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Synchronization and stimulated emission in an array of mechanical phase oscillators
on a resonant support
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Inspired by recent laboratory observations, we propose a mechanical model for eccentrically weighted motors
coupled through a vibrating plate. The equations are found to generalize those of Kuramoto to frequency-
and position-dependent coupling. The behavior of the model, as determined analytically for no disorder and
numerically for systems with and without quenched disorder, shows the key features observed in the laboratory,
including hysteresis, bistability, and a spectral gap. The model exhibits stimulated emission and discontinuous
lasinglike transitions.
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I. INTRODUCTION

In recent years there has been considerable interest in
dynamic synchronization in which sets of distinct coupled
phase oscillators synchronize to each other. The phenomenon
occurs in disparate circumstances, including firefly flashes [1],
bridges with crowds of pedestrians [2], and chemical oscilla-
tions [3–5]. It occurs between lasers [6,7], thermoacoustic en-
gines [8–10], Josephson junctions [11–13], metronomes [14],
and pendulum clocks [15]. The chief mathematical model
for studying the synchronization of large numbers of auto-
oscillators is that of Kuramoto and its generalizations [3,16].
After arguing that the state of a limit-cycle oscillator is
well represented in terms of its phase ξ and that the phase
of each oscillator is weakly coupled to the phases of the
others, Kuramoto [16] derived a set of N coupled Adler [17]
equations:

dξn

dt
= ωn + 1

N

N∑
m=1

A sin(ξm − ξn). (1)

Kuramoto showed that this model, in the limit N → ∞,
exhibits a second-order phase transition in which a macro-
scopic number of oscillators synchronize to each other if A

is sufficiently large compared to the deviations among the
many ωn.

A more general model proposed by Winfree [18] predates
Kuramoto’s work. Kuramoto’s model has the advantage that
it admits exact solutions for its order parameter and other
properties, providing a framework for generalizations. The Ku-
ramoto model has been extended to include time delays [19],
randomness in the couplings [20,21], and a spatial dependence
of the couplings [21–23]. Recent monographs on synchroniza-
tion include those of Pikovsky et al. [24] and Balanov et al. [25]
and reviews of the Kuramoto model include those of Acebrón
et al. [26] and Strogatz [27].

The synchronization transition in Josephson-junction ar-
rays has been studied in the context of the Kuramoto
model [13]. It has also been shown to have characteristics of
a lasing transition [11]. Similar synchronization and laserlike
behavior were observed in a system of piezoelectric auto-
oscillators [28]. This raises the questions of what differentiates
lasing from the synchronization exhibited in the Kuramoto

model and how might the Kuramoto model be extended to
obtain a lasing transition.

Lasing requires that the coupling be mediated by waves.
In a laser, atomic oscillators are coupled by light waves. The
piezoelectric auto-oscillators reported by Weaver et al. [28]
were coupled through ultrasound. Josephson junctions can
couple their oscillations through their mutual microwave
radiation field [11]. In Ref. [29], for Huygen’s clocks [15],
for metronomes [14], and for the Millennium Bridge [2],
coupling is through structural vibrations. Such systems will
generally have couplings that depend on frequency and
oscillator position. The coupling between oscillators in these
systems may be neither uniform, as in the Kuramoto model,
nor random, as in the model of Daido [20], but instead exhibit
a complex spatial dependence related to the modes of the
radiation field.

Systems with wave-mediated interactions often have
frequency-dependent coupling. Yet synchronization among
oscillators with frequency-dependent coupling is thus far
poorly explored [30]. It is of interest in the field of synchro-
nization for that reason, but also because such systems can
readily be realized in the laboratory, their microphysics can be
readily modeled and they are relevant to lasers.

