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Using dynamical barriers to control the transmission of light through slowly
varying photonic crystals
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We use semiclassical Hamiltonian optics to investigate the propagation of light rays through two-dimensional
photonic crystals when slow spatial modulation of the lattice parameters induces mixed stable-chaotic ray
dynamics. This modulation changes both the shape and frequency range of the allowed frequency bands, thereby
bending the resulting semiclassical ray trajectories and confining them within particular regions of the crystal.
The curved boundaries of these regions, combined with the bending of the orbits themselves, creates a hierarchy
of stable and unstable chaotic trajectories in phase space. For certain lattice parameters and electromagnetic
wave frequencies, islands of stable orbits act as a dynamical barrier, which separates the chaotic trajectories into
two distinct regions of the crystal, thereby preventing the rays propagating through the structure. We show that
changing the frequency of the electromagnetic wave strongly affects the distribution of stable and unstable orbits
in both real and phase space. This switches the dynamical barriers on and off and thus modulates the transmission
of rays through the crystal. We propose microwave analogs of the photonic crystals as a route to the experimental
study of the transport effects that we predict.
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I. INTRODUCTION

Quantum chaos explores the quantum-mechanical proper-
ties of systems whose classical counterparts exhibit determin-
istic chaos [1,2]. Most studies of quantum chaos in experi-
mentally accessible systems have focused on atoms [1,3,4]
and semiconductor systems, in which electron confinement by
potential energy barriers of various shapes generates chaotic
classical trajectories.

Semiconductor superlattices, comprising a series of quan-
tum wells, have been used to realize a fundamentally different
regime of nonlinear dynamics, in which the effective clas-
sical Hamiltonian originates from an intrinsically quantum-
mechanical feature of the system: tunnel coupling of the
wells to form energy bands, known as minibands [5–9].
When a bias voltage and tilted magnetic field are applied,
the energy versus crystal momentum dispersion relation for
the energy bands generates chaotic dynamics equivalent to
those of a one-dimensional harmonic oscillator driven by a
plane wave [5,7–9]. Unusually, this system does not obey the
Kolmogorov-Arnold-Moser (KAM) theorem [10–14], which
means that chaos switches on and off abruptly at critical values
of the applied fields. At the critical fields, the electron phase
space is threaded by intricate web patterns, known as stochastic
webs [10–14]. These webs form a network of conduction
channels, through which the electrons propagate in real space
[5–9]. When the web is switched on, the electrons undergo
chaotic diffusive motion along its filaments, thereby producing
a sharp increase in the measured and calculated direct current
[7,8] and increasing both the power and frequency of GHz
and THz current oscillations by an order of magnitude [9].

*mark.fromhold@nottingham.ac.uk

Consequently, chaotic semiclassical transport through energy
bands provides a mechanism for controlling transport through
periodic structures. In the absence of electron scattering,
switching due to the formation and destruction of stochastic
webs is extremely sensitive, due to the inherent instability
of chaotic orbits, and would produce δ-function peaks in the
current-voltage characteristics. In real superlattices, though,
the peaks are broadened by electron scattering. This limitation
can, in principle, be overcome by using an analogous system
comprising ultracold atoms moving through the energy bands
of an optical lattice with a tilted harmonic trap [15].

Due to the formal similarity between Maxwell’s equations
and the Schrödinger equation [1], microwave and optical
systems have been used to study the ray-wave correspondence,
analogous to quantum chaos, for electromagnetic radiation.
Much of this work has focused on electromagnetic billiards in
which the radiation is confined in a quasi-two-dimensional
(2D) region of space, usually a cavity or dielectric block,
whose boundary is shaped to create chaotic dynamics for light
rays confined within the block. There has been considerable
technological interest in such systems because, when used
as a resonator for a microlaser, they can produce strongly
focused emission whose power is orders of magnitude higher
than obtained from traditional circular resonators [16–20].
Microwave systems have also been used to study the ray-wave
correspondence in billiards, photonic crystals, and in a range
of disordered dielectric media [21–24].

In 2D photonic crystals [25,26], ray dynamics related to
the chaotic semiclassical motion of electrons in a superlattice
miniband has been predicted when the lattice parameters, and
hence the local refractive index, vary slowly with position
[27,28]. Such structures offer major advantages over super-
lattices for studying, and potentially exploiting, chaotic band
transport effects because they operate at room temperature
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and without an applied magnetic field. As a ray passes through
the crystal, changes in the lattice parameters alter the local
photonic band structure, in particular, the shape and frequency
range of the allowed bands. This exerts an effective “force”
on the ray [27,29], whose trajectory can be determined by
solving Hamilton’s equations [27], just as calculating the
path of a classical particle subject to real forces. When the
lattice parameters are chosen to approximate the potential
landscape experienced by an electron in a superlattice with a
tilted magnetic field, the ray paths share many characteristics
of non-KAM chaos. In particular, they have a rich mixed
stable-chaotic phase-space structure [27].

