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Turing instability in oscillator chains with nonlocal coupling
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We investigate analytically and numerically the conditions for the Turing instability to occur in a one-
dimensional chain of nonlinear oscillators coupled nonlocally, in such a way that the coupling strength decreases
with the spatial distance as a power law. A range parameter makes it possible to cover the two limiting cases of
local (nearest-neighbor) and global (all-to-all) couplings. We consider an example from a nonlinear autocatalytic
reaction-diffusion model.
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I. INTRODUCTION

Given the diversity of spatial patterns observed in nature,
it is always puzzling to wonder how this diversity arises from
spatially uniform situations. This question was pursued in the
1950s by Turing in his seminal paper on the mechanism of
morphogenesis [1], in which he considered how a spatially
homogeneous state can lose stability, giving rise to a spatially
nonhomogeneous pattern, the so-called Turing instability.
Turing analyzed a reaction-diffusion system comprised of
spatially coupled ordinary differential equations that modeled
discrete biological cells.

Turing put forward two basic assumptions: (i) the need for
at least two chemical substances (morphogenes), an activator
and an inhibitor, and (ii) diffusion plays a destabilizing role
in the interacting chemical substances. The latter point is
somewhat counterintuitive because diffusion usually smooths
out spatial structures in linear systems and thus would be
expected to exert a stabilizing influence instead. Moreover,
Turing found that the instability caused by diffusion leads
to the growth of spatial structures at a particular wavelength.
This mechanism has successfully explained a wealth of pattern
formation phenomena in nature, such as the segmentation
patterns in the developing fly embryo, the periodic array of
tentacles around the mouth of the hydra, zebra stripes [2], and
seashell striations [3], to name just a few. In physical chemistry,
the Turing instability has been found in many continuously fed
stirred-tank reactors, as in the reaction of chlorine dioxide with
iodine and malonic acid [4,5].

From the mathematical point of view, the Turing instability
arises when an otherwise stable homogeneous state becomes
unstable as a result of diffusion, in the sense that any small
perturbation will develop into a spatially nonuniform state.
Linear theory can predict the wavelength of the unstable
mode that grows [6]. This growth, however, is limited by
the saturating effect of nonlinear terms and a spatially
nonhomogeneous pattern is then formed as a result of the
Turing instability.

The Turing instability is usually investigated in the context
of local couplings, in which each cell interacts with its nearest
neighbors only. This is modeled by Fick’s law, which states
that the diffusive flux of morphogenes (activator and inhibitor)
is proportional to their local concentration and is responsible
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for the second spatial derivatives in the mathematical models
of such reaction-diffusion systems. However, there are many
situations in which this picture is oversimplified, as in chemical
couplings between biological cells that generate nonlocal
interactions that cannot be described by a diffusive coupling.
Nonlocal couplings can be implemented in macroscopic
density equations in which the diffusion coefficient depends
on a weighted spatial average of the density [7].

Such nonlocal couplings take into account not only the
nearest neighbors of a given cell, but also the other cells
of the assembly. An extreme form of this arises when each
cell couples with the mean field produced by all the other
cells, the so-called global (all-to-all) coupling, which is used
in models of neural networks [8], coupled Josephson junctions
[9], and is the basis of the paradigmatic Kuramoto model [10].
It is possible to interpolate between nearest-neighbor and
all-to-all couplings by considering an interaction term whose
strength decreases with the physical distance between cells as
a power law [11]. This model has been used in theoretical and
numerical studies of various spatiotemporal phenomena such
as synchronization, shadowing, and cluster formation [12].

The influence of nonlocal couplings on the formation
of Turing patterns has been studied in many systems. The
conditions for the occurrence of the Turing instability were in-
vestigated for logistic growth processes using various nonlocal
coupling terms [13]. In another recent study, a three-variable
Oregonator model of a light-sensitive Belousov-Zhabotinsky
reaction was studied, in which the nonlocal coupling was
externally imposed by an optical feedback loop [14]. In the
latter investigation, it was found that long-range inhibition
leads to the Turing instability, whereas long-range activation
induces wavelike patterns.