The sine-qua-non of a laser is stimulated emission, in
which a wave incident upon an oscillator is reemitted with
unchanged phase and increased amplitude. Stimulated emis-
sion is a classical phenomenon [28,31–38] and is describable
without quantum mechanics. A classical oscillator will exhibit
stimulated emission or stimulated absorption, depending on
the phase of its oscillation relative to that of an incident field.
Thus an incoherent array of classical oscillators will show
no net stimulated emission. If, however, all or most of the
oscillators can be induced to have the same frequency and the
correct phases, the set will exhibit stimulated emission. Only
to the extent that oscillators and incident fields have the same
frequency and the correct phase difference will the energy in
the oscillators be transferred efficiently to the wave field and
the net emitted wave be coherent. As described above, dynamic
synchronization suggests that classical phase oscillators can be
entrained to their mutual radiation field; they can synchronize
to a common frequency with fixed phase differences. If these
phase differences are such that each oscillator does work
at a rate greater than it does without an incident field, i.e.,
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if there is stimulated emission, the system will be a laser
analog [11,28,31].

Classical laser designs have been proposed, but little has
been realized in the laboratory. The designs of Borenstein
and Lamb [31,32] and Kobelev et al. [34] are composed
of incoherently excited Duffing oscillators. The oscillators
emit spontaneously in a trivial fashion. Theoretical arguments
indicate that, when they go into resonance with each other
with the right phase relation as enforced by interactions with
their mutual radiation field, they also emit by stimulated
emission. An acoustic version has been realized by Bredikhin
et al. [35], who present theory and measurements on a system
of impulsively excited nonlinear bubbles. While ringing
down, the bubbles sometimes synchronize by means of their
nonlinearity and their mutual radiation field. Zavtrak and
co-workers [36,37] suggested that bubbles or other particles
in a fluid could be pumped by an applied coherent harmonic
electric or acoustic field. They suggest that the particles would
bunch spatially under the influence of radiation forces, leading
to a coherent reemission of sound in a direction imposed by
their radiation field and the modes of their cavity. This would
be an acoustic version of a free-electron laser, or gyrotron [39].

We recently presented [29] a system of eccentrically
weighted dc motors, the kind used as cell phone vibrators,
mounted on a cantilevered plate. The laboratory system exhib-
ited several intriguing behaviors, including synchronization,
hysteresis, spectral gaps, and sudden changes in sound power
output as a function of governing parameters. Here we intend
to propose a model and theory for that and similar systems.

The laboratory system in Ref. [29] constitutes an additional
acoustic analog for a laser, but is simpler than the bubbles of
Zavtrak and co-workers [36,37] and Bredikhin et al. [35] and
simpler than the piezoelectric limit-cycle auto-oscillators of
Weaver and co-workers [28,38]. Furthermore, it is readily
realized in the laboratory. The mechanical principles are
straightforward: The eccentrically weighted dc motors apply
vibrating forces to their support that depend on the speeds of
the motors and on their first moments of inertia. These forces
generate mechanical waves in the support. Conversely, motion

of the support applies an effective torque on the motors that
affects their speeds. Thus the motions of the motors and the
support are coupled.

In Sec. II, governing equations similar to Eq. (1) are derived
for the motors. Section III then presents analytic solutions
of the model for the case of chief interest in which the
support is dominated by isolated resonances and for the special
analytically tractable case in which all motors have identical
natural speeds. The analytic solutions show that an array of
such motors on a resonant support can synchronize in a manner
similar to, but more complex than, that of Kuramoto systems.
Furthermore, such systems exhibit stimulated emission and
superradiance, like lasers. Section IV presents numerical
solutions for populations with and without disorder among
the natural motor speeds and compares the results to the
analytic solutions of Sec. III and to our previous laboratory
observations.

II. MECHANICAL MODEL

Figure 1 shows one of the eccentrically weighted dc motors
that we use in our laboratory [29] and describes an idealized
mechanical model for the dynamics of the ith such motor in
terms of its orientation θi(t) and the displacement ui(t) of the
support under it. A force fi(t) acts upward on the motor and
downward on the support. The rotor is taken to have moment
of inertia I around its axis, first moment of mass λ, and total
mass μ. The rest of the motor has mass m. A torque � is
applied to the rotor by the motor, controlled by the current
supplied to the motor. We neglect horizontal forces under the
assumption that the support is stiff against horizontal motions.
The motors are of the class called rotators and are simpler
than limit-cycle oscillators [24,40]. The governing equations
include torque balance,

I
d2θi

dt2
= �i − α

dθi

dt
+ λ sin θi

d2ui

dt2
(2)