In this paper, we study the origin of mixed-stable-chaotic
ray dynamics in spatially modulated photonic crystals and
how such dynamics depend on the parameters both of the
crystal and the electromagnetic wave. We focus on two key
aspects of the ray dynamics. First, we consider how the
spatial variation of the lattice parameters affects the range
and dispersion of the allowed frequency bands and, hence,
the ray trajectories obtained from Hamiltonian ray dynamics.
Second, we analyze how the form of the ray trajectories,
in real and phase space, depends on the frequency, ω, of
the electromagnetic wave. In contrast to previous work [27],
which considered ray dynamics at fixed frequency, we find
that the location and extent of the stable and chaotic orbits
depend strongly on ω. By considering four critical points in
the local Brillouin zone, we determine the loci of classically
allowed regions of the photonic crystal, where rays can
propagate, and the corresponding forbidden regions that the
rays cannot enter. Within the classically allowed regions, we
identify additional dynamical barriers, which are formed by
localized stable orbits and are impenetrable to chaotic ray
trajectories [27]. We show that as the ray propagates through
the crystal, changes in the local band structure cause it to
reach the band extrema (highest or lowest frequency within an
allowed band), where Bragg reflection occurs. Together, Bragg
reflection and the action of the dynamical barriers limit the
spatial region in which a ray moves, and drive many ray paths
chaotic. As ω increases, a single region of chaos splits into two
distinct chaotic seas separated by a dynamical barrier. Further
increasing ω suppresses chaos in one of these two regions,
thereby deactivating the dynamical barrier and its effect on
ray transport.

The structure of the paper is as follows. In Sec. II,
we define the crystal structure and consider the frequency
versus Bloch wave-vector dispersion relations for the allowed
frequency bands in which electromagnetic radiation can
propagate through the crystal. Next, in Sec. III we introduce
the semiclassical (Hamiltonian) equations of ray motion
and consider, qualitatively, how the shape of the dispersion
relations influences the ray trajectories, in particular, whether
they are open or closed. In Sec. IV, we consider the spatial
regions of the crystal in which the rays propagate and show
how the shapes of these regions, and the orbits themselves,
are determined by the form of the dispersion relations and
the photonic crystal structure. In Sec. V, we demonstrate the
existence and influence of dynamical barriers, which originate
from islands of stability within a chaotic sea rather than
from a classically forbidden region of high potential energy.
In particular, we show that these dynamical barriers can

control the transmission of electromagnetic waves through the
photonic crystal. In Sec. VI, we discuss possible routes to the
experimental realization and study of the dynamical regimes
that we introduce. Finally, in Sec. VII, we summarize our
results and draw conclusions.

II. THE STRUCTURE OF THE CRYSTAL

We consider photonic crystals created from two intersecting
sets of dielectric sheets (see Fig. 1). One set is parallel to the
x-z plane and the other is parallel to the y-z plane. The crystal
is invariant, and taken to be infinite, along the z axis. This
creates a photonic crystal in which the dielectric sheets enclose
rectangular air gaps, as shown in Fig. 1.

As in Refs. [25] and [26], we characterize each dielectric
sheet by the dielectric parameter m = (εr − 1)d, where d

and εr are, respectively, the width and relative permittivity
of the sheet. At the lines where two sheets intersect, the
relative permittivity is 2εr − 1. At position r = (x,y) within
the crystal, we take the local unit-cell length in the x and
y directions to be lx and ly , respectively. In the limit d→0,
if the electric-field vector of an electromagnetic wave of
frequency ω is parallel to the z axis, the local frequency
versus wave-vector dispersion relation ωloc(μ,lx,ly) of the
wave satisfies the equations [25]

cos(μxlx) = cos(kxlx) − mω2
loc

2c2kx

sin(kxlx), (1a)

cos(μyly) = cos(kyly) − mω2
loc

2c2ky

sin(kyly), (1b)

where c is the speed of light in vacuo, μ = (μx,μy) is the
Bloch wave vector, and k = (kx,ky) is the local wave vector
of the electromagnetic wave between the dielectric sheets. At
time t , the local electric-field magnitude, E = E0e

i(k·r−ωt), is
determined by the wave vector k. The Bloch wave vector
μ determines the spatial development of the phase of the
electromagnetic wave as it propagates through the crystal [25].

When the y component of the wave vector between the
dielectric sheets is evanescent, so that ky = iqy where qy is
real, Eq. (1b) can be written in the form [25]

cos(μyly) = cosh(qyly) − mω2
loc

2c2qy

sinh(qyly). (2)

If the lattice parameters m, lx , and ly vary sufficiently
slowly, the local dispersion relation at any point in the crystal

FIG. 1. (Color online) Schematic diagram of the photonic crystal,
which comprises two arrays of parallel dielectric sheets (gray)
intersecting at 90◦. Each sheet is of infinite area. The sheets are
parallel to the x-z or y-z plane. The x ′ and y ′ axes are related to the
x and y axes by a rotation of θ about the z axis (inset).
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is, to good approximation, the same as the dispersion relation
for an infinite crystal with a constant unit cell identical to the
local unit cell [27]. Here, we choose m and lx values that
vary slowly with position and are defined by the continuous
functions lx = l0 exp(−ηx) and m = m0(1 − ρy ′2), where the
constants l0, m0, η, and ρ are specified below. The x ′-y ′ axes
are related to the x-y axes by a rotation of θ about the z axis,
as shown in Fig. 1.