This work aims to investigate the presence of Turing
instabilities in oscillator chains with a nonlocal coupling of
the power-law form in order to have results that hold for both
local and global cases. We derive analytically the conditions
for a Turing instability to occur in a one-dimensional lattice of
two-dimensional systems (representing the activator-inhibitor
pair) undergoing linear dynamics. Then we study a non-
linear reaction-diffusion system proposed by Meinhardt and
Gierer [15] as a model for pattern formation related to skin
pigmentation.

The rest of this paper is organized as follows. In Sec. II
we introduce the oscillator model to be studied, as well as the
type of coupling between the units. The analytical conditions
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for a Turing instability to occur are derived in Sec. III using
linear stability theory. The effect of nonlinear terms and the
ensuing pattern formation is discussed in Sec. IV through the
Meinhardt-Gierer model. Our conclusions are given in Sec. V.

II. OSCILLATOR CHAIN WITH NONLOCAL COUPLING

Let us consider an oscillator one-dimensional chain with
N units, each of them being a nonlinear reaction-diffusion
system, whose dynamical state is described by the concentra-
tions of the activator xk(t) and inhibitor yk(t), satisfying the
following equations (k = 1,2, . . . ,N ):

ẋk = X(xk,yk) − Dxxk + Dx

κ(α)

N ′∑
r=1

1

rα
(xk−r + xk+r ), (1)

ẏk = Y(xk,yk) − Dyyk + Dy

κ(α)

N ′∑
r=1

1

rα
(yk−r + yk+r ), (2)

where X and Y stand for the vector field corresponding to
the uncoupled oscillators. We use a nonlocal form of coupling
for which the interaction strength decreases with the lattice
distance in a power-law fashion, where Dx and Dy are
positive coupling constants representing the different diffusion
coefficients of the chemical species, α is a positive real number,
and

κ(α) = 2
N ′∑
r=1

1

rα
(3)

is a normalization factor, with N ′ = (N − 1)/2, supposing
that N is an odd number. In the oscillator chain given
by Eqs. (1) and (2), the summation terms are weighted
averages of discretized second spatial derivatives, the common
normalization factor κ(α) being the sum of the corresponding
weights.

In the limit α → ∞, only the r = 1 term will survive in
the summation terms, resulting in κ → 2 and the Laplacian or
diffusive coupling,

ẋk = X(xk,yk) + Dx

2
(xk−1 − 2xk + xk+1), (4)

ẏk = Y(xk,yk) + Dy

2
(yk−1 − 2yk + yk+1), (5)

in which only the nearest neighbors of a given site contribute
to the coupling term. The other limiting case, α = 0, is such
that κ(0) = N − 1 and the oscillator chain becomes globally
coupled,

ẋk = X(xk,yk) + Dx

⎛
⎝−xk + 1

N − 1

N∑
r=1,r �=k

xr

⎞
⎠ , (6)

ẏk = Y(xk,yk) + Dy

⎛
⎝−yk + 1

N − 1

N∑
r=1,r �=k

yr

⎞
⎠ , (7)

where each oscillator interacts with the mean value of all lattice
sites, irrespective of their positions (mean-field model). Hence,
the coupling term in Eqs. (1) and (2) may be regarded as an
interpolating form between these limiting cases and will be
referred to as a power-law coupling.

III. LINEAR STABILITY

Let us consider the equilibrium values of the activator and
inhibitor given by X0 and Y0, respectively. The deviations
from these values (also denoted by x and y, for notational
simplicity), in lowest order, obey a linearized model for which
the activator-inhibitor dynamics in each uncoupled oscillator
(labeled by k, as before) are governed by the affine vector field

X(xk,yk) = axk + byk, (8)

Y(xk,yk) = cxk + dyk, (9)

where the constants a,b,c,d are the elements of
the Jacobian matrix of the nonlinear vector field
evaluated at (X0,Y0). The equilibrium solution
of the linearized system is (x∗ = 0,y∗ = 0),
which is linearly stable if

q ≡ ad − bc > 0, a + d < 0. (10)

The convergence to the equilibrium will be monotonic if
(a − d)2 + 4bc > 0 and oscillatory if this factor is negative.
This set of conditions shall be supposed from now on.