(where we have modeled the motor’s drag with a viscous

FIG. 1. (Color online) Photograph of a motor and an illustration. The mechanical model describes an eccentrically weighted dc motor on
a compliant foundation. (The foundation, a thin aluminum plate, is not shown in the photograph.) The motor has total mass m + μ. It has a
rotor of mass μ, first moment of inertia λ, and second moment of inertia I . The rotor is subject to an applied torque �i and a viscous drag (not
illustrated).
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coefficient α), and also force balance

fi = (m + μ)
d2ui

dt2
+ λ

d2 cos θi

dt2
. (3)

For linear systems such as the support, the displacements ui

at one location and time can be expressed as a convolution of
a Green function with the forces fj applied at other points and
times. Using this formalism, we close the system of Eqs. (2)
and (3) by writing

ui = −
∑

j

Gij ⊗ fj , (4)

where ⊗ represents a temporal convolution and Gij is the
Green function for the support. The minus sign arises from
the oppositely defined direction for f and v. (Using this
notation, we interpret Filatrella et al. [41] as closing their
system of equations by relating ui and fj through a linear
ordinary differential equation instead of a Green function.)
Furthermore, we introduce an ancillary Green function gij ,
defined most readily in abstract terms and direct matrix
notation:

g =
(

G−1 + (m + μ) I
d2

dt2

)−1

. (5)

g may be interpreted as Green’s function for the structure with
added point masses m + μ at the positions of all the motors.
Here I is the identity matrix. The present interest is in resonant
supports, for which g will be best represented in its modal
expansion, as summarized in the Appendix.

We use g to combine Eqs. (2) and (3) and eliminate
the variables f and v, obtaining a set of integrodifferential
equations for the θ :

I
d2θi

dt2
= �i − α

dθi

dt
+ λ sin θi

×
∑

j

d2

dt2

[
gi j ⊗

(
−λ

d2 cos θj

dt2

)]
. (6)

In the absence of coupling (e.g., λ = 0) each motor achieves a
steady state at θi = ωit + θi0 with a natural speed ωi = �i/α

and an arbitrary phase θi0. We imagine that weak coupling
modifies this only slightly and so neglect the second time
derivative on the left-hand side to simplify the governing
equation:

dθi

dt
= ωi − λ2

α
sin θi

∑
j

d2

dt2

[
gij ⊗

(
d2 cos θj

dt2

)]
. (7)

It is for this integrodifferential equation that we will be seeking
analytic and numeric solutions.

III. ANALYTIC SOLUTIONS

Without loss of generality we set θi(t) = �t + φi(t) with
� to be determined:

dφi

dt
= ωi − � − λ2

α
sin(�t + φi)

×
∑

j

d2

dt2

(
gij ⊗ d2 cos(�t + φj )

dt2

)
. (8)

We now apply a series of approximations to derive an
expression that can be more easily interpreted. If the φ vary
slowly, as they will if every motor has a speed at or close
to �, then the effect of g can be approximated well in the
frequency domain in terms of a transfer function |g̃ij (�)| and
a phase delay γij (�), as in Eq. (A5). Similarly, each pair of
time derivatives is well approximated by a factor of −�2:

dφi

dt
= ωi − � − λ2�4

α
sin(�t + φi)

×
∑

j

|g̃ij (�)| cos[�t + φj − γij (�)]. (9)

Using a trigonometric identity, we combine the sine and cosine
terms on the right-hand side, leading to a rapidly varying part
(at frequency 2�) and a slowly varying part. We eliminate the
rapidly varying part by averaging over one cycle, giving

dφi

dt
= ωi − � − λ2�4

2α

×
∑

j

|g̃ij (�)| sin[φi − φj + γij (�)]. (10)

Each of the diagonal elements of the Green’s function of a
dissipative structure must have a positive imaginary part [42],
i.e., sin γii � 0, so we restrict our attention to 0 � γii � π .

The Kuramoto equations are recovered if the i, j , and �

dependence in g is neglected and if the γij are zero. Sakaguchi
and Kuramoto [43] have considered the effect of a constant,
uniform phase delay γij ≡ γ . To our knowledge, no one has
examined � dependence. In the case of a highly resonant
support, η � 1, � dependence can be strong.

