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Experimental observation of Loschmidt time reversal of a quantum chaotic system
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We have performed an experiment to demonstrate the approximate time reversal of a “chaotic” time evolution
of atomic de Broglie waves. We use ultracold atoms from a Bose-Einstein condensate in a quantum δ-kicked
rotor experiment, and show that an initial state can be approximately re-created even after a period of “chaotic”
evolution (a number of kicks). As this mechanism only works for a very narrow range of momenta, the net effect
is a narrowing of the momentum distribution after the kick sequence.
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I. INTRODUCTION

How the irreversibility of macroscopic systems is recon-
ciled with the reversibility of microscopic physical laws has
been discussed for over a century. The argument was first
made by Loschmidt [1] in reaction to Boltzmann’s statistical
theory of gases. These were the ideas that helped to develop
the theory of dynamical chaos [2,3]. Small perturbations may
grow exponentially with time in classical dynamics, which
makes the motion practically irreversible. This phenomenon
is known as classical chaos [4,5]. In quantum dynamics, on
the other hand, chaos does not exist. Exponential divergence
takes place only during the rather short Ehrenfest time [6],
and the quantum evolution remains stable and reversible in the
presence of small perturbations.

The delta-kicked rotor is a simple system well suited
to the study of classical and quantum chaos [7–10]. As a
consequence of the quantum-mechanical nature of the motion,
dynamical localization has been observed in this system
[11,12]. It has been central to the study of “quantum chaos,”
receiving significant attention in recent years [13,14]. Casati
and co-workers predicted that a quantum particle follows the
diffusive dynamics of a classical chaotic system only up to a
certain time, known as the quantum break time [15,16]. The
classical diffusion ceases due to quantum interference, and the
momentum distribution settles into an exponential distribution
at this point.

Here we present an experimental realization of the effective
time reversal of atomic matter waves as proposed by Martin
et al. [17]. We use a cloud of ultracold 87Rb atoms, driven
by a pulsed optical standing wave, as a quantum δ-kicked
rotor system. We show that the effects of a certain number of
kicks can be effectively reversed by further kicks by having a
different kick sequence. We observe that a significant fraction
of the atoms return back to their original zero-momentum state.
As the time reversal is very sensitive to the original momentum,
we observe a narrowing of the zero-momentum peak. This
phenomenon has been named “Loschmidt cooling” [17], even
though the phase space density is not increased. It should be
stressed that many schemes exist that narrow the momentum
distribution of a sample of atoms [18–20], some of which
increase the phase space density. The results presented here,
however, show the first observation of an effective reversal of
chaotic dynamics in the quantum regime. The phenomenon
observed here can be thought of as a multiple beam

interferometry, where the sharpness of the interference fringes
due to constructive interference has been demonstrated [21].

II. THEORY AND SIMULATIONS

The atom optics implementation of the delta-kicked rotor
consists of a two-level atom placed in a pulsed standing wave
of laser light that is detuned from resonance. The laser field
gives rise to a potential that varies sinusoidally with position.
The Hamiltonian of the system can be written as

H = p2

2m
− V0 cos(kLx)f (t), (1)

where f (t) describes the time dependence of the laser pulses.
For the delta-kicked rotor, f (t) = ∑N

n=1 δ(t − nT ), where
T is the kick period. In this system, it is convenient to
use the scaled kick period K̄ = 8ωRT , where ωR = h̄k2

L/(2m)
is the recoil frequency, with kL = 2π/λ, λ is the wavelength
of the laser beam, and m is the mass of the atom. A “quantum
resonance” exists for K̄ = 4π , where all kicks add coherently,
and quadratic energy growth with the number of kicks is
observed. At K̄ = 2π , an “antiresonance” is observed, where
the effect of each kick is effectively negated by the following
kick.

The potential V0 can be written as h̄φd , where φd =
τp�2/4	 is the kick strength, τp is the pulse duration,
and � = d · E/(2h̄) is the on-resonance Rabi frequency. The
parameter d is the atomic dipole moment induced by the
laser with electric field E. 	 = ωL − ω0 is the detuning from
resonance, where ωL is the laser frequency and ω0 is the
resonance frequency.