In order to treat the coupled system, we can use a discrete
Fourier transform of each dynamical variable, in the following
form:

xk(t) =
N−1∑
s=0

ξs(s,t) exp

(
2πisk

N

)
, (11)

yk(t) =
N−1∑
s=0

ηs(s,t) exp

(
2πisk

N

)
, (12)

where ξs and ηs are time-dependent Fourier-mode amplitudes.
On substituting Eqs. (11) and (12) in the linearized version
of Eqs. (1) and (2) we find that the mode amplitudes satisfy
uncoupled linear differential equations

ξ̇s = [a − 2Dxσα(s,N )]ξs + bηs = aσ ξs + bηs, (13)

η̇s = [d − 2Dyσα(s,N )]ξs + cηs = cξs + dσηs, (14)

where we define the auxiliary quantities

aσ ≡ a − 2Dxσα(s,N ), (15)

dσ ≡ d − 2Dyσα(s,N ), (16)

where

σα(s,N ) ≡ 1

2
− 1

κ(α)

N ′∑
r=1

1

rα
cos

(
2πsr

N

)
(17)

is a function whose values are such that 0 � σα(s,N ) �
σmax(α,N ) � 1 (Fig. 1). For the nearest-neighbor case (α →
∞) it turns out that

σ∞(s,N ) = sin2
(πs

N

)
, (18)

for which σmax = 1 reaches its largest value [Fig. 1(b)]. In
contrast, in the mean-field coupling (α = 0) this function reads

σ0(s,N ) = 1

2

(
N

N − 1

)
(1 − δs,0), (19)

such that for large N it tends to 1/2 [Fig. 1(a)].
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FIG. 1. (Color online) Dependence of the
function defined by Eq. (17) on the argument
s/N , for (a) small and (b) large values of the
parameter α.

The Turing instability occurs when a spatially homo-
geneous pattern becomes inhomogeneous by virtue of the
coupling effect, which acts as a perturbation on each oscillator,
driving it out of its equilibrium state. The equilibrium point
of the linearized mode amplitude equations, (ξs,ηs) = (0,0),
corresponds to equilibrium concentrations of activator and
inhibitor species for each oscillator. Hence the onset of a
Turing instability happens whenever this equilibrium becomes
an unstable saddle point, which occurs if

qσ ≡ aσ dσ − bc = 4DxDyσ
2 − 2σ (aDy − dDx) + q < 0.

(20)
On defining the auxiliary variables

P ≡ a

Dx

+ d

Dy

, Q ≡ ad − bc

DxDy

, (21)

the inequality in Eq. (20) is satisfied provided σ− < σ < σ+,
where

σ± ≡ P ±
√

P 2 − 4Q

4
. (22)

Since the function σ has the upper bound σmax(α,N ) �
1 we must have 0 � σ− � σmax(α,N ), such that 0 � P −√

P 2 − 4Q � 4σmax(α,N ), which gives the following condi-
tions for the appearance of the Turing instability in the system:

Q > 0, (23)

P > 2
√

Q if 0 � P � 4σmax(α,N ), (24)

P >
Q

2σmax(α,N )
+ 2σmax(α,N ) if P > 4σmax(α,N ). (25)

Hence the stability of the spatially homogeneous state in
this system depends on the values taken on by σmax. In Fig. 2,
we show how this stability depends on the range parameter α

by direct numerical evaluation of the function extremum (solid
curve) and using an analytical approximation (dashed curve).
The latter was obtained as follows. First, we can show from
Eq. (17) that this function is always symmetric with respect to
s = N/2,

σα(s = N/2 + L,N ) = σα(s = N/2 − L,N )

for all L values such that 0 � s � N − 1. By the same token

we show that σα(s,N ) has a local maximum at s = N/2 (for
N ′ = (N − 1)/2 odd)

∂σα(s,N )

∂s

∣∣∣∣
s=N/2

= 0,
∂2σα(s,N )

∂s2

∣∣∣∣
s=N/2

< 0,

such that

σmax(α,N ) = σα(s = N/2,N ).