Synchronization in the above system is complex. The
parameter space is large. Simplification and insight can be
obtained by analyzing special cases. One is to allow all motors
to be identical, ωi = ω for all i. Furthermore, we require all
motors to be coupled identically, independently of i and j , a
condition that applies to the experiments [29] but not generally.
Thus gij (�) = g(�), γij (�) = γ (�), and we have

dφi

dt
= ω − � − λ2�4

2α

∑
j

|g(�)| sin[φi − φj + γ (�)].

(11)

The synchronized state is now easy to identify: It corre-
sponds to φi = 0 for all i and requires

� = ω − Nλ2�4

2α
|g̃| sin γ

= ω − Nλ2�4

2α
Im[g̃(�)]. (12)

The state is such that all motors have identical phases and run at
speed � diminished from their natural speed ω by an amount
that scales with N and with the positive quantity |g| sin γ .
One can further show that the acoustic power output of the N

motors is the difference between the rate of work done by the
torques � and the loss in the viscous mechanisms, i.e.,

N (�� − α�2) = N�α(ω − �) (13)

= 1
2N2λ2�5|g| sin γ. (14)
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Inasmuch as this scales with the square of the number of
motors, the system is exhibiting stimulated emission and super
radiance. By linearizing Eq. (11) around the synchronized state
φi = 0 for all i, it is not hard to show that the synchronized
state is stable against all infinitesimal perturbations (except the
trivial marginally stable perturbation of a uniform shift of all φ)
if and only if the real part of the Green’s function is positive,
i.e., cos γ > 0.

Another solution to Eq. (11) is apparent, in which the θ are
distributed uniformly between 0 and 2π :

θi = ωt + 2πi

N
, (15)

for a suitable ordering of the θi . This state has N − 2 neutrally
stable linear perturbations. The two remaining perturbations
exhibit time dependence proportional to eνt with

ν = N
λ2ω4

4α
e±ıγ |g̃(γ )|. (16)

On the stiffness-controlled low-frequency side of a resonance,
where 0 < γ < π , these dispersed states are unstable. On the
mass-controlled high-frequency side of a resonance, the Green
function has a negative real part (i.e., π

2 < γ < π ), making the
modes exponentially stable.

Figure 2 plots the solution �(ω) to Eq. (12) for the case of
a single resonance [the sum over r in Eq. (A2) has one term].
We plot

� = ω − MrX�4

2
Im[g̃r (�)] (17)

= ω − X
ηrωr�

5

(2ηrωr�)2 + (
ω2

r − �2 + η2
r ω

2
r

)2 , (18)

where we have introduced a coupling strength parameter
X = Nλ2/αMr . The coupling strength is measured in units
of seconds per radian. The loss tangent η is defined in the
Appendix.

FIG. 2. Representative cases for �, the speed of the synchronized
state, as a function of the natural speeds ω of the motors, according
to Eq. (18). The bold lines are the solutions that we expect to be
stable because the imaginary part of g̃ is positive. The thin lines are
solutions for which the imaginary part of g̃ is negative and should
be unobservable in practice. The dotted line � = ω is provided for
reference. For all four curves, the resonant frequency ωr is 0.08 rad/s.
(a) Curves for two different couplings X and the same loss tangent
η of 0.06. (b) Curves for two different loss tangents η but identical
coupling X = 2 s/rad. The star, circle, and square in (a) are related
to Figs. 4 and 5 and are discussed in Sec. IV A.

FIG. 3. Solution to Eq. (12) for the case in which the Green
function g has two resonances. For the meaning of the line weights,
see Fig. 2. The resonances have identical coupling strengths X1 and
X2 of 2.0 s/rad and identical loss tangents η1 and η2 of 0.038, but
different resonant frequencies ω1 = 0.06 rad/s and ω2 = 0.09 rad/s.

