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Lyapunov decoherence rate in classically chaotic systems
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We provide a path integral treatment of the decoherence process induced by a heat bath on a single particle
whose dynamics is classically chaotic and show that the decoherence rate is given by the Lyapunov exponent. The
loss of coherence is charaterized by the purity, which is calculated semiclassically within diagonal approximation,
when the particle initial state is a single Gaussian wave packet. The calculation is performed for weak dissipation
and in the high-temperature limit. This situation allows us to simplify the heat bath description to a single
random potential. Although the dissipative term is neglected in such approach, the fluctuating one can be treated
phenomenologically to fit with the above regime. Our results are therefore valid for times shorter than the inverse
of the dissipation rate.
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I. INTRODUCTION

A well-established way of making classical features appear
in quantum systems is to study them when the actions involved
are much greater than Planck’s constant. This semiclassical
approach has allowed us to explore the quantum-classical
transition in a very interesting class of systems, namely, those
which are classically chaotic. In different contexts, several
results have shown how classically chaotic dynamics has an
influence on the quantum behavior [1]. However, it has been
shown experimentally that strictly quantum features such as
superpositions between macroscopically different states are
still present even when actions are bigger than h̄. In Ref. [2],
interference patterns measured in Josephson junctions show
the presence of superpositions between current states, each of
those corresponding to the motion of millions of Cooper pairs.
Therefore, besides the semiclassical regime, a decoherence
mechanism must be responsible for the emergence of pure
classical behavior where such superpositions are absent [3].

The decoherence process is one of the effects induced by the
coupling to an environment, and the path integral description
of linear systems interacting with a heat bath is very well
established [4–7]. Nevertheless, for nonlinear systems there
is no general path integral approach to such problem, and
specific kinds of approximations have been developed [6]. At
first glance, it can be argued that decoherence happens so fast
that it does not matter whether the dynamics is linear or not [8].
On the other hand, calculating a decoherence rate in such a
regime contains the assumption that the isolated dynamics of
the system of interest is not relevant at all. That is true only
if the coupling between system and heat bath is weak [7],
and this is not the regime we are interested in here. Once the
nonlinearity is relevant, different semiclassical approaches are
available [9–11] within either the path integral or the master
equation framework.

In this context, a very interesting result was conjectured
for the first time in Ref. [12]. There the authors proposed
theoretically that a classically chaotic system could lose
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coherence at a rate given by the Lyapunov exponent, i.e., a rate
completely independent of the environment parameters and
related to the classically chaotic dynamics. A series of works
appeared afterwards trying to implement that proposal on a
solid basis [13–17] (focusing also on the quantum-classical
correspondence aspect of the problem). A first approach was
developed based on the resolution of a master equation for
the Wigner function of the classically chaotic system. It was
shown analytically [14] and numerically [16] that the entropy
production rate obtained from that approach is proportional
to the Lyapunov exponent. The analytical calculation was
obtained, however, under the following approximations: The
chaotic dynamics is taken into account up to its linear regime;
the friction from the heat bath and the quantum corrections to
the classical evolution of the Wigner function are neglected.
Despite this, such results were supported by more rigorous
calculations considering a hyperbolic linear system [18].

A second approach was developed using path integral
methods, and it is known in the literature as Loschmidt
echo (LE) [19–21]. The LE is the probability to recover a
certain initial state when the Hamiltonian used in the forward
time evolution is slightly perturbed for the time-reversed
propagation of the final state. Considered as an indirect
measure of decoherence [22–25], the LE was shown to decay
with the Lyapunov exponent when the system is classically
chaotic. On the other hand, the LE deals with isolated systems
only, and therefore it has been understood as a stability measure
of them, as proposed originally by Peres [26]. Thus, a path
integral formulation of a classically chaotic system interacting
with a heat bath still is a very challenging problem.

The main goal of the present work is to provide a path
integral derivation of the result conjectured in [12] avoiding
the LE problems mentioned above. In Sec. II the treatment
of the heat bath is described, and the regime considered is
presented. In Sec. III we consider the purity as a measure
of decoherence, and it is calculated through semiclassical
methods for arbitrary initial states. In Sec. IV it is shown
the role played by correlations between pairs of classical
trajectories in the decay of the purity and how they give
rise to a decoherence rate given by the Lyapunov exponent
when the initial state is a Gaussian wave packet of arbitrary
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width. Finally, conclusions are presented in Sec. V including a
brief comparison between LE and purity calculations pointing
out their differences.

