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Excited-state phase transition and onset of chaos in quantum optical models
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1Departamento de Fı́sica Atómica, Molecular y Nuclear, Facultad de Fı́sica, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain
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We study the critical behavior of excited states and its relation to order and chaos in the Jaynes-Cummings
and Dicke models of quantum optics. We show that both models exhibit a chain of excited-state quantum phase
transitions demarcating the upper edge of the superradiant phase. For the Dicke model, the signatures of criticality
in excited states are blurred by the onset of quantum chaos. We show that the emergence of quantum chaos is
caused by the precursors of the excited-state quantum phase transition.
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I. INTRODUCTION

One of the goals of many-body physics is the understanding
of quantum critical phenomena [1]. A quantum phase transi-
tion (QPT) appears in systems with Hamiltonian H (λ), which
show a sudden change of the ground-state properties when the
control parameter λ varies across a critical value λc. In the
last few years, the connection of a QPT with the entanglement
[2–4] and with the emergence of chaotic behavior [2,4,5] has
been investigated, motivated by the important role they could
play in the current research related to quantum information
technologies [6].

Very recently, a quantum critical phenomenon of a new
type—the one related to excited states rather than to the ground
state—has been discussed for several model systems [7–10].
An excited-state quantum phase transition (ESQPT) represents
a nonanalytic evolution of individual excited states with the
control parameter. It can also be observed as a singular
variation of the state density with energy and entails dramatic
dynamical consequences [11,12].

As ESQPTs have so far been identified in simple, mostly
integrable systems, two natural questions arise: First, are the
ESQPTs also generic in more complex, prevailingly chaotic
systems? Second, how does the collapse of quantum energy
levels, a typical ESQPT signature, affect the level repulsion,
which is inherent in quantum chaos? The aim of this paper
is to address these questions by analyzing a simplified model
of collective interactions of matter and light, known as the
Dicke model [13]. The Dicke model is a nonintegrable model,
however, in the rotating wave approximation, it reduces to the
integrable Jaynes-Cummings model [14]. Both versions have
recently stirred up great interest, since the implementation of a
tunable matter-light coupling represents a route to study quan-
tum critical effects [15–17]. The QPT to a superradiant phase
within the Dicke model was studied theoretically [2,18–20],
and recently realized experimentally using a superfluid gas in
an optical cavity [17].

This paper is organized as follows. In Sec. II we describe the
models. In Sec. III we analyze the quantum phase transitions
in both models, particulary those related to excited states. In

Sec. IV we study the relationship between the excited-state
quantum phase transitions and the emergence of chaos in
the Dicke model. Finally, in Sec. V we summarize the main
conclusions.

II. THE MODELS

Both the Dicke and Jaynes-Cummings models assume a
set of two-level atoms interacting by a dipole coupling of
strength λ with a single-mode bosonic field (cavity photons).
The models are expressed via the creation and annihilation
operators b† and b, describing a bosonic mode with frequency
ω (with Nb = b†b being the number of photons), and the SU (2)
generators {J±,Jz} describing the ensemble of Na two-level
atoms with the level splitting ω0 in terms of a pseudospin of
length J = Na/2. A useful realization of the SU (2) algebra
can be built through an array of spin- 1

2 particles located on 2J

sites,

J+ =
2J∑

i=1

a
†
↑ia↓i = J

†
−, Jz = 1

2

2J∑

i=1

(a†
↑ia↑i − a

†
↓ia↓i), (1)

where a
†
↑i or a↑i (a†

↓i or a↓i) create or annihilate spin-up (spin-
down) states of the fermion on site i (the upper and lower
state of the ith atom), and the ladder operators J± describe
collective spin flips along the array. N↑ ≡ Jz + J counts the
number of atoms excited to the upper level. The system has
two degrees of freedom associated with, e.g., Nb and Jz.