For a single resonance, the stability criterion cos γ > 0
is satisfied only for � < ωr

√
1 + η2

r . Thus, by this theory
one expects to see no synchronization at speeds � on the
mass-controlled high-frequency side of a resonance, regardless
of the driving torques and the natural motor speeds ω. Solutions
to Eq. (18) that fail this criterion are distinguished in the
figure from those that satisfy it. The nearly flat regions for
the synchronized speed � in the vicinity of 0.075 rad/s
correspond to the speed of the synchronized state being almost
independent of torque. For very high driving torque, however,
the synchronized state loses its stability.

A plot for the more complex case of two resonances
is given in Fig. 3. Each resonance gives rise to a range
of natural speeds ω for which the synchronization speed
� is slightly less than a resonance frequency and nearly
independent of the natural speed. These ranges overlap for
the two resonances, leading to a regime—ω between 0.08 and
0.11 rad/s—in which the system can synchronize at either of
two speeds �. Furthermore, there is a range of � from 0.06 to
0.075 rad/s in which the system cannot oscillate. All of
these echo observations are reported in Ref. [29] and arise
in our numerics in the following section, even those involving
disorder.

IV. NUMERICAL SOLUTIONS

Practical systems, such as that discussed in Ref. [29], are
disordered in the sense that natural motor speeds vary among
the motors. Such a generalization does not readily lend itself to
the analysis of Sec. III. Nor does the preceding analysis shed
much light on the dynamics: How does the system approach
the stable synchronized state? Nor does it shed light on errors
that may have been introduced by the short time averaging
used to eliminate the terms in 2�. For all those reasons, we
now turn to numerical solutions.

Numerical solutions of Eq. (7) were examined for their
correspondence to the simple model discussed in Sec. III and
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our previous laboratory observations [29]. We rewrite Eq. (7)
using a modal expansion for the Green function:

dθi

dt
= ωi − 1

N
sin θi

∑
r,j

d2

dt2

(
Xrh

r ⊗ d2 cos θj

dt2

)
, (19)

where we take the ancillary Green function for each resonance
hr in the form

hr (τ ) = sin(ωrτ )
e−ηωr τ

ωr

. (20)

The resonances are labeled by r and factors of λ2, α, and
M have been absorbed into the coupling strengths Xr , as in
Sec. III.

Numerical solutions of Eq. (19) are of necessity approx-
imate. We employ a simple Euler tangent approximation
for the first time derivative and evaluate the convolution
by discrete integrations and the second time derivatives by
discrete differencing. We define our units such that a single
time step is 1 s. We choose motor speeds of about 0.1 rad/s,
meaning the motors advance their phases by about 0.1 rad each
time step. The scheme is prohibitively implicit if these second
derivatives are evaluated centrally; they are therefore evaluated
with a delay of one time step. While the resulting time series
will differ from exact solutions of the original equations, we
expect the qualitative behavior to be correct. All studies are
for N = 100.

In Sec. III, � was used to refer to the speed at which the
motors synchronized. Since that population of motors had no
disorder, the synchronized speed was identical to the average
speed. We will consider populations with disorder in this
section and we will redefine � as the average motor speed:

� = 1

N

∑
i

θ̇i . (21)

A. Approach to the steady state

We first evaluate how the system evolves from random
initial conditions. A qualitative steady state is typically
achieved after times of the order of 2000 s. Figures 4–6 show
the evolution of the speeds (averaged over 16 time steps) of 11
arbitrarily chosen motors. They also show the evolution of an
order parameter defined as

R = 1

N

∣∣∣∣∣
∑

i

eıθi

∣∣∣∣∣ . (22)

This order parameter, taken directly from Kuramoto’s treat-
ment, can be thought of as a vector sum of the motor phases.
If the motors are in phase, R will be close to 1; if they are
uniformly distributed between 0 and 2π , R will be close
to 0; and if the motors have random phases, R will exhibit
random fluctuations about a rms of N−1/2 = 0.1. The resonant
frequency ωr is the same among all three figures (0.08 rad/s)
and the loss tangent η is the same (0.06). The figures differ
only in their coupling strengths X and the presence or absence
of quenched disorder among the motors’ natural speeds.