Finally, if N is large enough that s/N can be reasonably well
approximated by a continuous variable, we can use the Euler-
MacLaurin formula [16] to replace the summation in (17) by
an integral, which yields an analytical approximation for σmax,

σmax(α,N ) ≈ 1

2
− 1

2

(
1 − (N ′)1−α

α − 1
+ N ′−α + 1

2

)−1

×
{[

− 1

2

(
1 − (N ′)1−α

α − 1

)
−

(
N ′−α + 1

2

)]

+
[

2−α

α − 1
(1 − 2α−1(N ′ − 1)1−α)

+ (N ′ − 1)−α + 2−α

2

]}
, (26)

which holds for odd values of N ′. We see that the approxima-
tion always underestimates the actual value of σmax(α,N ), but
the difference turns out not to be large, especially at small α. In
contrast, for large α, while the analytical approximation gives
worse results, we already know that this value must approach
unity since this is the nearest-neighbor coupling case. Notice
that the large-N limit has to be taken only as an approximation
for obtention of closed-form analytical expressions. In fact,
for N → ∞ the power-law coupling in Eqs. (1) and (2) is not
normalizable when 0 < α < 1 [17].

In the case of the local (nearest-neighbor) coupling (α →
∞) we have large values of α and σmax tends to unity, such that
the conditions in Eqs. (23) and (25) for a Turing instability to
occur reduce to

Q > 0, (27)

P > 2
√

Q if 0 � P � 4, (28)

P >
Q

2
+ 2 if P > 4, (29)
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FIG. 2. (Color online) Dependence of the
maximum value of σα(s,N ) on the parameters (a)
α and (b) N . In both figures, the solid curves rep-
resent numerical evaluations, whereas the dashed
curves result from analytical approximations.

which agrees with the results of Ref. [6] up to a (nonessential)
factor of 2 due to a slightly different definition of the local
coupling prescription.

Since the uncoupled oscillators are supposed to have
a stable equilibrium concentration, the local conditions in
Eq. (10) apply, such that Eq. (27) always holds. The remaining
conditions depend on the values of the diffusion coefficients.
It is instructive to consider the case where both diffusion
coefficients are equal, Dx = Dy = D. In this case it turns
out that P = (a + d)/D is negative and a Turing instability
cannot occur. In fact, it is well known that pattern formation in a
chemical system will not occur unless the diffusion coefficients
of the activator and inhibitor differ substantially [5].

The range of unstable modes in the local coupling case is
given by

min(σ+,1) > σ > σ−, (30)

where σ± are given by Eq. (22). Notice that we have σ+ > 1
provided P < (Q/2) + 2. Substituting Eq. (18) and solving
the resulting inequalities, there result two intervals of unstable
modes symmetrically located with respect to s/N = 1/2,

sin−1 √
σ−

π
<

s

N
<

sin−1 √
σ+

π
,

(31)

1 − sin−1 √
σ+

π
<

s

N
< 1 − sin−1 √

σ−
π

.

In this way, a larger number of modes become unstable if
σ+ > 1.

The global (all-to-all) case (α = 0) presents interesting
features as the function σ0(s,N ) takes on a constant value
σ0 given by Eq. (19). The conditions in Eqs. (23) and (25)
hence reduce to a single inequality

P >
Q

2σ0
+ 2σ0, (32)

in such a way that once this condition is fulfilled all modes
become simultaneously unstable. Since for large N we have
σ0 ≈ 1/2, the relation above can be written in a simple form,
P > Q + 1. It is interesting to note that if the diffusion
coefficients are equal this condition cannot be satisfied in
general, as in the local case. Thus, there is a range-independent
influence of the dissimilarity of the diffusion coefficients on
the occurrence of a Turing instability.

Let us consider a specific example of the intermediate range
case for which α = 1 and we take a chain with N = 101
oscillators. Then Eq. (17) gives σmax ≈ 0.577 for this case.
The approximation expressed by Eq. (26), which works well

also for N ′ even, would give a slightly smaller value of 0.568
for σmax. On substituting the value of σmax in Eqs. (23) and (25)
we obtain conditions for the existence of a Turing instability
that can be better represented in the parameter plane depicted
(for α arbitrary) in Fig. 3(a) where we draw the lines where
there is marginal stability as a function of parameters P and
Q. Since for α = 1 the function σ has a broad flat top, failing
on being a constant (as in the global case) only for the vicinity
of the extremities s/N = 0 and 1, we have roughly the same
behavior in that most modes become unstable simultaneously
in the intermediate-range case.