II. DESCRIPTION OF THE HEAT BATH

We consider here a single particle whose dynamics is
classically chaotic, such as electrons in a clean ballistic
conductor [27]. Our goal is to describe its dynamics when
it is coupled to a heat bath, focusing on the decoherence
process. We start from the path integral formulation in terms of
Feynman-Vernon influence functionals [28] with a Lagrangian
given by L = LS + LI + LB . The LS term describes the
isolated dynamics of the particle, which we assume to be a
classically chaotic billiard type of confinement. The terms LI

and LB , interaction and heat bath Lagrangians, respectively,
are assumed to be given by a Caldeira-Leggett model [4]
with a linear coupling between particle and bath coordinates.
For initial states of the form ρ = ρS ⊗ ρB , where ρS and ρB

are the initial density matrices of the particle and the bath,
respectively, the time evolution of the reduced density matrix
ρS is given by [28]

ρS(xf ,yf ; t) =
∫

dxidyiJ (xf ,yf ,xi ,yi ; t)ρS(xi ,yi ; 0), (1)

where the propagator J , obtained after tracing out the heat
bath degrees of freedom with ρB chosen as a thermal state, is
given by the following path integral:

J (xf ,yf ,xi ,yi ; t) =
∫

DxDy e
i
h̄
S̃eff[x,y]. (2)

For an Ohmic spectral density and in the high-temperature
limit, S̃eff is given by [4–6]

S̃eff[x,y]

= S̃o[x,y] + mγ�d [x,y] + i
4mγkBT

h̄
�f [x,y]; (3)

S̃o[x,y] = So[x] − So[y], So[q] = ∫ t

0 ds LS[q(s),q̇(s)] gives
the isolated particle dynamics, and the other two terms, �d and
�f , lead to dissipation and decoherence, respectively. They are
local quadratic functionals of the paths x and y without any
other prefactors involving the particle mass m, the friction
constant γ , h̄, or the product kBT of the Boltzmann constant
and the heat bath temperature [4–6]. In a regime of very weak
dissipation and sufficiently high temperature, the term �d is
negligible at least for timescales much shorter than 1/γ . In
this situation, the effective influence of the heat bath can be
modeled in a much simpler way.

Let us consider for a moment the following Lagrangian
L = LS − q · f(t), where q is the position vector of the system
LS and f(t) is a stochastic force. One can also construct the
time evolution of the reduced density matrix ρS in this case, but
it would depend on f(t). Thus, assuming that f(t) is Gaussian
distributed with an average value 〈f(t)〉 = 0, we can calculate
the following averaged propagator [29]:

J (xf ,yf ,xi ,yi ; t) =
∫

DfP [f]
∫

DxDy e
i
h̄
S̃[x,y;f], (4)

where P [f] is a Gaussian functional and

S̃[x,y; f] = S̃o[x,y] −
∫ t

0
ds f(s) · [x(s) − y(s)]. (5)

The average over f(t) leads to the effective action S̃eff =
S̃o[x,y] + iS̃f [x,y] in which [29]

S̃f [x,y]

=
∫ t

0
ds

∫ s

0
ds ′ [x(s) − y(s)]M̄(s − s ′)[x(s ′) − y(s ′)]

(6)

and M̄(s − s ′) is 2 × 2 matrix (since we are considering a
two-dimensional system) whose elements are the correlation
functions of the stochastic force

M̄i,j (s − s ′) = 1

h̄
〈fi(s)fj (s ′)〉, (7)

with fi(t), i = 1,2, being the f(t) components. Since we are
free to choose the spectra of 〈fi(s)fj (τ )〉, we take it as

1

h̄
〈fi(s)fj (s ′)〉 = 4mγkBT

h̄
δij δ(s − s ′), (8)

where δij is the Kronecker delta. This choice leads to

S̃eff[x,y] = S̃o[x,y] + i
4mγkBT

h̄
�f [x,y]. (9)

Equation (9) is identical to (3) except for the dissipative
term. Therefore, we can model the influence of the heat bath
in the regime of very weak dissipation and high temperature
just by the fluctuating time-dependent potential shown in (5)
and by replacing the propagator (2) by the one in (4).