The solutions of Eqs. (1a) and (2) define a number of
allowed frequency bands of the crystal. In the bands considered
here, we show below that changes in the positions of both
the top and bottom of the band, i.e., the highest and lowest
frequencies, play a key role in driving the ray paths chaotic.
For that reason, the lowest-frequency band is of no interest
here, because it always has a solution extending down to
ω = 0, which means that chaotic ray paths within the band
are unbounded on the right (i.e., for high x) [27]. Instead,
the band of interest in this work is the next-lowest-frequency
band in which the rays have a locally evanescent component
in the y direction and a locally propagating character in the x

direction [25,27].

III. THE RAY TRACING

The ray paths in the crystal are determined by the pair of
Hamilton’s equations [27,30]

dr
dt

= ∂H

∂μ
, (3a)

dμ

dt
= −∂H

∂r
. (3b)

The 2D Hamiltonian is defined as [27]

H (r,μ,ω) = ωloc(μ,lx,ly) − ω, (4)

where ω is the angular frequency of the electromagnetic wave
and the local lattice constants lx,ly both depend on position r.
To determine ray paths in the second band we first specify ω

and the initial position of the ray front, both spatially in the
crystal (x,y) and the Bloch wave vector in the band (μx,μy).
We then solve Eqs. (3a) and (3b) numerically using a fourth-
order Runge-Kutta method. It follows from Eqs. (3a) and (4)
that

dr
dt

= ∂ωloc

∂μ
. (5)

From Eq. (5) we see that the direction in which a ray
propagates will always be perpendicular to the constant
frequency contour ω = ωloc on the dispersion surface.

Figure 2 shows ωloc vs μx and μy at the point (x,y) =
(28.7 μm,y = 11 μm), in the crystal where lx = 0.75 μm,
ly = 0.5 μm, and m0 = 2 μm. We also take θ = 21◦ and
η = 104 m−1: parameters that will be used throughout this
paper. The three constant frequency contours marked in Fig. 2
correspond to ω = 5.7 × 1014 rad s−1 (dashed curve), ω =
6.75 × 1014 rad s−1 (solid curve), and ω = 7.35 × 1014 rad s−1

(dotted-dashed curve).
Due to the symmetry of the frequency band, we need

only consider one quadrant of the reduced Brillouin zone
(gray shaded region in Fig. 2) for which 0 � μx � π/lx and

FIG. 2. Dispersion surface, ωloc(μx,μy) calculated for lx =
0.75 μm, ly = 0.5 μm, and m0 = 2 μm. Three constant frequency
contours are shown with ω = 5.7 × 1014 rad s−1 (dashed curve),
ω = 6.75 × 1014 rad s−1 (solid curve), and ω = 7.35 × 1014 rad s−1

(dotted-dashed curve). At the bottom of the figure the contours are
shown projected onto the ωloc = 0 plane. Rays propagate perpen-
dicular to these contours. One quadrant of the reduced Brillouin
zone is shaded gray with its corners labeled A, B, C, and D. The
inset, top right, shows the repetition of the Brillouin zone and
illustrates that the lowest- and highest-frequency contours (dashed
and dotted-dashed curves, respectively) form closed curves while the
intermediate contour (solid) forms an open curve.

0 � μy � π/ly . In fact, it is the four corners (marked A, B, C,
and D in Fig. 2) of this reduced Brillouin zone quadrant, i.e.,
the points where μx = 0 or π/lx and μy = 0 or π/ly that will
be of most interest here.

The inset in Fig. 2 reveals that, since the Brillouin zone
repeats with a period of 2π/lx in the μx direction and 2π/ly in
the μy direction, the lowest-frequency contour at ω = 6.75 ×
1014 rad s−1 (dashed curve), and the highest-frequency contour
at ω = 7.35 × 1014 rad s−1 (dotted-dashed curve) both form
closed curves. However, this is not the case for the intermediate
contour at ω = 6.75 × 1014 rad s−1 (solid curve), which is
open in the extended zone scheme.

Since the frequency band varies monotonically in both the
μx and μy directions over the shaded section of the reduced
Brillouin zone in Fig. 2, the gradient ∂ωloc/∂μ is only parallel
to the μx axis along the lines μy = 0 or π/ly , and only parallel
with the μy axis along the lines μx = 0 or π/lx . When contours
form open curves they are restricted to lie either between
μy = 0 and π/ly , or between μx = 0 and π/lx . Since a ray
propagates perpendicular to the constant frequency contour
where ωloc = ω, if this contour forms an open curve, there are
directions in which the ray cannot propagate. For example, it
can be seen from Fig. 2 that for the (solid) constant frequency
contour at ω = 6.75 × 1014 rad s−1, rays cannot propagate
parallel, or almost parallel, to the y axis, because ωloc is never
parallel to the μx axis. Below, we show that this restriction
causes spatial localization of the rays in the y direction.
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For a given ω, a constant frequency contour forms a closed
loop if ω = ωloc is between the bottom of the band, point A
in Fig. 2, and the saddle point B. The contour is also closed
if ωloc is between the top of the band, point D in Fig. 2, and
the saddle point C. The constant frequency contours between
the two frequencies corresponding to ωloc at points B and C
always forms open curves.