The stable area Ast, or the area in the parameter plane for
which we have stable equilibria, provides useful information.
In Fig. 3(b) we show a magnification of a region of large-Q
values in the parameter plane for different values of α. It
is apparent that the stable area decreases with increasing α

(i.e., the relative number of parameter values yielding stable
equilibria becomes larger as the coupling becomes global and
smaller as the coupling becomes local). By integrating out the
stability curves in Fig. 3(a), from Q = 0 to an arbitrary Q0, it
is actually possible to derive an analytical expression for the
stable area (normalized by Q2

0), which reads

Ast = 1

4σmax
+ σmax(2Q0 − 4)

Q2
0

+ 32σ
3/2
max

3Q2
0

− 8
σ 2

max

Q2
0

, (33)

giving, for large Q0, Ast ≈ 1/4σmax. In very long oscillator
chains where N is large with local and global couplings,
σmax takes on values equal to 1 and 1/2, respectively. Hence
the stable area in the local case is roughly half of the
corresponding area in the global case. We thus conclude that
a Turing instability would be statistically more common for
local couplings than for global ones.

IV. NONLINEAR REACTION-DIFFUSION MODEL

In reaction-diffusion systems of practical interest there are
nonlinear terms that exert saturation on the nonhomogeneous
spatial modes excited by the Turing instability, giving rise
to pattern formation. The basic mechanism of this saturation
combines a short-range autocatalytic activation, which causes
self-enhancement after a Turing instability sets in, with a long-
range inhibitory effect. The latter can be caused by either a
rapidly spreading and long-range (or a result from a) depletion
of material required for the self-enhancement that is obtained
from the surrounding region [15].
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FIG. 3. (Color online) (a) Parameter plane
showing the lines of marginal stability for the
case of N = 101 coupled oscillators and arbi-
trary α. (b) Magnification of a region of (a) of
large-Q values.

A paradigm of this broad class of reaction-diffusion systems
is the Meinhardt-Gierer model, which, in the language of
Eqs. (1) and (2), reads [15,18]

X(xk,yk) = ρx

x2
k

yk

− μxxk, (34)

Y(xk,yk) = ρyx
2
k − μyyk, (35)

where ρx,y and μx,y are positive parameters characterizing the
local reaction rates. The term proportional to ρx comes from
the assumption that the activator is an autocatalytic chemical
species, its denominator representing the inhibitor effect of
the other species. In this case ρx turns out to be a small
activator-independent production rate of the activator and is
actually necessary to start the activator autocatalysis at very
low activator concentration, as in the case of regeneration.
Likewise, ρy stands for a baseline production rate of the
inhibitor [15]. The quantities μx and μy play the role of
degradation of the activator and inhibitor species, respectively,
such that the number of molecules of each species that decay
per time unit is proportional to the corresponding decay rate
and to the number of molecules themselves [19].

A. Stability analysis

We first determine the equilibrium points of the uncoupled
vector field in Eqs. (34) and (35). One of them is obviously
x∗ = y∗ = 0, whereas there is a nontrivial equilibrium with
activator and inhibitor concentrations given, respectively, by

x∗ = ρxμy

ρyμx

, y∗ = ρ2
xμy

ρyμ2
x

. (36)

The linearized dynamics around this equilibrium, for the
uncoupled case, is obtained from the Jacobian matrix of
Eqs. (34) and (35), with elements evaluated at the point (x∗,y∗),
giving the matrix elements

a = μx, b = −μ2
x

ρx

, (37)

c = 2ρxμy

μx

, d = −μy. (38)

If the equilibrium (x∗,y∗) is to be stable, the trace and
determinant of this Jacobian must be, respectively, negative
and positive, yielding the conditions

μx < μy, μxμy > 0. (39)

Since all coefficients are taken to be positive, this implies that
the decay rate of the inhibitor must be greater than that of the
activator, which is a reasonable assumption for having a stable
equilibrium concentration of both species. The approach to
the equilibrium is determined by the nature (real or complex)
of the eigenvalues of the Jacobian. The results of this simple
analysis are summarized in Fig. 4. Similarly, the equilibrium
at the origin can be shown to be always unstable and thus
it is not relevant when discussing Turing instability due to
diffusion.