III. SEMICLASSICAL PURITY

The next step then is to write a semiclassical expression for
(4), which can be written in terms of Feynman’s propagators

J (xf ,yf ,xi ,yi ; t)

=
∫

DfP [f]K(xf ,xi ,f; t)K∗(yf ,yi ,f; t), (10)

where K(xf ,xi ,f; t) = ∫
Dx eiS[x,f]/h̄, K∗ is its complex con-

jugate, and S[x,f] = So[x] − ∫ t

0 ds f(s) · x(s).
We assume that the coupling to f is classically small in

order that only the actions, i.e., the phases, are affected while
the trajectories given by LS remain unchanged. Under this
assumption, we replace K by the semiclassical Van Vleck
formula [1] for two-dimensional systems

Ksc(xf ,xi ,f; t)

=
(

1

2πih̄

) ∑
α̃(xi→xf ,t)

Dα̃ exp

[
i

h̄
Sα̃(xf ,xi ,f; t)

]
, (11)

where Sα̃ is the classical action S of the trajec-
tory α̃ running from xi to xf in time t , and Dα̃ =
|det(∂2Sα̃/∂xi∂xf )|1/2 exp (− iπ

2 μα̃) is the Van Vleck deter-
minant including the Maslov index.

To characterize the decoherence process, we calculate the
purity Tr[ρ2

S(t)], where the trace is performed over the particle
degrees of freedom since ρS is already a reduced density
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matrix. If ρS is initially pure, the purity starts from one
and decays as time evolves due to heat bath influence. The
semiclassical expression for the purity is therefore given by
the trace of the product of two ρS(t), each one evolved by the

semiclassical version of J calculated from (10) when K is
replaced by (11). That yields the following expression, which
recalls the LE one [23,30] (see Sec. V for a brief discussion of
this issue)

Tr
(
ρ2

S(t)
) =

(
1

2πh̄

)4 ∫
dxf dyf dxidyidx′

idy′
i

∫
DfDg P [f] P [g] ρS(xi ,yi ; 0) ρS(y′

i ,x
′
i ; 0)

×
∑

α̃(xi → xf ,t),
α̃′(yi → yf ,t)

∑
η̃(y′

i → yf ,t),
η̃′(x′

i → xf ,t)

Dα̃D∗
α̃′Dη̃D

∗
η̃′

× exp

{
i

h̄
[Sα̃(xf ,xi ,f; t) − Sα̃′ (yf ,yi ,f; t) + Sη̃(yf ,y′

i ,g; t) − Sη̃′ (xf ,x′
i ,g; t)]

}
. (12)

Due to the rapidly oscillatory phase factor containing
the action differences, most of the contributions will cancel
out except for the semiclassically small action differences
originating from pairs of trajectories that are close to each other
in configuration space. We can thus use a linear approximation
in order to relate the actions Sα̃ , Sη̃′ along the trajectories α̃, η̃′
to the actions Sα, Sη′ along nearby trajectories α, η′ connecting
the midpoint ri = (xi + x′

i)/2 with xf . In the same way we
relate Sα̃′ , Sη̃ to the actions Sα′ , Sη along the nearby trajectories
α′, η connecting the midpoint r′

i = (yi + y′
i)/2 with yf . The

expansion will contain terms up to zero order in D and terms up
to first order in the exponential. For Sα̃ and Sα̃′ , the linearization
yields [30]

Sα̃(xf ,xi ,f; t)

≈ So,α(xf ,ri ; t) −
∫ t

0
ds qα(s) · f(s) − 1

2
u · pα

i ,

Sη̃(yf ,y′
i ,g; t)

≈ So,η(yf ,r′
i ; t) −

∫ t

0
ds qη(s) · g(s) + 1

2
u′ · pη

i , (13)

where So,α is So[x] along the trajectory α, u = (xi − x′
i), u′ =

(yi − y′
i), and pα

i , pη

i are the initial momenta of trajectories
α, η. Analagous expressions are obtained for Sα̃′ and Sη̃′ . As
mentioned before, for the prefactors we have Dα̃ ≈ Dα , Dη̃ ≈
Dη and analogously for Dα̃′ , Dη̃′ .

In order to evaluate the sums over paths in (12) we consider
only the diagonal contribution obtained by the pairings α = η′
and α′ = η. Besides that, we perform the Gaussian averages
over f and g as described in (6). Using (7) and (8) we obtain

Tr
[
ρ2

S(t)
] =

∫
dxf dyf dridr′

iρ
W
S (ri ,p

η

i )ρW
S (r′

i ,p
α
i )

×
∑

α(ri → xf ,t),
η(r′

i → yf ,t)

|Dα|2|Dη|2

× exp

{
−2κ

h̄2

∫ t

0
ds[qη(s) − qα(s)]2

}
, (14)

where κ = 4mγkBT and

ρW
S (r,p) =

(
1

2πh̄

)2 ∫
du ρS

(
r + u

2
,r − u

2
; 0

)
e− i

h̄
u·p

(15)

is the Wigner function of the initial ρS .