IV. THE SHAPE OF THE RAY PATHS

Henceforth, we consider crystal parameters ly = 1 μm,
l0 = 1 μm, θ = 21◦, η = 1 × 104 m−1, m0 = 2 μm, ρ =
1 × 1010 m−2, and, unless otherwise stated, take ω = 6 ×
1014 rad s−1. When there is an evanescent component to the
electric field, this is in the y direction.

Spatial variation of the unit cell changes both the shape of
the dispersion curve ωloc(μ,lx,ly) and the range of frequencies
that it spans. Thus, in parts of the crystal the electromagnetic
wave may lie within an allowed band, but in other parts its
frequency coincides with a band gap.

It is therefore essential to identify where in the crystal ω

coincides with an extremum (points A and D in Fig. 2) or
a saddle point (points B and C in Fig. 2) in the dispersion
surface.

To illustrate this, Fig. 3 shows the four loci of points in the
crystal at which ω coincides with the two extrema or the two
saddle points in the local ωloc(μ,lx,ly) surface (i.e., points A–D
in Fig. 2). The solid, dotted, dotted-dashed, and dashed curves
correspond to points A, B, C, and D, respectively. Between
curves A and D, the white region in Fig. 3, ω lies within the

FIG. 3. (Color online) Loci of points in the crystal where ω =
6 × 1014 rad s−1 coincides with the ωloc values at points A (solid
curve), B (dotted curve), C (dotted-dashed curve), and D (dashed
curve) in the reduced Brillouin zone shown in Fig. 2. In the gray
regions, ω lies in a band gap, and hence there are no propagating
solutions. Rays can only propagate in the white regions bounded
by the solid and dashed curves where ω coincides with the band
minimum and maximum, respectively, shown in Fig. 2. Within the
black regions, m is negative, meaning that either εr or d must also
be negative. Rays cannot reach these regions of negative permittivity
because they are unable to traverse the outer gray area where ω lies
within a band gap. Consequently, the regions of negative permittivity
do not affect the ray dynamics that we consider.

second allowed frequency band. While it is not universally
true that point B lies at a lower frequency than point C, as can
be seen from the crossing of curves B and C at x = xcross ≈
−48 μm in Fig. 3, this is the case throughout the region of
interest here. The gray region in Fig. 3 shows the regions of
the crystal for which there are no propagating solutions at
frequency ω. In the black region, m < 0, meaning that either
εr or d would need to be negative. Although some materials do
have negative values of permittivity, we do not consider them
here.

As discussed above, at any point in the crystal a ray can,
in principle, propagate in any spatial direction provided that
the ωloc = ω contour forms a closed loop. By contrast, the
range of possible propagation directions is limited for open
contours. In Fig. 3, when x > xcross, at any point in the crystal
that lies between curves A and B, or between curves C and
D, the isofrequency contour for ωloc = ω = 6 × 1014 rad s−1

forms a closed loop. Conversely, for any point in the crystal
between curves B and C, the isofrequency contour forms an
open curve, which restricts the range of directions in which a
ray may propagate.

Figure 4 shows a selection of stable ray paths in the crystal.
The turning points of these rays are produced either by Bragg
reflection, whenever μx = ±π/lx or μy = ±π/ly , or by the
rays reaching band extrema away from the Brillouin zone
boundaries as a result of the band changing shape throughout
the crystal. Figure 4 reveals that the ray paths are shaped

FIG. 4. (Color online) Ray paths calculated in a region of the
crystal where all trajectories are stable. The four curves are the loci
of points in the crystal where ω = 6 × 1014 rad s−1 coincides with
the ωloc values at points A (solid curve), B (dotted curve), C (dotted-
dashed curve), and D (dashed curve) in the reduced Brillouin zone.
These four curves strongly influence the shape of the ray paths and
determine the turning points.
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by the shifting of the band structure, with curves A, B,
C, and D passing through extrema in the envelopes of the
ray trajectories. Between curves A and B, Bragg reflections
occur when μx = ±π/lx . At frequencies above that at point
B in Fig. 2, such reflections no longer occur because the
isofrequency contours in Fig. 2 only intersect with the edge
of the Brillouin zone where μy = ±π/ly (between points
B and D).

