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Enhancement of “logical” responses by noise in a bistable optical system
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We verify numerically the phenomenon of logical stochastic resonance in a polarization bistable laser. Namely,
we show that when one presents two weak binary inputs to the laser system, the response mirrors a logical OR(NOR)
output. The reliability of the logic operation is dependent on the noise intensity. As one increases the noise, the
probability of the output reflecting the desired OR(NOR) operation increases to nearly unity and then decreases.
We also demonstrate that changing the bias morphs the output into another logic operation, AND(NAND), whose
probability displays analogous behavior. Furthermore, we highlight the possibility of processing two logic
gates in parallel in our laser system by exploiting two coupled orthogonal polarizations that can be detected
simultaneously. This suggests that the computational power of the optical system may be enhanced by this
additional potential for parallel processing.
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I. INTRODUCTION

Over the past few years, it has become increasingly obvious
that understanding how noise and nonlinearity cooperate to
produce different effects is critical in understanding how
complex systems behave and evolve. Stochastic resonance
(SR) provides one such example wherein the cooperative
interplay between noise and dynamics produces interesting,
often counterintuitive, physical phenomena. SR has received
much attention over the past two decades [1] and it has been
demonstrated over a variety of physical systems on a large
span of time scales [1]. The basic signature of SR consists of
an enhanced optimal response to otherwise weak input signals
through the delicate interplay between a coherent signal, noise,
and nonlinearity.

Recently it was found that the response of a simple
threshold detector to input signals consisting of two random
square waves shows a remarkable feature. In an optimal
band of noise, the output is a logical combination of the
two input signals. This phenomenon has been termed logical
stochastic resonance (LSR) [2]. The motivation to study LSR
in further detail stems from an issue that is currently receiving
considerable attention. As computational devices continue to
shrink in size, we are increasingly encountering fundamental,
performance-degrading circuit noise that cannot be suppressed
or eliminated. Hence an understanding of the cooperative
behavior between a device’s noise floor and its nonlinearity
plays a more crucial role in the design and development
of computational devices. Analogous to SR, the necessary
ingredients to observe logical SR are fairly generic, suggesting
that this noise-induced effect could be observed in many
diverse systems [2–7].

In this paper we provide theoretical results on LSR in an
optical bistable system, namely, a polarization bistable laser
(a polarization rotor), to demonstrate the generality of the
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idea over a range of systems and operating conditions. The
optical system considered here has been used previously to
demonstrate one-noise and two-noise SR effects [8,9]. The
laser system is very sensitive to various external perturbations
of optical, magnetic, and spontaneous emission fluctuations.
This sensitivity of the system is exploited to study the LSR
effect under various conditions.

Furthermore, by changing the intracavity birefringence of
the laser another distinct regime of the polarization bistability
is realized [10]. In the so-called inhibition regime, the laser
dynamics is governed by two coupled polarization modes.
This has considerable implications for LSR, in the sense that
one can process two logic gates in parallel. Thus our proposal
has the potential to enhance the power of the concept of LSR,
as it suggests how higher-dimensional systems may provide
additional parallel processing capability.

The outline of the paper is as follows. In Sec. II we introduce
our model of a bistable polarization rotor and demonstrate
LSR by multiplicative and additive noises and signals that are
optical and magnetic in nature. The LSR is quantified and
fundamental logic gates OR(NOR) and AND(NAND) are shown
for weak input bits in the presence of noise. In Sec. III we
consider another regime of the laser system and introduce the
underlying coupled equations for the orthogonal polarizations.
It is important to note that in this regime we show the possibility
of processing two complementary logic gates in parallel by
exploiting the coupled polarization dynamics. Section IV
provides concluding remarks and discussion.

II. LSR IN A BISTABLE OPTICAL SYSTEM

A. Model of a bistable polarization rotor

Here we investigate LSR in the polarization dynamics of
the two-dimensional vectorial bistable laser. We consider the
laser system in the rotational stochastic resonance regime [9]
whereby the polarization flip takes place by rotation of the
linear polarization. In this regime, the laser dynamics can be
described by a single variable θ characterizing the angle of
the polarization vector with respect to the x axis. The time
evolution of such a polarization rotor under the multiple inputs
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FIG. 1. (a) Schematic of LSR: The logic gate is comprised of
a noisy nonlinear system driven by an input signal Iinput = I1 + I2.
(b) Optical potential V (θ ) for the polarization vector. The minima
along θ = 0,π (x axis) and θ = π/2,3π/2 (y axis) are the stable
polarization states. The laser polarization can hop by external optical
or magnetic perturbations (see the text for details). (c) Two-parameter
potential V (Ex,Ey) for the laser in the inhibition regime. Two minima
along the x and y axes are visible. The two potentials in (b) and (c)
correspond to two different regimes of polarization bistability.

is then given by the Langevin-type equation

dθ

dt
= −V0 sin 4θ + M0[Iin(t)+B+η(t)] sin 2θ + ζ (t) + B0,

(1)

where V0, M0, and B0 are parameters characterizing the
strength of laser potential, optical feedback, and magnetic
field, respectively. Iin(t) denotes an external low-amplitude
input signal that drives the system.

