is the condition
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FIG. 9. Maximal Lyapunov exponents of the synchronization
manifold for a network of (a) lasers modeled by LK equations and
(b) tent maps (dot-dashed line) and Bernoulli maps (solid line).

for a stable SM; it relates the maximal Lyapunov exponent λmax

of the SM to the second largest modulus of the eigenvalues of
the coupling matrix G.

As a consequence of Eq. (36), a pair of units without
self-feedback cannot be synchronized, since γ1 = −1. This
result agrees with experiments on semiconductor lasers [47].
Two lasers coupled by their mutual laser beams cannot be
synchronized with zero time lag; only high correlations with a
time shift of τ have been observed.

With self-feedback, however, the situation is different.
Equations (26) and (31) show that a pair of units can be
synchronized if the local Lyapunov exponent is negative.
Again, this result agrees with experiments on semiconductor
lasers where the self-feedback is realized by external mirrors
[48–53].

Thus, qualitatively, the relation Eq. (36) is in agreement
with experiments on lasers. Unfortunately, up to now, exper-
iments on larger networks of coupled lasers are not reported.
Hence, the quantitative comparison with lasers has to rely on
numerical simulations of the LK equations.

Figure 9 shows the numerically calculated maximal Lya-
punov exponent λmax as a function of the coupling parameter
σ for a network of lasers and as a function of the coupling
parameter ε for a network of tent maps and Bernoulli maps.
Self-feedback is suppressed (η = 0). The parameters for the
LK equations are defined in the Appendix A.

For a triangle with bidirectional couplings, it is γ1 =
− 1

2 . Equation (36) predicts a transition to synchronization
for λmax τ = − ln( 1

2 ) ≈ 0.69, the horizontal dashed line in
Fig. 10(a). The numerical results of Fig. 10 give a critical
coupling εc ≈ 0.9 for the tent maps [vertical dashed line in
Fig. 10(b)] and two critical couplings σc,1 ≈ 0.45 ns−1 and
σc,2 ≈ 45 ns−1 for the three lasers [vertical dashed line in

FIG. 10. Enlarged view of Fig. 9, the critical coupling strengths
(dashed lines) according to Eq. (36), for the synchronization of
a triangle of (a) lasers modeled by LK equations and (b) tent
maps (dot-dashed line) and Bernoulli maps (solid line) without
self-feedback.

FIG. 11. Critical coupling strengths (dashed lines) for synchro-
nization measured in numerical simulations of a triangle of (a) lasers
modeled by LK equations and (b) tent maps (dot-dashed line) and
Bernoulli maps (solid line) without self-feedback.

Fig. 10(a)]. Figure 11 shows the cross-correlations obtained
from numerical simulations of the corresponding triangle. We
find the measured critical couplings of the tent maps and the
LK equations to be in good agreement with the predictions
of Eq. (36).

A more challenging test of the condition Eq. (36) is a
network with directed couplings. In this case, the eigenvalue
γ1 is a complex number. For example, for the square with one
diagonal of Fig. 1, one can add an additional coupling strength
ρ for the diagonal and obtain the eigenvalue gap of Fig. 12.
The largest gap is obtained for ρ = 5

8 with γ1 = −1±i
√

11
4 .

Combining this result with Eq. (36) and λmax(σ ) [Fig. 9(a)],
we obtain the phase diagram of Fig. 13 for the corresponding
laser network. Figure 13 also shows parameters for which
complete zero-lag synchronization is achieved in numerical
simulations of the complete laser network. We define complete
zero-lag synchronization between the lasers for isochronal
cross-correlations larger than 0.99 in between the power
dropouts of the low-frequency fluctuations, which happen on
a time scale of the order of magnitude of 10 τ . While it makes
sense to speak of complete synchronization for such values of
the cross-correlations, the maximal Lyapunov exponent is still
slightly positive for correlations around 0.99. Hence, some of
the shown points of complete synchronization in Fig. 13 lie
outside of the predicted stability border, which corresponds to a
maximal Lyapunov exponent of exactly zero. The quantitative
agreement between the relation Eq. (36) and the phase diagram
Fig. 13 of complete zero-lag synchronization is remarkable.