V. DYNAMICAL BARRIERS

Previous work has shown that the phase space of rays in
the photonic crystal contains mixed stable-chaotic regions and
that, for certain ω, two or more chaotic regions are separated
by islands of stability [27]. A trajectory starting in one chaotic
sea cannot cross the stable island and is therefore unable to
enter the second chaotic sea. Consequently, the stable island
is known as a dynamical barrier. Although there is sometimes
diffusion across dynamical barriers, such as via cantori (see,
for example, Ref. [31]), in the photonic crystals considered
here, the dynamical barrier can be completely impenetrable,
localizing chaotic rays to two distinct regions of the phase
space.

In this section, we explain the existence of these dynamical
barriers and explore their effect on ray transport. The dynam-
ical barriers occur for a wide range of ω and, at the higher
frequencies, separate the chaotic regions in real space as well
as in phase space. Consequently, dynamical barriers provide

FIG. 5. (Color online) (a) Two chaotic ray paths propagating
in two distinct regions of the photonic crystal when ω = 6.09 ×
1014 rad s−1. The crystal parameters are ly = 1 μm, l0 = 1 μm,
θ = 21◦, η = 1 × 104 m−1, m0 = 2 μm, ρ = 1 × 1010 m. (b) and (c)
are enlargements of the left- and right-hand boxes in (a). Crosses in
(b) and (c) mark the points where Bragg reflections occur.

a mechanism for controlling the transmission of light through
photonic crystals.

Figure 5(a) shows two distinct chaotic paths in the photonic
crystal that are almost separated in real space. Figures 5(b)
and 5(c) show enlargements of the regions within the boxes
in Fig. 5(a), in which the rays are driven chaotic. The solid
curve (A) in Fig. 5 marks the loci of points where the bottom
of the frequency band (point A in Fig. 2) is at ωloc = 6.09 ×
1014 rad s−1, while the dashed curve (D) marks the loci of
points where the top of the band (point D in Fig. 2) is at
ωloc = 6.09 × 1014 rad s−1.

The crosses in Figs. 5(b) and 5(c) mark the points along
the real-space ray trajectory where the Bloch wave vector μ

is at an edge of the reduced Brillouin zone shown in Fig. 2.
At such points, the electromagnetic wave Bragg reflects along
either the x or y direction, corresponding to a turning point of
the classical ray. Most of these turning points occur away from
the frequency band extrema labeled A, B, and D in Fig. 2 and
therefore also away from the edges of the classically allowed
(white) region in Figs. 5(b) and 5(c) . But, occasionally, Bragg
reflection occurs at, or very near to, one of these extrema. For
example, the crosses situated exactly on the dashed curve in
Fig. 5(b), which is the locus of points in real space along which
the electromagnetic wave frequency ω coincides with the top
of the frequency band at point D in Fig. 2, correspond to Bragg
reflections along the y direction occurring at point D.

The dashed curve in Figs. 5(a) and 5(b) is also the boundary
between regions where waves can (white) and cannot (gray)
propagate. Note that for y � −2 μm, this separates the allowed
region into two segments that occupy distinct ranges of
x values. As noted above, when rays approach the dashed
curve in Fig. 5 they Bragg reflect. Since this boundary is so
strongly curved, it makes the ray path highly sensitive to the
initial conditions, thereby driving paths that reflect from it
chaotic.

These ray trajectories have some similarities with the
classical orbits of particles in a Sinai billiard comprising a
rectangular outer wall, which encloses a circular scattering
barrier. Particles within the billiard move between these two
impenetrable walls. Orbits that interact with the circular barrier
are chaotic because reflections from that barrier couple the
motion parallel and perpendicular to the outer wall. Similarly,
in the photonic crystal considered here, chaotic ray orbits are
generated by reflections near the dashed boundary labeled D
in Fig. 5.

By contrast, the trajectory of the right-hand path in Fig. 5(a)
and enlarged in Fig. 5(c), is driven chaotic by reflection from
the concave (right-hand) end of the white (classically allowed)
region. In Bunimovich stadia, comprising straight parallel
edges with semicircular walls at either end, chaos occurs due
to reflections from the curved ends, which mix motion parallel
and perpendicular to the side walls. In a similar way, ray paths
confined near the concave right-hand end of the white allowed
region in Fig. 5 are also driven chaotic.

Rays that do not encounter either the concave end of curve A
or the convex region around barrier D remain stable, and hence
form a dynamical barrier that separates the two chaotic paths
in Fig. 5.

Figure 6 is a Poincaré section in which a point is plotted each
time a ray turns from traveling in the negative x direction to
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FIG. 6. A Poincaré section in which a point is plotted each
time a ray turns from traveling along the negative to the positive
x direction. The points are generated by three ray paths: the two
chaotic trajectories shown in Fig. 5(a) and a stable ray path that
separates them. Points produced by the upper path in Fig. 5(a) are
marked with crosses, while those produced by the lower path are
marked with circles. Points generated by a stable path in the dynamical
barrier are marked with triangles.

the positive x direction. Points corresponding to three different
ray paths are shown. The crosses are generated by the upper of
the two ray paths in Fig. 5(a), while the circles correspond to
the lower ray path. The broad spread of these two sets of points
in the Poincaré section confirms that each ray is chaotic. The
triangular points in Fig. 6 are generated by a stable ray path (not
shown) forming the dynamical barrier that separates the two
chaotic orbits in Fig. 5(a). Since this ray is stable, it generates
points on a smooth continuous curve in the Poincaré section.