Following [17], we use a Loschmidt pulse train consisting
of N/2 pulses with a scaled period of K̄ = 4π + ε, a waiting
time 6π after the last pulse, and then N/2 pulses with a
period of 4π − ε, thus, a total of N pulses. The parameter ε is
proportional to the difference of the pulse period from the first
primary resonance. We simulate the time evolution of the atom
optics kicked rotor (AOKR) using the split operator method
as described in [22]. We Fourier transform our wave function
from position space into momentum space and back again,
as the kick potential is a diagonal operator in position space,
and the free evolution is a diagonal operator in momentum
space. The kicks are sufficiently short that the evolution due
to the momentum can be ignored during the kicks, which is
equivalent to the Raman-Nath regime. We start the simulation
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FIG. 1. (Color online) The simulated momentum distribution
after the kick sequence (solid line) and the initial wave packet
(dashed line) are shown. The parameters are N = 10, φd ∼
2.5, and ε = 2. The inset shows a magnified view of the area
around p = 0.

with a Gaussian wave packet with a width (2σ ) of 0.1 recoils
in momentum space.

The momentum distribution after the kick sequence can be
written as Wp(t) = |〈p|ψ(t)〉|2/|〈0|ψ(0)〉|2. In Fig. 1, we show
the resulting momentum distribution in the simulation after a
pulse sequence as discussed. A much narrowed momentum
distribution around p = 0 after the kick sequence is observed,
as the restitution of the wave function only works for very
small values of p. The rest of the probability is transferred
to higher momentum states, with offsets of 2nh̄k with
integer n. Note, however, that the probability for p = 0 returns
to its previous value. Martin et al. [17] have performed exten-
sive simulations, showing that the p = 0 peak gets narrower
as the number of kicks N in the sequence or the intensity
increases. This, however, does mean that fewer atoms are in
this peak than at lower intensities and/or lower kick number.
Note that the final momentum distribution is not Gaussian. We
therefore take the FWHM as the indicator for the width of the
peak.

III. THE EXPERIMENT

For the experiment, a reasonable number of atoms at
small initial momenta is of paramount importance, and we
therefore use a Bose-Einstein condensate (BEC) of (F = 1)
87Rb at a temperature of 50 nK as the source of atoms.
The atoms are first captured and cooled in a magneto-
optical trap (MOT), then transferred using a push laser to a
second MOT in a second, connected chamber. An ultrahigh
vacuum is produced in the second chamber by an ion
pump connected to it. The condensate is formed in a dipole
trap overlapped with the second MOT. The dipole trap is
made by a pair of intersecting focused CO2 laser beams. A
detailed description of the experimental setup can be found
in [22].

We realize the AOKR by pulsing a near resonant optical
standing wave, derived from a 780-nm diode laser onto a BEC
of ∼104 87Rb atoms. The trap containing the BEC is turned off

500 μs before the kick sequence to reduce mean field effects.
The kick laser is locked to the S 1

2
, F = 2 → P 3

2
, F ′ = 3

transition in the 85Rb isotope. Hence, the laser frequency
is detuned by 2.45 GHz from the relevant F = 1 → F = 2
resonance frequency. The laser beam from the diode laser
passes through a 50/50 beam splitter and the output beams
are then passed through separate acousto-optic modulators
(AOMs) for fast switching. After passing through the AOMs,
the two beams pass through single mode optical fibers and are
focused onto the BEC from opposite directions to produce a
standing wave. The beam diameter at the focus is ∼100 μm.

The laser pulses of the standing wave are the kicks
that modify the momentum distribution of the atoms. The
momentum distribution of the atoms after the kick sequence
is measured by absorption imaging in time of flight, with a
flight time of typically 8 ms. Just prior to imaging, the atoms
are optically pumped to the F = 2 state by a 100-μs pulse
on the F = 1 → F ′ = 2 repump transition. An absorption
image is then obtained using a probe laser that is tuned to
the S 1

2
, F = 2 → P 3

2
, F ′ = 3 transition.

IV. RESULTS AND DISCUSSIONS

Typical results are shown in Fig. 2 (top), where we show the
absorption images of the momentum distribution before kick-
ing, and the distribution after each kick. We sum the images
along the rows to obtain a one-dimensional momentum distri-
bution, which can be compared to the simulation. The resulting
momentum distribution of the ensemble after 10 kicks with
ε = 1 (bottom left) and the magnified view of the central part
of the same distribution are also shown in the figure. Note that
some of the structure in the final distribution of Fig. 1 can be
observed as a pedestal on the final zero-momentum peak in the
experiment.

After deconvolution with the original trap size, the width
of the zero-velocity peak after 10 kicks is σ = 0.21 (recoils)
as compared to σ = 0.43 (recoils) for the initial momentum
distribution without kicking. It should be noted that the height
of the zero-momentum peak after the full sequence does not
return to the height of the original BEC peak, which is currently
due to experimental limitations, mainly the resolution of the
imaging system and the observable amount of absorption.