In the absence of external perturbations, one can associate
a multistable potential V (θ ) = −(V0/4)cos(4θ ) + B0θ . This
potential, plotted in Fig. 1(b), exhibits minima along the x

and y directions. The constant term B applied to the optical
input is the dc bias to one stable minimum compared to the
other, which plays the role of the lever, as it is described in
Ref. [9]. Noises of different physical origins can be modeled
by multiplicative noise η(t) and additive noise ζ (t), both being
δ-correlated white Gaussian noises of different amplitudes,

〈η(t)η(t ′)〉 = 2D1 δ(t − t ′), (2)

〈ζ (t)ζ (t ′)〉 = 2D2 δ(t − t ′). (3)

The source of the multiplicative noise η(t) is optical due
to feedback, while the source of the additive noise ζ (t)
is magnetic. Note that these two noises are completely
independent and only one of them is present at a time.

The laser output is the intensity detected via a polarizer,
e.g., aligned along the x axis as

Ix(t) = Imax cos2(θ − θpolarizer), (4)

with θpolarizer = 0. Similarly, by changing θpolarizer = π/2 one
can detect a complimentary intensity Iy(t). It is this intensity
Ix,y(t) that will be used to obtain the logic output.

B. Basic signatures of logical stochastic resonance

Now we would like to achieve in this system the input-
output association corresponding to a two-input logic function,
such as that displayed in Table I. In order to encode the

TABLE I. Relationship between the two inputs and the output
of the fundamental OR, AND, NOR, and NAND logic operations. Note
that the four distinct possible input sets (0,0), (0,1), (1,0), and (1,1)
reduce to three conditions since (0,1) and (1,0) are symmetric. Any
logical circuit can be constructed by combining the NOR (OR the
NAND) gates [11].

Input set (I1,I2) OR AND NOR NAND

(0,0) 0 0 1 1
(0,1) or (1,0) 1 0 0 1
(1,1) 1 1 0 0

external logic inputs we drive the system with an external
low-amplitude signal Iin(t), which is taken to be the sum of
two trains of aperiodic pulses, namely,

Iin(t) = I1(t) + I2(t),

where I1(t) and I2(t) reflect the two logic inputs. The logic
inputs can be either 0 or 1, giving rise to four distinct logic
input sets (I1,I2): (0,0), (0,1), (1,0), and (1,1). The input sets
(0,1) and (1,0) give rise to the same Iin, thus the four distinct
input conditions (I1,I2) reduce to three distinct values of Iin.
Hence the input signal Iin(t), which is generated by adding two
independent input signals, is a three-level aperiodic wave form.

The intensity, given by Eq. (4), encodes the logic output.
Specifically if Ix is in the higher state it is taken to encode
a logical 1 and if it is in the lower state it encodes a logical
0. Complementary gates are obtained by taking the output
determination to be the opposite, namely, if Ix is in the lower
state it encodes 1; otherwise it encodes 0 (see Fig. 1).

It is evident from Figs. 2 and 3 that, for a given set of inputs
(I1,I2), a logical output from the bistable optical system is
observable, in accordance with the truth tables of the basic
logic operations shown in Table I. It is crucial to note that this
occurs consistently and robustly only in an optimal window
of noise. For very small or very large noise the system does
not yield any consistent logic output; however, in a reasonably
wide band of moderate noise, the system produces the desired
logical outputs very reliably.

The logic response of the system can be changed by
changing the dc bias (lever) in the system. Namely, changing
the bias B can morph the response of the system from a robust
OR(NOR) gate (middle panel of Fig. 3) to an AND(NAND) gate
(bottom panel of Fig. 3).

C. Quantifying reliability

We quantify the consistency (or reliability) of obtaining a
given logic output by calculating the probability of obtaining
the desired output for different input sets. Specifically we
calculate the probability

P (logic) = Rgood

Rtotal
, (5)

where Rgood is the number of successful runs and Rtotal is the
total number of runs. For each run, one presents the input sets
(0,0), (0,1), (1,0), or (1,1) in random order and the run is
deemed successful if and only if all four input sets yield the
correct logic output (within some acceptable small tolerance).
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FIG. 2. (Color online) Intensity Ix(t) [see Eq. (4)] for different
multiplicative noise intensities (from top to bottom): 0, 5 × 10−7,
and 5 × 10−6. The dashed line shows the desired or (OR NOR) logic
output. The parameters in Eq. (1) are B = 0.5, V0 = 105,M0 = 105,
θpolarizer = −π/2, and Imax = 1.0 and the additive noise amplitude is
0. Specifically we take the input level to be 0.5 for logic input 1 and
−0.5 for logic input 0.