To fully understand the origin of the dynamical barrier, it is
useful to consider in more detail the band-structure changes,
throughout the crystal, produced by the variation of lx in the
x direction, and m with y ′.

Figure 7 shows dispersion surfaces ωloc(μx,μy) and isofre-
quency contours at [Figs. 7(a)–7(c)] three different spatial
points in the crystal. It illustrates how variations in lx and

m both change the band structure. The effect of changing lx
can be seen by comparing Figs. 7(a) and 7(b). In Fig. 7(a),
x = 0 μm, where lx = l0, and in Fig. 7(b), x = 50 μm, where
lx = 0.607l0. In both cases, y ′ = 0 and m = 2 μm. Reducing
lx , i.e., moving from (a) to (b), shifts the band to a higher range
of frequencies. In addition, reducing lx makes ωloc far less
sensitive to changes in μy , as revealed by comparing Fig. 7(b)
with Fig. 7(a).

This reduced variation of ωloc with μy means that far more
isofrequency contours form open curves in Fig. 7(b) than in
Fig. 7(a), and that the curvature of these contours decreases.
The reduction of the curvature of the contours restricts the
range of spatial directions in which a ray may propagate. For
example, in Fig. 7(b), most rays propagate in directions almost
parallel to the x axis.

The effect of changing m on ωloc(μx,μy) may be seen by
comparing Figs. 7(a) and 7(c), for which m = 2 μm and m =
1 μm, respectively, with fixed lx = 1 μm. As m decreases, the
band shifts to higher values of ωloc and broadens, so increasing
the range of frequencies for which closed contours are found
about points A and D.

We now use these changes in the band structure
to explain more fully the ray dynamics. Figure 8
shows rays in the crystal calculated for ω = (a) 6.15 ×
1014 rad s−1 and (b) 6.87 × 1014 rad s−1. The solid, dotted,
dotted-dashed, and dashed curves show, respectively, the loci
where ωloc coincides with points A, B, C, and D in the Brillouin
zone (Figs. 2 and 7).

The first point to note is that the (white) region in Fig. 8(b) in
which the rays may propagate is located at higher x values than
in Fig. 8(a). This is because the band spans higher frequencies
when lx is smaller (see Fig. 7), i.e., when x is larger, and so at
higher ω the rays propagate further along the x axis.

Comparing Figs. 8(a) and 8(b) reveals that at higher ω

[Fig. 8(b)] each ray is more confined in the y direction. This is
a consequence of the rays propagating at angles that are closer
to the x axis at higher ω, an the effect that can be understood by
comparing Figs. 7(a) and 7(b). Hence, the higher the value of
ω, the greater the restriction on the propagation angles, and the
narrower the ray path along the y direction. At higher ω, the
regions of the crystal in which rays can travel in any direction,

FIG. 7. (Color online) Dispersion surfaces ωloc(μx,μy) calculated at three different positions in the photonic crystal: (a) x = 0 μm, y ′ =
0 μm, where lx = ly = 1 μm and m = 2 μm; (b) x = 50 μm, y ′ = 0 μm, where lx = 0.607 l0 μm, ly = 1 μm, and m = 2 μm; (c) x = 0 μm,
y ′ = 7.07 μm, where lx = ly = 1 μm and m = 1 μm. The isofrequency contours, shown both on the dispersion surface and projected onto the
ωloc = 0 plane beneath, are equally spaced by 3 × 1013 rad s−1. As lx decreases, the band shifts to higher ωloc, as can be seen by comparing the
dispersion surface in (b) with that in (a). In addition, over large sections of the dispersion surface in (b), the isofrequency contours are almost
parallel to the μy axis, meaning that rays are, in general, restricted to propagate in directions close to the x axis. Comparing (c) to (a) reveals
that as m decreases, the band shifts to higher ωloc and also broadens.
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FIG. 8. (Color online) A selection of rays in the crystal with ω =
(a) 6.15 × 1014 rad s−1, (b) 6.87 × 1014 rad s−1. Also shown are the
loci of points in the crystal where ω = ωloc at points A (solid curve),
B (dotted curve), C (dotted-dashed curve), and D (dashed curve) in
the reduced Brillouin zone shown in Fig. 2. In the gray regions there
are no propagating solutions at the given ω.

i.e., the regions between curves A and B, and curves C and D,
are reduced. This corresponds to the reduced variation of ωloc

with μy at higher ω, as shown in Fig. 7(b).
If ω is sufficiently low, for this structure when ω �

5.91 × 1014 rad s−1, rays in the crystal encounter both of
the regions (i.e., the concave and convex barriers in Fig. 5)
that generate chaos. At higher ω, the spread of each ray
orbit in the y direction is reduced, and a ray that encounters
one of the regions where it is driven chaotic does not reach
the other. When ω � 6.12 × 1014 rad s−1, a region forms in
the crystal where rays will encounter neither of the strongly
curved barriers. These rays are stable and collectively form the
dynamical barrier.