IV. DECOHERENCE RATES

We consider two kinds of contributions in order to evaluate
(14). First, if α and η are close enough to each other in phase
space, it is possible to linearize the motion of one trajectory
around the other to obtain

qη(s) − qα(s) ≈
[

(r′
i − ri) + 1

mλ
(pη

i − pα
i )

]
eλs

2

+
[

(r′
i − ri) − 1

mλ
(pη

i − pα
i )

]
e−λs

2
, (16)

where λ is the Lyapunov exponent. On the other hand, if they
are not close, α and η can be first considered as free particle
trajectories for timescales shorter than an average free flight
time to. In this case,

qη(s) − qα(s) ≈ (r′
i − ri) + s

m
(pη

i − pα
i ). (17)

After to, we can estimate [qη(s) − qα(s)]2 only by its average
value over the billiard area A. Assuming ergodicity, this
average can be calculated as

〈[qη(s) − qα(s)]2〉A =
∫

A

dq dq′ (q − q′)2

A2
. (18)

It can be verified for simple geometries that (18) yields
〈(qη(s) − qα(s))2〉A ∝ A.

The prefactors |Dα|2 and |Dη|2 in (14) can be regarded
as Jacobians when transforming the integrals over the final
positions xf and yf into integrals over the initial momenta
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pη

i ≡ pi and pα
i ≡ p′

i [19,21] leading to

Tr
[
ρ2

S(t)
] =

∫
dridr′

idpidp′
iρ

W
S (ri ,pi)ρ

W
S (r′

i ,p
′
i)

× exp

[
−2κ

h̄2

∫ t

0
ds Q2(ri ,r′

i ,pi ,p′
i ; s)

]
, (19)

where the function Q2 is taken either by the square of (16) or
(17) or simply by (18) replacing pη

i by pi and pα
i by p′

i . Thus,
for initial states given by single Gaussian wave packets as

ρS

(
r + u

2
,r − u

2
; 0

)

= 1

(πσ 2)
exp

[
− (r − ro)2

σ 2
− u2

4σ 2
+ i

h̄
po · u

]
, (20)

Tr
[
ρ2

S(t)
]

can be calculated for the different situations men-
tioned above.

Defining τ ≡ γ t and using (17), the result for times
between 0 and τo ≡ γ to is

Tr
[
ρ2

S(τ )
] =

[
1 + 16a1τ + 2

3
a2τ

3
(

1 + a1

2
τ
)]−1

, (21)

where a1 = kBT /Ē, Ē = h̄2

2mσ 2 , and a2 = D/γσ 2 with D =
4kBT
mγ

. Since our model is valid for times much shorter than
1/γ , τ is certainly smaller than 1. The values of a1 and a2

define relations between the free parameters of the problem.
It is important to mentioned that we have not assumed at
any point a highly localized initial state. Therefore, a2 ∼ 1
when σ 2 is comparable to D/γ and a2 � 1 for localized wave
packets. Equation (21) shows that the purity starts from one,
as it should be since the initial state (20) is pure, and decreases
as τ approaches τo.

When τ > τo, there are two contributions: Either the
trajectories are close to each other in the sense mentioned
before or they are not. In the latter case, since (18) is mainly
A, (14) together with (20) yield

Tr
[
ρ2

S(τ )
] = exp

[
−16π

kBT

�
(τ − τo)

]
, (22)

where � = 2πh̄2

mA
is the mean-level spacing for a billiard of area

A. In the regime considered here, kBT � � and (22) decays
very fast.

When the trajectories are correlated by the Lyapunov
spreading, (14), (16), and (20) yield

Tr
[
ρ2

S(τ )
] =

{
1 + b1 [(1 + b2) sinh (2�τ ) + (1 − b2)2�τ ]

+ b3

[
cosh (2�τ ) − (2�τ )2

2
− 1

]}−1

, (23)

where b1 = 1
�

kBT

Ē
, b2 = (2Ē/h̄λ)2, b3 = 32( 1

�
kBT
h̄λ

)2, and � =
λ/γ . For �τ > 1, only those terms with e2�τ are relevant, and
(23) can be written as

Tr
[
ρ2

S(τ )
] ≈ (1 + βe2�τ )−1, (24)

where β = b1
(1+b2)

2 + b3
2 . Equation (23) shows that the classi-

cally chaotic dynamics induces a decoherence rate independent
of the heat bath parameters.