Now we turn into the coupled system in Eqs. (1) and (2),
for which there is a spatially homogeneous equilibrium state
given by

xk = x∗, yk = y∗. (k = 1,2, . . . ,N ) (40)

This state defines a two-dimensional invariant subspace
embedded into the full 2N -dimensional phase space of the
coupled oscillator chain. The subspace is invariant because any
trajectory that originates from an initial condition belonging
to this subspace is bound to lie within it for further times.
Geometrically speaking, the possible spatially nonhomoge-
neous states one may find represent trajectories outside this
invariant subspace.

In this geometrical language, we are interested in inves-
tigating the stability of the invariant homogeneous subspace
along the 2(N − 1) remaining transversal directions. We can

FIG. 4. Stability of the uncoupled equilibrium points of the
Meinhardt-Gierer equations in the parameter plane μx vs μy .
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use the results of Sec. II to obtain analytical conditions for the
stability of the spatially homogeneous state. The substitution
of Eqs. (37) and (38) into Eq. (21) results in the stability
conditions in Eqs. (23) and (25), which read

μxμy

DxDy

> 0, (41)

μxDy − μyDx > 2
√

μxμyDxDy
(42)

if 0 � μxDy − μyDx � 4σmaxDxDy,

μxDy − μyDx >
μxμy

2σmax
+ 2σmaxDxDy

(43)
if μxDy − μyDx > 4σmaxDxDy.

Since the uncoupled oscillators are supposed to be locally
stable so that Eq. (39) holds, the condition in Eq. (41) is always
fulfilled, as the diffusion coefficients are positive-definite.

Let us consider the limit cases of this coupling. For the
nearest-neighbor case (large α) we have σmax = 1. If the
diffusion coefficients were equal, there would be no Turing
instability, as shown before. For the all-to-all coupling (α = 0)
the conditions in Eqs. (42) and (43) reduce to the single
inequality (valid for large N):

μxDy − μyDx > μxμy + DxDy. (44)

The threshold for the Turing instability is depicted in the
parameter plane Dx vs Dy (for fixed values of the remaining
parameters) (Fig. 5).

B. Pattern formation

In the numerical simulations to be presented, we use a
predictor-corrector routine (LSODA) based on the Adams
method [20] and the same values for the parameters of
the Meinhardt-Gierer model as those chosen in Ref. [21]:
μx = 0.01, μy = 0.02, ρx = 0.01, and ρy = 0.02, for which
the equilibrium point is a stable focus with coordinates
(x∗,y∗) = (1.0,1.0). We also fix the diffusion coefficient of
the inhibitor at Dy = 0.2 and use the activator coefficient Dx

FIG. 5. Parameter plane of the activator and inhibitor diffusion
coefficients for μx = 0.01, μy = 0.02, ρx = 0.01, and ρy = 0.02.

FIG. 6. (Color online) Space-time diagrams of the activator
concentration for the nearest-neighbor coupling case, Dx = 0.2, and
(a) Dy = 0.019, (b) Dy = 0.016, and (c) Dy = 0.005.

as the tunable parameter for each value chosen for the
effective range α. We use, as an initial condition, an almost
homogeneous spatial profile with a tiny bump that is intended
to be a seed for some unstable mode to grow after a Turing
instability occurs.

The local case (large α) is illustrated by Fig. 6, where
we depict space-time diagrams (activator concentration x

versus discrete space k and time t) for different values of
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the activator diffusion coefficient. For relatively large Dx

[Fig. 6(a)] we do not observe pattern formation, since we are
above the instability threshold predicted by the linear theory.
The oscillators go together to the homogeneous equilibrium
state x∗ = 1 instead. The instability threshold occurs for
Dx ≈ 0.016 and we accordingly observe the emergence of
a spatially nonhomogeneous pattern just after the Turing
instability [Fig. 6(b)].

This pattern is roughly a sinusoidal spatial profile with 12
maxima, corresponding to a wavelength of λ ≈ 8.42 and thus
to a wave number

s

N
= 1

λ
≈ 0.119.