FIG. 12. Eigenvalue |γ1|(ρ) for the square with directed couplings
and one diagonal with coupling strength ρ. The dashed line indicates
the position of the largest eigenvalue gap.
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FIG. 13. Phase diagram for a square of lasers with directed
couplings and one diagonal with coupling strength ρ. The crosses
denote parameters for which complete zero-lag synchronization is
achieved in numerical simulations (only synchronization for chaotic
dynamics on the SM is shown), the dots indicate the prediction of the
stability border for synchronization, and the dashed line shows the
position of the largest eigenvalue gap.

B. Networks with two delay times

A pair of units without self-feedback cannot be synchro-
nized if its coupling has a single delay time. In the previous
section, however, we have shown in agreement with [36,45]
that zero-lag synchronization is possible if the coupling
contains two delay times τ1 and τ2. Only if the ratio τ2

τ1
is a ratio

of odd relatively prime integers, τ2
τ1

= p

q
, is synchronization

excluded. The parameter region of synchronization is largest
for small values of p and q.

This result is in agreement with recent experiments on
semiconductor lasers [54]. For τ2

τ1
= 2

1 , complete synchro-
nization was observed. Cross-correlations were large for τ2

τ1
∈

{ 5
4 , 4

3 , 3
2 , 5

2 } and low for τ2
τ1

∈ { 1
1 , 5

3 , 3
1 }.

The analytic result was based on the symmetry of the phase
diagrams, Figs. 5 and 6. Here we show that these symmetries
can be observed for the MSF of laser networks and tent maps
as well. With two delays, Eqs. (67) and (68) reduce to

�̇s(t) = �F [�s(t)] + σ1 �H [�s(t − τ1)] + σ2 �H [�s(t − τ2)], (69)

�̇ξk(t) = DF [�s(t)]�ξk(t)

+σ1 γk,1 DH [�s(t − τ1)]�ξk(t − τ1)

+ σ2 γk,2 DH [�s(t − τ2)]�ξk(t − τ2). (70)

Because of the invasive nature of the coupling, we obtain a
different trajectory �s(t) on the SM for each pair of coupling
strengths (σ1,σ2), which in each case gives a different linear
stability equation. In order to compare these with the previous
section, we fix σ1 and σ2, vary γk,1 and γk,2, and calculate the
maximal Lyapunov exponent of the linear equation (70). In
this interpretation of β1 = σ1 γk,1 and β2 = σ2 γk,2, the results
are universal in view of the fact that they make a statement
about the stability of all modes of every possible network with
real γk,1 and γk,2 for the chosen coupling strengths (σ1,σ2).
The point γ0,1 = γ0,2 = 1 is shared among all networks; it
determines the stability of the dynamics on the SM.

FIG. 14. Region of stability (dark gray regime) for a pair of
(a) lasers modeled by the LK equations and (b) tent maps in
comparison with a pair of Bernoulli maps (light gray regime) with
two coupling delay times, τ1 and τ2 and τ2

τ1
= 2

1 . The dashed line
indicates reflection of the top right quadrant’s stability border into the
other quadrants.

Figure 14 shows the results of the numerical simulations
of Eqs. (69) and (70) with τ1 = 20 ns, τ2 = 40 ns, and σ1 =
σ2 = 45 ns−1 for the LK equations and τ1 = 200, τ2 = 400,
ε = 0.9, and κ = 0.5 for the tent map and the Bernoulli map.
As shown in the previous section, the region of stability
should have reflection symmetry at the horizontal axis. The
stability region for laser networks [Fig. 14(a)] is in agreement
with this symmetry. The corresponding stability regions of
the networks of tent maps and Bernoulli maps [Fig. 14(b)],
coupled with two delay times, show this reflection symmetry as
well.

In the previous section, we showed that synchronization is
sensitive to detuning of the ratio of the delay times; see Fig. 7.
Figure 15 shows that synchronization of two lasers is destroyed
if τ1 and τ2 differ by about 10 ps, which corresponds to the
coherence length of the chaotic lasers. The coupling has a fixed
delay time of τ2 = 100 ns and a strength of σ2 = 20 ns−1. The
self-feedbacks have a delay time of τ1 = τ2 + � and a strength
of σ2 = 30 ns−1. Thus, in agreement with the analytic results
for Bernoulli networks, lasers are sensitive to detuning of the
delay times as well [49,50,55]. Of course, the detailed structure
of the cross-correlations of Fig. 15 depends on the details
of the laser dynamics, which cannot be predicted by iterated
maps.