When P (logic) is 1 the logic operation is obtained completely
reliably, namely, the system always yields the correct output.

Figure 4 shows this quantity obtained from numerical
simulations over 105 different runs [12]. It is evident that
the fundamental logic operation AND(NAND) (analogously,
OR(NOR)) is realized consistently in an optimal band of
moderate noise. The remarkable thing here is that these stable
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FIG. 3. (Color online) From top to bottom the panels show logic
inputs I1 + I2, intensity mirroring the OR(NOR) logic response, and
intensity mirroring the AND(NAND) logic response. The bias B is 0.5
for the middle panel and −0.5 for the bottom panel. The additive noise
amplitude is 5 × 10−7 and the multiplicative noise amplitude is 5 ×
10−7. The parameters in Eq. (1) are V0 = 105,M0 = 105, θpolarizer =
−π/2, and Imax = 1.0 and we take the input level to be 0.5 for logic
input 1 and −0.5 for logic input 0.

logic operations are realized (for subthreshold input signals)
only in the presence of noise. More specifically, in relatively
wide windows of moderate noise, the system yields logic
operations with near certain probability, i.e., P (logic) ∼ 1.
Furthermore, we have also verified that analogous curves are
obtained if one employs magnetic noise ζ (t) instead of optical
noise η(t), which suggests the robustness of LSR for noises of
different origins.
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FIG. 4. (Color online) Probability of obtaining the correct logic
response P (logic) for logic functions OR(NOR) (top panel) AND(NAND)
(bottom panel). The x axis displays the multiplicative noise levels (in
units of 10−6) and the y axis displays the bias B. Specifically we take
the input level to be 0.5 for logic input 1 and −0.5 for logic input 0.
The logic output is 1 if x > 0.5; otherwise it is 0 (or vice versa for the
complementary logic operation). Here the additive noise amplitude
is 0. Note that very similar results are obtained for small (nonzero)
additive noise amplitudes as well.

It is clear that noise plays a constructive role in obtaining a
large robust response to input signals, i.e., different levels of
input pulses yield a 0 or 1 output, determined by the system
being in either one of the two widely separated wells. This kind
of response is necessary for logic operations, as it allows one
to consistently map different distinct inputs to a binary output.

The effect of the bias B in Eq. (1) (over a temporal interval
longer than the noise correlation time) is also evident in
Fig. 4: As the value of the bias changes the response of the
system switches from OR(NOR) to AND(NAND) logic, or vice
versa. This effect arises from the change in the symmetry and
the depths of the potential wells due to changing B, leading
to different responses.

Thus Fig. 4 shows that for a given noise intensity in the
optimal range adjusting bias B will yield the desired logic
behavior. It should be noted that the plateaus of enhanced
performance (in the two panels of Fig. 4) overlap for the
OR(NOR) and AND(NAND) performance. Hence, for a noise
intensity somewhere in the plateau we can switch from NOR to
NAND (and vice versa) by simply adjusting the bias B. This is
equivalent to using the bias signal as a knob to tune the system
to select different logic truth tables.

It should be emphasized that while the logic responses are
switched by changing the bias, the desired output is obtained

only for optimal noise intensities (Fig. 4), without which one
would not be able to extract any significantly consistent logic
response. Alternately, we can view this as a strategy to optimize
the desired logic response, given a specific noise floor. This
demonstration of LSR in an optical system highlights the range
of applicability and extent of the concept of LSR and provides
another example of the constructive role of noise in wide-
ranging applications [13–16].

III. TWO-DIMENSIONAL MODEL: COMPLEMENTARY
GATES IN PARALLEL

A. Coupled dynamics for orthogonal polarizations

In order to highlight the possibility of processing two logic
gates in parallel in our laser system, we consider a so-called
inhibition regime of the polarization switching [10]. In this
regime, two frequency nondegenerate modes with orthogonal
polarizations are strongly coupled such that the onset of one
polarization inhibits the other one during polarization switch-
ing. The optical system is now a two-dimensional system that
is subject to stochastic fluctuations by the dynamical equations

dEx

dt
= Ex

[
αx(t) − βx − θxyE

2
y

]
, (6)

dEy

dt
= Ey

[
αy − βy − θxyE

2
x

]
, (7)

where αx and αy include losses and characterize the net gain
of the two eigenstates, βx and βy their self-saturation, and θxy

is their cross coupling. The Langevin term αx(t) represent the
optical injection via the feedback and contains the two input
bit streams along with the white-noise term:

αx(t) = α0[1 + I1(t) + I2(t) + B + η(t)].