V. CONCLUSIONS AND DISCUSSIONS

Summarizing, we have shown how to describe the decoher-
ence process of a classically chaotic system coupled to a heat
bath within a path integral framework. Our approach leads to a
decoherence rate given by the Lyapunov exponent. Although
the results above were derived only for single Gaussian wave
packets with arbitrary widths as initial states, the semiclas-
sical approach presented also allows the treatment of their
superpositions. This is an important difference compared to
previous works where only localized wave packets have been
considered [12,16,19,23]. The results for superpositions will
be presented elsewhere and will be compared to the predictions
of Refs. [14,18], which have claimed that the Lyapunov regime
does not depend on the initial state. Concerning the description
of the stable and unstable directions in (16), that is not the most
general one, but it certainly captures the qualitative behavior
one should find in a specific case. Different timescales of
the classical chaotic dynamics were taken into account in the
present calculation differently from those in Refs. [14,18],
where it is considered up to its linear regime only.

It is possible to extend the present results beyond the
high-temperature limit as long as the correlation time of
thermal fluctuations is much shorter than the timescales of the
system of interest dynamics [7]. Corrections to the diagonal
approximation performed here could also be studied [27] for
action differences of the order of h̄. As in the LE case [30],
they would take quantum effects into account systematically.
Dissipation was neglected in the present calculation, making
the heat bath treatment comparable to previous ones using
master equations [14,16]. However, when the coupling to
the heat bath is strong enough, dissipative terms cannot be
neglected, and it is still an open question whether the Lyapunov
decoherence rate would be robust to that.

Concerning the experimental observation of our theoretical
results, it was predicted recently in Ref. [31] that Josephson
junctions devices could also be used to observe the Lyapunov
regime in the time evolution of the fidelity. However, those
devices are almost isolated from the heat bath in that context.
We believe that the same regime and initial state preparation
described there could be used to study the decay of interference
fringes and to observe the Lyapunov decoherence rate as long
as the heat bath temperature is increased.

We briefly compare now the semiclassical calculation of
the purity presented here and those of the LE [19,23,30]. At
first glance, Eq. (12) is identical to Eq. (5.7) in Ref. [23] or
to Eq. (73) in Ref. [30]. They certainly have one thing in
common: All of them are given in terms of four sums over
chaotic trajectories, which are considered unperturbed either
by the heat bath influence (in the purity case) or by the extra
potential (in the LE case). In other words, those equations result
from the same perturbative approach that allows us to use the
well-known properties of those trajectories. One obtains then
from those equations the leading-order result after performing
diagonal approximation, which is another common point they
have.

The first subtle (though important) difference concerns the
initial state. In Ref. [23], for example, as in most of the
semiclassical analytical works on LE, a further approximation
is performed over Eq. (5.7) since a highly localized Gaussian

046214-4



LYAPUNOV DECOHERENCE RATE IN CLASSICALLY . . . PHYSICAL REVIEW E 83, 046214 (2011)

wave packet is considered as initial state leading to Eq. (5.11).
A more general calculation, however, was done recently in
Ref. [30] allowing any kind of initial state, and we have
followed it closely here. The second difference concerns the
averages. Equation (73) in Ref. [30] shows very clearly that
LE is mostly calculated as an average of fidelity amplitude
squared modulus. On the other hand, the purity is obtained
from the trace of the reduced density matrix squared, i.e., of
the product of two averaged quantities. Hence the averages
over the random potential that appear in (12) are always
performed independently. In LE case, the perturbation often
depends on the trajectories, which may be correlated or not.
Thus averages cannot always be performed independently.
Nevertheless both purity and LE semiclassical expressions
have two kinds of contributions arising from uncorrelated and
correlated trajectories, the last one leading to the Lyapunov
regime. The uncorrelated trajectories give rise to the Fermi

golden rule regime in the LE case, which sometimes dominates
its decay. For the purity they lead to a very big decoherence rate
[Eq. (22)], which kills this contribution very fast and makes
the Lyapunov rate always the dominant one (this result agrees
with the numerical ones in Ref. [16]). Finally, we have shown
that the Lyapunov regime can be obtained from the exponents
[Eqs. (15) and (19)] instead of the prefactors [19,23], avoiding
short time problems.
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