In the simulation shown in Fig. 4, the motors settle at
their natural speed of 0.11 rad/s. According to Eq. (18) (and
indicated by the open circle in Fig. 2), there is a synchronized

FIG. 4. Order parameter R and discrepancy �i ≡ θ̇i − ω between
instantaneous motor speeds and the natural motor speed for 100
identical motors. The initial phases are distributed randomly. For
these plots, the natural speed of the motors ω is 0.11 rad/s. There is a
single resonance with frequency ωr of 0.08 rad/s, a loss tangent η of
0.06, and a coupling strength X of 2 s/rad. The inset shows how the
instantaneous speeds differ from the natural speed of 0.11 rad/s for
11 arbitrarily chosen motors. The final state corresponds to the star
in Fig. 2(a).

speed � of 0.075 rad/s. The motors do not choose that solution,
even when slight noise is artificially introduced. The motors
settle instead into a state, indicated in Fig. 2 by a star, in which
each motor is going at close to its natural speed. The order
parameter decreases exponentially, which agrees with the
prediction in Sec. III of exponential stability of the uniformly
distributed state. In other simulations, with different initial
conditions, we were able to obtain synchronized behavior with
mean speed � that matched the prediction of 0.075 rad/s. Thus
both the synchronized and the uniformly distributed states are
stable, as predicted.

At a greater coupling strength of X = 4 s/rad, as in Fig. 5,
the behavior is very different. After a transient, the motors
synchronize at a speed of � = 0.073 rad/s and an order

FIG. 5. Order parameter R and representative speeds βi ≡ θ̇i for
a simulation of 100 identical motors with initial phases distributed
randomly. In contrast to Fig. 4, the coupling strength X of the
resonance is 4 s/rad; all other parameters are identical. The final
state corresponds to the open square in Fig. 2(a).
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FIG. 6. Order parameter R and representative motor speeds βi ≡
θ̇i for a disordered population of 100 motors, started from initially
random phases. The resonance parameters are the same as in Fig. 4,
except the coupling X is 2.9 rad/s. The natural frequencies are chosen
from a Gaussian distribution with mean ω̄ of 0.1 rad/s and standard
deviation σ of 0.01 rad/s (i.e., 10% of ω̄).

parameter of unity. The late time behavior shows a residual
oscillation at a rate 2�, neglected in deriving Eq. (12). The
open box in Fig. 2 is the corresponding prediction, a speed of
� = 0.0745 rad/s. The discrepancy may be due to numerical
imprecision in computing � from the data in Fig. 5; it
may be because the neglected oscillations at speed 2� are
indeed significant; it may be due to the discretization in the
implementation of the numerics. Whatever the source of the
discrepancy, it is small and the decision to neglect fluctuations
of frequency 2� in deriving Eq. (11) appears justified.

Figure 6 shows a case of disorder in the distribution of motor
speeds. By introducing a Gaussian distribution of natural motor
speeds with a standard deviation of 10% (i.e., ω̄ = 0.1 rad/s
and σ = 0.01 rad/s), we find that a few of the motors have left
the pack and the order parameter is reduced below unity. Like
the motor behavior presented in Figs. 4 and 5, the motors in

Fig. 6 approach their steady-state behavior exponentially and
in about 15 cycles. These compare favorably with observations
from the laboratory [29], in which transient behavior was so
fast that it was not measurable.

B. Numerical solutions for swept natural motor speeds

In the laboratory [29], behavior was monitored as a function
of driving voltage, which determines torques and thus serves
as a proxy for mean natural motor speed. The voltage was
slowly swept, in a stepwise fashion, from a low to a high
or a high to a low value, giving the motors time to adjust
at each value. The laboratory system had two resonances
and was noteworthy for a parameter regime in which the
system could synchronize at either of two distinct frequencies,
a behavior termed birythmic [44]. Each such frequency was
slightly below one of the plate’s resonant frequencies. Which
frequency the system chose was a function of its history. It
was also noteworthy for its observation of a spectral gap, a
frequency range between the resonant frequencies in which
the system was never seen to oscillate coherently. As discussed
above, these features were exhibited in the analytic solutions
of Fig. 3.