FIG. 15. Sensitivity of cross-correlations to detuning of the delay
times τ2 and τ1 = τ2 + � for a pair of LK equations.
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V. SUMMARY

Chaos synchronization of networks of identical nonlinear
units with time-delayed couplings is investigated. Although
the units are coupled with long delay times, they synchronize
to a common chaotic trajectory without time shift. For rather
general networks with multiple delay times, the method of the
MSF allows us to relate the stability of the SM to the eigenvalue
gaps of the coupling matrices.

For networks of iterated Bernoulli maps, the stability of
the SM is calculated analytically in the limit of large delay
times. The theory of polynomials allows us to calculate
phase diagrams of chaos synchronization and to derive their
symmetries. Finally, these analytic results are compared with
numerical simulations of iterated tent maps and rate equations
for semiconductor lasers (LK equations). Some results can
even be compared with recent experiments on semiconductor
lasers.

For a single delay time, Eq. (36) is the most important result.
It relates the eigenvalue gap of the coupling matrix of the whole
network to the Lyapunov exponent of the trajectory of a single
unit with feedback. It is exact for Bernoulli networks with a
long delay time, but it compares well with our numerical results
for networks of tent maps and LK units, too. Even the phase di-
agram of a directed network with complex eigenvalues, which
has been calculated for lasers, is in good agreement with this
fundamental equation. For a pair of units without self-feedback
and for any bipartite network, the eigenvalue gap is zero, and
hence these networks cannot synchronize completely in the
limit of a large delay time. Only cluster synchronization is
possible.

For networks with several delay times, we could not find
a simple relation for the stability of the SM. However, the
theory of polynomials showed some symmetries of the phase
diagrams for Bernoulli networks. Our numerical results for
tent maps and LK equations showed these symmetries, as
well. For a pair of units coupled by multiple delay times, these
symmetries have interesting consequences. Only for special
ratios of the delay times is synchronization possible in the
limit of long delay times, in agreement with self-consistent
arguments related to mixing of information [23]. Again, this
analytic result is in agreement with numerical simulations of
the LK equations and even with experiments on semiconductor
lasers [54].

These results show that networks of iterated Bernoulli units
have universal properties. On the one hand, we have analytic
tools to calculate the stability of chaos synchronization since
the linearized equations do not contain the chaotic trajectory.
On the other hand, we have either numerical simulations
of the linearized difference/differential equations containing
the chaotic trajectory as input or we have direct simulations
of the complete network. We have found that there is good
agreement between these different systems, sometimes even
on a quantitative level.
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TABLE I. Used constants in the simulation of the LK equations.
Values are taken from [56].

Parameter Symbol Value

Linewidth enhancement factor α 5
Differential optical gain GN 2.142 × 104 s−1

Laser frequency ω0
2π c

635 nm
Pump current relative to Jth p 1.02
Threshold pump current of solitary laser Jth γ Nsol

Carrier decay rate γ 0.909 × 109 s−1

Carrier number of solitary laser Nsol 1.707 × 108

Cavity decay rate � 0.357 × 1012 s−1

APPENDIX A:THE LANG-KOBAYASHI EQUATIONS AND
THEIR MASTER STABILITY EQUATIONS

The LK equations in their complex form are

Ė i(t) = 1 + i α

2
GN ni(t)E i(t) + σ1 E i(t − τ1)e−i ω0 τ1

+ σ2

N∑
j=1

Gij Ej(t − τ2)e−i ω0 τ2 , (A1)

ṅi(t)= (p − 1)Jth−γ ni(t)−[� + GN ni(t)]|E i(t)|2, (A2)

where E i(t) is the envelope of the complex electric field and
ni(t) is the renormalized population inversion of the charge
carriers of laser i. The constants used are listed in Table I.