The Loschmidt time reversal works for a very narrow range
of initial momenta, which depends on the value of ε, the kick
strength, and the total number of kicks. The more narrow
this range, the fewer the atoms that are part of it. Hence,
experimental limitations make it difficult to observe extremely
narrow momentum distributions.

The BEC we produce in the experiment has a certain
finite momentum width. In order to take into account this
initial momentum width in the simulation, we divide the
initial BEC distribution into a number of components and
run the simulation for a range of initial momenta. We sum
over the thus obtained momentum distributions, weighted
by the initial BEC distribution. To account for the limited
experimental resolution, we finally perform a convolution of
the resultant momentum profile from the simulation with a
Gaussian, with a width that is given by the experimental
resolution. We can then determine the height of the momentum
peaks obtained corresponding to various diffraction orders.
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FIG. 2. (Color online) (Top) Absorption images of the momen-
tum distribution before and after each kick (1–10). (Bottom) The
momentum distribution of the atoms at N kicks (bottom left) for the
experiment (solid line) and the simulation (dashed line). The central
part of the same curve is also shown (bottom right), with the initial
state represented by the dotted red line. The parameters are N = 10,
φd ≈ 2, and ε = 1.

In both the simulation and the experiment, the heights of
the diffraction orders are summed. We show the height of
the zero-momentum peak P (0), which corresponds to the
number of atoms left within the resolution of the experiment
relative to this sum in Fig. 3, going through the kick
sequence for two different kick strengths. The error bars
in the experiment are determined by multiple runs of the
experiment.
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FIG. 3. (Color online) The normalized height of the zero-
momentum peak P (0), as obtained from the numerical simulation
(circles) and from the experiment (stars). Parameters are ε = 1 and
(a) φd ∼ 2 and (b) φd ∼ 3 .

We observe good agreement between the simulation and the
experiment in both cases. The normalized height is small after
the first kick, as the probability is distributed across a number
of momentum states. The height increases after the second
kick, as the probability density for higher momentum states
is less, which is clear from the absorption picture in Fig. 2.
After the complete kick sequence, constructive interference of
the wave-function components leads to a strong peak at zero
momentum. It should be noted that a maximum height does
not necessarily correspond to the greatest number of “cold”
atoms remaining, but rather to the most atoms that appear
cold within the experimental resolution remaining. From the
comparison between the simulation and experimental results,
we believe we have a good understanding of the parameters
in the experiment, and we conclude that “Loschmidt” time
reversal has been realized.

In Fig. 4, we plot the width (FWHM) in recoils of the
zero-momentum peak as a function of ε. The error bars shown
are obtained by running the experiment a number of times.
Initially, we get some higher values of widths for the central
peak, which starts to decrease around ε = 1 and gets narrower
at ε � 1.3. It should be noted that there are fewer atoms where
the peak is narrower. The results are more clear, as seen in the
theoretical simulation with no convolution applied in the inset
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FIG. 4. (Color online) Width of the zero momentum peak from
experiment (diamonds) and simulation (circles) for a range of ε

values. Also shown (inset) is a theoretical simulation of the central
part of the momentum distribution for the same range of ε values
with no convolution applied. Other parameters are N = 10 and
φd ∼ 2.

of Fig. 4. The return probability for the atoms is equal to 1 (in
the simulation). As shown, the final width of the momentum
distribution changes for different ε. The side lobes appearing
for ε values between 0.5 and 1 could be the evidence for
the large widths obtained in this range. The lobes then start

to disappear and vanish at ε � 1.3, which can be seen as
a much narrower width of the momentum distribution for
the corresponding value of ε. The full structure appearing in
the theory plot is difficult to resolve in the experiment because
of limited experimental resolution, but the side lobes can be
observed in Fig. 2. The experimentally determined widths,
however, follow the general trend of those from simulation
after the convolution.

V. CONCLUSIONS

In conclusion, we have experimentally observed evidence
for the time reversal of atomic matter waves in the ultracold
regime. As the time reversal only works for a narrow range
of initial momenta, it shows a narrowing of the momentum
distribution. We have shown this for a range of parameters in
our experiment. In the future, it would be interesting to add a
potential and see the effects of interactions between atoms as
indicated by [23] on the phenomenon of time reversibility in
quantum chaos.
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