Birythmic hysteresis and a spectral gap are behaviors seen
in the numerics also. Numerical simulations were conducted
for the integrodifferential equations

dθi

dt
= ωi − 1

N
sin θi

∑
j

d2

dt2

(
h ⊗ d2 cos θj

dt2

)
, (23)

again with Green’s function independent of i and j , but
now corresponding to a set of motors on a support with two
resonances:

h(τ ) = X1 sin(ωr1τ )
e−η1ωr1τ

ωr1
+ X2 sin(ωr2τ )

e−η2ωr2τ

ωr2
. (24)

Analytic predictions for this two-resonance structure are
shown in Fig. 3.

FIG. 7. Order parameter R and average motor speeds � for sweeps of mean natural motor speed ω̄ from 0.03 to 0.2 rad/s (dash-dotted
curves) and then back to 0.03 rad/s (dashed curves), for disordered populations. In (a) the standard deviation of the natural motor speeds
ωi is σ = 0.05ω̄, whereas in (b) it is σ = 0.1ω̄. These results correspond to X1 = X2 = 2.0 s/rad, ω1r = 0.06 rad/s, ω2r = 0.09 rad/s, and
η1 = η2 = 0.038. The solid curves indicate stable solutions for no disorder from Eq. (12) and plotted in Fig. 3. The marked locations in
(a) correspond to the spectral power densities of Fig. 8.
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The numerical simulations were performed in sweeps of
256 blocks. Mimicking the laboratory measurements, each
block had three phases of 1024 s apiece: a sweep phase, a
hold phase, and a measure phase. During the sweep phase,
the natural speeds were slowly increased or decreased at a
rate of 2−20 = 9.54 × 10−7 rad/s2. During the hold phase,
the natural speeds were held fixed to allow transients to
dissipate [45]. As such, the total number of time steps for
a single upward or downward sweep was 256 × 3 × 1024.
During the measure phase, the natural speeds were again held
fixed and we measured time series for the instantaneous speeds
θ̇i , order parameter R, and other data.

Cases were run in which every motor had identical natural
motor speed ωi and the results corresponded very closely to
the predictions of Sec. III, in particular to the curves of Fig. 3.
Figure 7 shows the mean motor speed � as a function of mean
natural motor speed ω̄, for the case of disorder. For reference,
we have included the stable solutions of Fig. 3. Natural motor
speeds were taken randomly from a Gaussian distribution with
a nonzero mean ω̄ and with a width of 5% or 10% of the
mean for Figs. 7(a) and 7(b), respectively. We maintained the
percentage width of the population throughout the simulations
by stretching or compressing the population as we increased
or decreased the mean natural motor speed ω̄.

The numerical and theoretical results plotted together in
Fig. 7 agree nicely. The sweep of the solution of the coupled
ordinary differential equations [Eq. (19)] reproduces much
of the behavior predicted by the simpler analytic model of
Eq. (12) and found also in the laboratory measurements (Fig. 7
of Ref. [29]). We note in particular the birythmic hysteresis, the
spectral gap, and the wide regions in ω̄ over which � is nearly
constant at a value a bit less than ωr . (The upper hysteresis
loop, which pertains to just one resonance, is likely similar
to that reported by Filatrella et al. [41], who swept coupling
strength X, not ω̄.) Neither disorder nor modeling of the fast
time scales (ignored in Sec. III) have qualitatively changed
these features.

Disorder has displaced and reduced some of the sharp
features in �(ω̄). Transitions in the order parameter remain
sharp, suggesting that mean speed � fails to fully represent
the state of the system. For that purpose, it may be better to
address the chief interest for lasers: the spectral density of the
wave power radiated by the oscillators.