For the numerical simulation of the equations, we make
the ansatz

E i(t) = Ri(t) + i I i(t) (A3)

and thus obtain the real-valued differential equation system

Ṙi(t)= 1

2
GN ni(t)[Ri(t)−αI i(t)] + σ1Ri(t − τ1) cos(ω τ1)

+σ1 I i(t − τ1) sin(ω τ1) + σ2

N∑
j=1

Gij Rj(t − τ2)

× cos(ωτ2) + σ2

N∑
j=1

GijIj(t − τ2) sin(ωτ2), (A4)

İ i(t)= 1

2
GNni(t)[I i(t) + αRi(t)]−σ1 Ri(t − τ1)

× sin(ωτ1) + σ1 I i(t − τ1) cos(ω τ1) − σ2

N∑
j=1

Gij Rj

×(t − τ2) sin(ω τ2) + σ2

N∑
j=1

Gij Ij(t − τ2) cos(ω τ2),

(A5)
ṅi(t) = (p − 1)Jth − γ ni(t)

−[� + GN ni(t)]{[Ri(t)]2 + [I i(t)]2}. (A6)

We integrate this differential equation system numerically
using Heun’s method [57], which is a numerical integration
method of the class of Runge-Kutta methods that is particularly
suitable for delay-differential equation systems. The used
step size for integration is �t = 0.1 ps. In order to emulate
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the measurement of cross-correlations with a gigahertz os-
cilloscope in an experimental setup, on the one hand, we
define cross-correlations between two simulated lasers as the
cross-correlations between the absolute values of their electric
fields. On the other hand, we use a sampling time of 1 ns per
data point during which the absolute values of the electric field
are averaged. For the precision measurement of the sensitivity
of cross-correlations to detuning the delay times in Fig. 15,
we use a sampling time of 10 ps. Desynchronization of the
simulated lasers occurs during the power dropouts of the low-
frequency fluctuations, which happen on a time scale of the
order of magnitude of 10 τ . In order to avoid measuring cross-
correlations during them, the cross-correlations are calculated
ten times from comparatively short time windows of the length
of 5 τ , and then the five largest cross-correlations are averaged.

The master stability equations of the LK equations are

δ̇R(t)= 1
2GNn(t)[δR(t) − αδI (t)]+ 1

2GN δn(t)[R(t) − α I(t)]

+σ1 δR(t − τ1) cos(ω τ1) + σ1 δI (t − τ1) sin(ω τ1)

+σ2 γk δR(t−τ2) cos(ωτ2)+σ2 γk δI (t − τ2) sin(ω τ2),

(A7)

δ̇I (t)= 1
2 GN n(t)[δI (t)+αδR(t)] + 1

2 GN δn(t)[I(t) + αR(t)]

−σ1 δR(t − τ1) sin(ω τ1) + σ1 δI (t − τ1) cos(ω τ1)

−σ2γkδR(t − τ2) sin(ωτ2) + σ2γkδI (t − τ2) cos(ωτ2),

(A8)

δ̇n(t) = −(γ + GN{[R(t)]2 + [I(t)]2})δn(t)

−2[� + GN n(t)][R(t)δR(t) + I(t)δI (t)], (A9)

which are integrated numerically using Heun’s method, as
well. We calculate the maximal Lyapunov exponent using
Farmer’s method [41]. For correspondence to our definition
of the cross-correlation above, we define the deviation of
the absolute value of the electric field as the metric of the
separation function. This is legitimate as the LK equations
form a strongly coupled differential equation system.

APPENDIX B:THE SCHUR-COHN THEOREM

In order to find the synchronization areas in parameter
space, the Schur-Cohn theorem is a possible method; see
[39].The synchronization area for a network of iterated one-
dimensional maps with constant slope is derived by finding the
parameters for which the roots of the characteristic polynomial
lie inside the unit circle.

For a polynomial with P (x) = ∑n
i=0 ai xi , the Schur-Cohn

theorem defines determinants

δν+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an 0 . . . 0 a0 a1 . . . aν

an−1 an . . . 0 0 a0 . . . aν−1

. . . . . . . . . . . . . . . . . . . . . . . .

an−ν an−ν+1 . . . an 0 0 . . . a0

a0 0 . . . 0 an an−1 . . . an−ν

a1 a0 . . . 0 0 an . . . an−ν+1

. . . . . . . . . . . . . . . . . . . . . . . .

aν aν−1 . . . a0 0 0 . . . an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(B1)

with ν = 0,1, . . . ,n − 1.
Due to the Schur-Cohn theorem, it is |x| < 1 when all

determinants are greater than 0.
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