The steady-state solution (without any externally injected
signals) for the amplitude of the two competing eigenstates
can be associated with a two-parameter potential

V (Ex,Ey) = − 1
2αxE

2
x − 1

2αyE
2
y + 1

4αxE
4
x

+ 1
4αyE

4
y + θxyE

2
xE

2
y . (8)

Such a potential is plotted in Fig. 1(c), which clearly exhibits
two minima corresponding to two orthogonal eigenstates
along the x and y directions. By varying the differential gain
coefficient αx(t) by means of injecting a fraction of laser
light back into the cavity, switching between the two stable
polarization states of the laser can be induced. Note that in
this case it is possible to detect both of the complementary
outputs intensities Ix(t) and Iy(t) simultaneously. (In fact, one
can observe two complementary bistability cycles, as shown
in the inset of Fig. 6.)

B. Two parallel logic gates

Analogous to the previous case, when only two bit streams
I1(t) and I2(t) are present (without noise), the laser output
remains locked to only one state. Such a weak signal I1(t) +
I2(t) is a three-level signal, as shown in Fig. 5(a). By adding
an optimum amount of optical noise η(t), the laser output
detected through a polarizer is aligned along the x axis as
shown in Fig. 5(b); it is obvious that the output signal is an OR
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gates on Iy , both in response to input signals in (a) for B = −0.5 and
the same noise amplitude. The panels display intensity vs time. The
noise intensity is taken at the optimum point.

gate. When the same output is simultaneously detected along
the y direction a complementary logic output NOR is produced
[Fig. 5(c)]. Note that according to the truth table of Table I,
the system now flips only when the logic input enters the (1,1)
state or leaves it, which means that the system is synchronized
to the upper level in the three-level input signal I1 + I2. We
have quantified the reliability of the logic gate using a slightly
different indicator, P (logic) = Cgood/Ctotal, where Ctotal is the
total number of (1,1) bits in a long run and Cgood is the number
of output bits that respond to it as per the truth table. Such a
definition is used to eliminate a 3

4 success probability offset
that would always be there if the system remains stuck to one
state. Such an indicator is plotted in Fig. 6 versus the noise
amplitude; it exhibits an optimum close to 1 for a given noise
level.

Similarly, when one flips the sign of the bias B = −0.5,
the output state processes two complementary gates AND and
NAND when the output intensities are detected through the
polarizers aligned along the x and y directions, as shown in
Figs. 5(d) and 5(e). In contrast to the OR(NOR) gate, the laser
output now synchronizes to the lower level of the three-level
input signal. With the use of the above-mentioned definition
for the reliability of a gate a similar curve for the logic gates is
seen versus the noise level (Fig. 6). The optimum noise levels
for the two gates are identical, thereby the control to switch
from OR to AND is only by means of varying the bias of the
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FIG. 6. (Color online) Probability of obtaining a successful gate
operation (see the text for definition) vs optical noise amplitude. NOR

gate, solid circles; NAND gate, open circle. Inset: Two complementary
bistability cycles when the laser outputs Ix and Iy are detected
simultaneously.

system. These results not only demonstrate the generality of
LSR features in two completely different regimes of the laser
operation but also suggest the possibility of processing two
complementary gates simultaneously.

IV. CONCLUSION

In this paper we have verified the phenomenon of logical
stochastic resonance, i.e., we have shown that the interplay
between the noise floor and nonlinearity can indeed be ex-
ploited for the design of robust logic gates in a bistable optical
system. Specifically we have shown the direct and flexible
implementation of the fundamental logic gates OR(NOR) and
AND(NAND) in an optimal band of noise, from which any
universal computing photonic device can be constructed.
Furthermore, we have demonstrated the switching of logic
functions, namely, AND(NAND) to OR(NOR) and vice versa,
by using a bias signal as a logic response controller. The
sensitivity of the polarization rotor allows us to demonstrate
the LSR using noises of various physical origins.

The plasticity and sensitivity associated with the optical
system considered makes it an excellent system to explore
various features of LSR and demonstrate its generic nature.
Furthermore, we proposed the exploitation of the inhibition
regime of the laser system in order to implement two parallel
complementary logic gates simultaneously. This considerably
enhances the power of the LSR concept, as it indicates how
higher-dimensional systems may provide additional parallel
processing capability.

In summary, we expect that our theoretical study will
motivate experimental demonstrations. Further, it has the
potential to lead to useful photonic devices that exploit
the cooperative effects of noise and nonlinearity to optimize
performance in the presence of a noise floor. Finally, we have
suggested ideas for parallel logic operations that expand the
scope of LSR.
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