C. Spectral power density and lasing transition

The energy radiated into the support by the motors can be
written as a time integral of force times velocity. The work
done is

W = −
∫ ∑

i

fi(t)
d

dt
vi(t) dt. (25)

By expressing the displacements vi in terms of the forcing fi

and the Green function G and using Parseval’s identity, we can
rewrite the preceding equation as

W = −1

2π

∫
ıω

∑
i,j

f̃ ∗
i (ω)G̃ij (ω)f̃j (ω) dω (26)

= −1

2π

∫
ıω

∑
i,j

q̃∗
i (ω)g̃ij (ω)q̃j (ω) dω, (27)

where

qi(t) = fi(t) − (m + μ)v̈i (28)

= λ
d2

dt2
cos θi . (29)

This permits us to identify a spectral power density:

�(ω) = −1

π
Im

(∑
i,j

ωq̃∗
i (ω)g̃ij (ω)q̃j (ω)

)
. (30)

The spectral power density can be evaluated as a function of
frequency by a short-time Fourier transform over data from the
numerical solutions, as in Fig. 8. In that figure, the frequency
resolution �ω is 2π/4096 rad/s, corresponding to time records
with 4096 samples.

FIG. 8. Spectral power density vs frequency. The data for these
figures are from the same upward run as the data in Fig. 7(a) and
correspond to the labels in that figure. The means of the natural speeds
are indicated. Note that the differences in natural speeds among (d)–(f)
are small—the transition is abrupt.
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Figures 8(a)–8(f) correspond to the labels in Fig. 7(a).
Figures 8(a)–8(e) show that the power output is strong and
confined to one or two narrow peaks. The width of the peaks
appears to be governed by the resolution of the discrete Fourier
transform. Figure 8(b) is of particular interest since it indicates
lasing in two modes simultaneously, like a multimode laser.
In Fig. 8(f), the power output is weak, broadband, and noisy.
The small differences in mean natural motor speed across
Figs. 8(d)–8(f) show that transitions between the various states
can be abrupt. This corresponds to the sudden changes in
audible power output observed in Ref. [29] and is reminiscent
of a lasing transition.

The frequency at which �(ω) peaks, as shown in Fig. 8, is
not always the same as the average motor speed � shown
in Fig. 7. Consider the cases in Figs. 8(d) and 8(e), for
which ω̄ = 0.162 and 0.163 rad/s. The dash-dotted line in
Fig. 7 indicates a measured average motor speed � of about
0.095 rad/s, whereas the power output in Figs. 8(d) and 8(e)
show peaks just below the resonant frequency, 0.09 rad/s. The
peak of the power output is biased toward the motors operating
near a resonance, making the frequency of the maximum power
output distinct from the average motor speed [46].

V. CONCLUSION

The mechanical model introduced in Sec. II has been found
to reproduce behaviors observed in the laboratory [29]. Its
analytic and numerical solutions replicate those experimental
observations, in particular by exhibiting hysteresis, the spectral
gap, the broad regime in which � is independent of driving
torque, and sharp transitions. The solutions also confirm the
surmise that this system forms an acoustic analog to a laser.
They show stimulated emission, super radiance, and sharp
lasinglike transitions between a parameter regime in which
spectral power radiation is wideband, noisy, and weak and
one in which it is strong and dominated by narrow emission
lines.
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APPENDIX : MODAL REPRESENTATION FOR THE
GREEN’S FUNCTION

It is often convenient to represent g(t) and its Fourier
transform g̃(ω) as a sum over natural modes r:

gij (t) =
∑

r

gr (t)ur
i u

r
j , (A1)

g̃ij (ω) =
∑

r

g̃r (ω)ur
i u

r
j . (A2)

Each resonance has a frequency ωr , modal mass Mr , and decay
time Tr . Here ur

i is the rth resonance’s displacement amplitude
[not ui(t)] at the position of the ith motor. We relate the decay
times to the resonant frequencies by the (unitless) loss tangent
ηr ≡ (ωrTr )−1, allowing us to express the Green function from
a single resonance as

gr (t) = sin(ωrt)
e−ηrωr t

Mrωr

, (A3)

g̃r (ω) =
∫ ∞

0
gij (t)eıωtdt = M−1

r

(ηrωr − ıω)2 + ω2
r

. (A4)

g̃r represents the Fourier transform of the resonance and ı =√−1. We will also sometimes make use of the magnitude and
phase of the Fourier transform of the Green function or its
resonances:

g̃ij (ω) ≡ |g̃ij (ω)|eıγij (ω), (A5)

g̃r
ij (ω) ≡ |g̃r

ij (ω)|eıγ r
ij (ω). (A6)
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