As ω rises above ≈6.6 × 1014 rad s−1, the two distinct
regions of the crystal that induce chaotic ray paths shrink, and
become increasingly localized near the concave and convex
barriers. This increases the separation of the two sets of
chaotic orbits in real space. If ω is increased further, the
right-hand chaotic region disappears completely, as shown in
Fig. 8(b), meaning that the dynamical barrier also vanishes. An
examination of rays near the right-hand concave barrier [within
the right-hand box in Fig. 5(a)] reveals that, due to the shifting
band structure throughout the crystal and the effective force

that this exerts on the rays, such rays are more complex than
those in Bunimovich stadia. Consequently, the exact reason for
the suppression of chaos in this region, which occurs at high ω,
is not yet fully understood. However, as the ray paths become
increasingly restricted to a small region around the center of
the concave barrier, chaos disappears because the barrier acts
on the orbits as though it is locally flat. By contrast, the chaotic
orbits created by the left-hand convex barrier in Fig. 5 persist
for even higher ω.

VI. PROPOSED EXPERIMENTAL REALIZATION OF THE
MODULATED PHOTONIC CRYSTAL AND

ASSOCIATED RAY DYNAMICS

Microwave analogs offer major advantages for investigating
the propagation of electromagnetic waves through dielectric
media and the relation between the waves and underlying
ray dynamics [1]. Due to their large scale, photonic crystals
for microwaves can be made very accurately with imper-
fections far smaller than the wavelength of the microwaves.
Such imperfections therefore have a negligible effect on the
wave transmission processes. For example, modern computer-
controlled milling machines can produce holes in a Teflon
dielectric block with a precision of ±0.05 mm, orders of
magnitude smaller than the wavelength of microwaves. In
addition, the electric-field profile of the electromagnetic modes
can be directly measured in microwave systems [1], thus
enabling study of, for example, the link between modal form
and the transmission coefficient of the system.

Recent experiments on the transmission of microwaves
through 1D photonic crystals comprising Teflon sheets have
revealed that absorption of the microwaves by the Teflon
has little effect on the shape of the measured transmission
spectrum, which is in excellent quantitative agreement with the
corresponding calculations [24]. Since absorption does not de-
stroy coherent wave phenomena, in particular, band formation,
we expect that it will have a similarly small effect on the band
transport processes discussed above. Consequently, modulated
microwave photonic crystals fabricated by milling cm-scale
air holes into a Teflon sheet, or high-refractive-index (3.3)
ceramic-filled plastic [32], offer a promising starting point
for the experimental verification and study of the dynamical
effects discussed above, and their effect on electromagnetic
wave transmission. We note that photonic crystals with a
gradient index have been successfully realized experimentally
for metamaterials [33–38], and such systems might also be
suitable for experimental studies of band transport phenomena
in modulated photonic crystals.

Here, though, we focus on possible microwave realizations
of the modulated photonic crystals. To ensure maximal
correspondence with the system shown in Fig. 5, and analyzed
in detail above, the microwave photonic crystal would have
rectangular air holes separated by thin dielectric walls. The
spatial variation of the hole and wall widths follows from
the requirement that lx = l0 exp(−ηx) and m = (εr − 1)d =
m0(1 − ρy ′2), as discussed in Sec. II. Providing the walls
are much narrower than the air holes, the local dispersion
relation of the frequency bands will be accurately described
by Shepherd’s analytical model [25] (see Sec. II). We note,
however, that exact dispersion relations can be determined for
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any unit-cell geometry by using standard techniques such as
expansion over plane waves.

As in previous experiments [1,21], quasi-2D microwave
photonic crystals could be used because the width of the system
along z does not significantly affect either the frequency band
structure or the resulting ray dynamics. In such structures,
the dielectric block is ≈1 cm thick along the z direction and
enclosed by copper plates, which form a microwave cavity. To
study transport through the 2D photonic crystal, continuous
microwaves would be injected through a wire antenna, of
diameter ≈0.1 mm, which passes through the top plate at a
fixed position, r . A vector network analyzer would be used
to measure the spectrum T (ω,r,r ′) for transmission to a
receiving wire antenna at a variable position r ′ in the bottom
plate for ω in the range 30 × 1012 � ω � 250 × 1012 rad s−1

[1,21].
A key advantage of using a vector network analyzer

is that for each ω value, the electric-field profile, E(x,y),
can be mapped experimentally by using a movable bottom
plate to scan the receiving wire across the structure and
analyzing how T (ω,r,r ′) changes with r ′ [1]. Since both the
modulus and sign of E(x,y) can be determined, continuous
waves can study pulse propagation via a simple Fourier
transform of T (ω,r,r ′) to the time domain [21]. This Fourier
technique, which is simpler than generating microwave pulses
[1], could be used to investigate the effects of dynamical
barriers on pulse propagation by measuring how T (ω,r,r ′)
varies with the positions of the two antennae, with ω, and
with θ .