From the linear stability analysis, the parameter set used
to generate Fig. 6(b) corresponds to σ− = 0.09 and σ+ =
0.17. Using Eq. (31), the ranges of unstable modes are
[0.097,0.135] and [0.865,0.903]. The pattern observed has a
wave number roughly in the middle of the interval of unstable
modes (i.e., it is the most unstable mode from the linear
approximation).

As we substantially decrease the activator diffusion co-
efficient, we observe another spatial pattern [Fig. 6(c)] with
14 maxima and thus a smaller wavelength than the previous
example, namely

s

N
= 1

7.21
≈ 0.139,

which belongs again to one of the intervals of linearly unstable
modes, [0.076,0.392] and [0.608,0.924]. It is no longer the
most unstable mode, however. A larger wave number such as
this is actually a general feature of spatiotemporal systems
when we decrease the diffusion coefficient—modes with
small wave numbers are more easily damped when diffusion
increases, as a general rule.

The corresponding space-time plots for the global (all-
to-all) coupling case are shown in Figs. 7(a) and 7(b) for
parameters before and after the occurrence of a Turing
instability, respectively. According to the linear theory (see
Fig. 5) it occurs for Dx ≈ 0.008. The pattern formed after
the Turing instability is more complex than in the previous
example and cannot be assigned to a single unstable mode,
but rather to an entire spectrum of unstable modes excited
by the Turing instability, which became stabilized by the
saturating effect of the nonlinear terms of the model, a
feature obviously not present in the linear stability analysis
of Sec. V A. The space-time plots for the intermediate-range

FIG. 7. (Color online) Space-time diagrams of the activator
concentration for the all-to-all (global) coupling case, Dx = 0.2, and
(a) Dy = 0.009 and (b) Dy = 0.005.

FIG. 8. (Color online) Space-time diagrams of the activator
concentration for the intermediate-range coupling of α = 1.0, Dx =
0.2, (a) Dy = 0.020, and (b) Dy = 0.005.

coupling characterized by α = 1.0 are depicted in Figs. 8(a)
and 8(b), before and after the threshold of a Turing instability,
respectively.

V. CONCLUSIONS

The Turing instability is a general mechanism of pattern for-
mation from which a spatially homogeneous pattern becomes
unstable and develops a spatial structure after saturation that
comes from nonlinear effects. In biological scenarios there
may be the need for nonlocal couplings, or interactions among
distant cells, not only the nearest neighbors, as in typical
studies of spatial diffusion. We have presented an analytical
study of the occurrence of the Turing instability in coupled
oscillator chains with nonlocal interactions. We presented a
linear stability analysis for the Turing instability when the
coupling among sites is nonlocal (i.e., it takes into account not
only the nearest neighbors but also all the other oscillators in a
one-dimensional chain) the coupling strength decreasing with
the lattice distance as a power law.

We have shown, using a specific nonlinear model, that
the linear stability analysis is useful to characterize the
Turing instability when nonlocal couplings are considered.
In particular, we derived analytical conditions for the presence
of Turing instability for an arbitrary effective coupling range.
Our results agree, in the short-range limit, with results obtained
for nearest-neighbor couplings and can be also applied to
situations with global (all-to-all) couplings. We have shown
that local couplings have a comparatively shorter stable area
in the parameter plane than global couplings. In other words,
as the effective coupling range increases, the more stable
the spatial configurations become and, statistically speaking,
the less probable the occurrence of a Turing instability
would be.

This can be qualitatively understood by noting that global
couplings spread information among cells more rapidly than
local couplings, for which diffusion happens at a slower
rate. Then globally coupled cells are less likely to present
a Turing instability than locally coupled cells. In contrast,
other dynamical collective phenomena due to interactions,
such as frequency synchronization [22], short-term mem-
ory formation [23], and bursting synchronization [24], are
more likely to occur in the globally than locally coupled
chains.

The question of pattern formation, however, is more
complex since the patterns are ultimately determined by
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nonlinear features of the model that are not predictable by
linear stability analysis. Even so, in some cases it is possible to
relate single-mode patterns to the modes that become unstable
after a Turing instability.
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