For θ values that generate a dynamical barrier, which
separates chaotic trajectories into distinct regions of phase
space (Figs. 5 and 6), the dynamical barrier will reduce the
range of ray trajectories that directly link the two antennae,
thereby producing a measurable decrease in transmission
between them. As shown in Fig. 8, the location, and even
the existence, of the dynamical barrier varies rapidly with ω.
Consequently, we expect that T (ω,r,r ′) will also demonstrate
high sensitivity to changes in ω. Providing the parameters of
the photonic crystal are accurately known, we expect good
quantitative agreement between experiment and theory, which
will help to elucidate the effect of the dynamical barriers on
ray and wave transmission.

The aim of the proposed microwave experiments is to
investigate the feasibility of using dynamical barriers to
control electromagnetic wave propagation through spatially
modulated photonic crystals and so provide proof-of-principle
demonstration of this concept. We emphasize that dynamical
barriers occur in many systems with a mixed stable-chaotic
classical phase. In the electromagnetic system that we consider
here, their existence requires spatial modulation of the band
structure, which couples motion in the x and y directions, but
does not depend on the precise details of the lattice structure
used to produce that modulation: for example, the shape of

the unit cell. Consequently, the dynamics that we consider
have the potential for scaling to optical wavelengths, where
the air holes are usually circular rather than rectangular. A
rectangular unit cell speeds up the ray calculations, making it
easier to explore the large parameter space available, but is not
essential to generate dynamical barriers, which should occur
in a range of modulated photonic crystal structures.

VII. SUMMARY

We have shown that spatial modulation of the lattice
parameters and hence the local band structure of a photonic
crystal affects the stability, form, and location of Hamiltonian
ray paths within it. The formation of convex or concave barriers
at the edges of the classically allowed region drives orbits that
interact with those barriers chaotic. As ω increases, changes
in the dispersion relation for the second allowed band make
the ray paths increasingly localized in the y direction. In
turn, this confines the chaotic ray trajectories to smaller areas
around the convex and concave barriers at the edges of the
classically allowed region. The location and extent of the
chaotic trajectories depend strongly on the value of ω. For
certain ω, only a single region of chaos exists. However, as
ω increases, this splits into two distinct regions of chaotic ray
paths, located near either the convex or the concave barrier.
These chaotic regions are separated by a dynamical barrier
comprising stable ray orbits. When ω is just large enough for
the dynamical barrier to form, this barrier is leaky because,
in some regions of the crystal, chaotic orbits that are isolated
in real space overlap in phase space. But as ω increases, the
chaotic regions separate fully in both real and phase space. In
this regime, the chaotic orbits cannot penetrate the dynamical
barrier and are thus unable to propagate through the crystal.
As ω increases further, the chaotic rays become so localized
that those near the concave barrier disappear completely, thus
removing the dynamical barrier.

We conclude that rays in slowly modulated photonic
crystals exhibit unique and rich dynamics, which are highly
sensitive to both the spatial structure of the crystal and the
value of ω. Dynamical barriers formed by the stable rays
provide a mechanism for controlling light transmission in
certain frequency ranges. The exponential separation rate
of two chaotic rays with slightly different initial conditions
also strongly affects the propagation of the electromagnetic
radiation. This mechanism could be exploited in optical
switches or routers and may also enhance angular dispersion
due to the superprism effect in photonic crystal structures [39],
which has potential for applications in wavelength division
multiplexing devices. We hope that our results will stimulate
the further work required to determine how ray chaos affects
the transmission of electromagnetic waves through modulated
photonic crystals, and to test the validity of Hamiltonian optics
in this complex regime of nonlinear dynamics.
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Introduction (Cambridge University Press, Cambridge, UK,
1999).

[2] S. Tomsovic and D. Ullmo, Phys. Rev. E 50, 145 (1994).
[3] M. F. Andersen, A. Kaplan,T. Grunzweig, and N. Davidson,

Phys. Rev. Lett. 97, 104102 (2006).

046209-8

http://dx.doi.org/10.1103/PhysRevE.50.145
http://dx.doi.org/10.1103/PhysRevLett.97.104102


USING DYNAMICAL BARRIERS TO CONTROL THE . . . PHYSICAL REVIEW E 83, 046209 (2011)

[4] W. K. Hensinger et al., Nature (London) 412, 52 (2001); D. A.
Steck et al., Science 293, 274 (2001).

[5] T. M. Fromhold, A. A. Krokhin, C. R. Tench, S. Bujkiewicz,
P. B. Wilkinson, F. W. Sheard, and L. Eaves, Phys. Rev. Lett. 87,
046803 (2001).

[6] M. Kuraguchi, E. Ohmichi, T. Osada, and Y. Shiraki, Physica E
12, 264 (2002).
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A. D. Stone, J. Opt. Soc. Am. B 21, 5 (2004).
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