The Jaynes-Cummings Hamiltonian [14]

H1(λ) = ω0Jz + ωb†b + λ√
4J

[bJ+ + b†J−] (2)

conserves the quantity M/2 = Nb + N↑, which together with
the Hamiltonian are the two required conserved quantities
(integrals of motion) to assure the integrability of the system.
We work with a fixed value, M/2 = Na , which implies a finite
dimension of the Hilbert space, and set ω > ω0.
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P. PÉREZ-FERNÁNDEZ et al. PHYSICAL REVIEW E 83, 046208 (2011)

The Dicke Hamiltonian [13]

H2(λ) = ω0Jz + ωb†b + λ√
4J

[(b + b†)(J+ + J−)] (3)

conserves the parity � = (−1)M/2, but not the number M

itself. Therefore, it is not integrable. The Hilbert-space
dimension for any Na is infinite, since states with unlimited
photon numbers Nb are coupled by the interaction term. From
a practical point of view, this means that the photon space
needs to be truncated by a certain maximal value Nmax

b . In the
numerical calculations presented below, we checked that an
increase of Nmax

b does not cause noticeable changes in results.
In these calculations, we set ω = ω0, which corresponds to the
resonance absorption and emission of photons by the atoms.

III. QUANTUM PHASE TRANSITIONS

These models serve as toy examples of the maser phase
transition. Indeed, in the thermodynamic limit, J → ∞,
both Hamiltonians yield a QPT of the second order [2] in
which properties are obtained from a relevant semiclassical
analysis [12]. The critical values of the coupling strength are
λc =

√
(ω0 − ω)2/2 for the Jaynes-Cummings model1 and

λc = √
ωω0/2 for the the Dicke model. Below the critical

point, a normal phase exists, in which the ground state is
similar to that at λ = 0, given by the photon vacuum (Nb = 0)
combined with a maximally excited (Jz = +J ) or a totally
unexcited (Jz = −J ) state of the atom array. The first case
is valid for the Jaynes-Cummings model with ω > ω0 and
M = 4J , and the second one is valid for the Dicke model.
For a coupling strength below λc in the thermodynamic limit,
the λ = 0 ground-state form is preserved with expectation
values 〈Nb〉 = 0, 〈Jz〉 = ±J , and ground-state energy Enorm

0 =
±Jω0. When crossing the critical value λc, the ground state
eventually flips to a form with expectation values 〈Nb〉 > 0
and −J < 〈Jz〉 < +J , and decreasing energy E0(λ) < Enorm

0 ,
in which both the photon field and the atomic array acquire par-
tial, macroscopic excitations. This regime can be interpreted
as a superradiant phase [2,18]. The quantities 〈Jz〉 (or 〈N↑〉)
and 〈Nb〉 represent suitable order parameters to characterize
the superradiant phase transition.

The ground-state QPT in both models is followed for λ >

λc by a chain of excited-state phase transitions located at the
critical energy, coinciding approximately with the ground-state
energy of the normal phase, Ec = Enorm

0 . A detailed discussion
of the ESQPT effects and their semiclassical roots is given
elsewhere [12]. The behavior of the order parameter 〈Jz〉 close
to the critical energy Ec is given by

〈Jz〉 = 〈Jzc〉 + A|E − Ec|α, (4)

which is characterized by a critical exponent α. Results for the
Jaynes-Cummings model with 1000 atoms are plotted in Fig. 1
for λ = 1.5. The red points correspond to the expectation value
of Jz in each eigenstate with eigenvalue E. The continuous

1Note that we are describing a transition with a fixed number of
particles, therefore this critical value differs from that of Ref. [2]. For
more details, see [12].
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FIG. 1. (Color online) Scaled atomic inversion as a function of
energy for the Jaynes-Cummings model, with calculations for ω0 = 1,
ω = 2, λ = 1.5, and J = 500.

black curve shows a fit using Eq. (4) with the critical exponent
α = 0.33. The cusp singularity at Ec/J = 1 is characterized
by the value 〈Jzc〉 = J , hence 〈N↑〉 = Na (not seen in the
figure). This can be described as the λ < λc ground-state
structure propagating through the spectrum along the line
E = Ec, where we indeed observe multiple avoided crossings
of individual levels [12].

Similar results for the Dicke model with 60 atoms and
λ = 1.5 are plotted in Fig. 2. The thin red oscillating line
represents numerical data for 〈Jz〉 obtained as an average over
20 eigenstates around the eigenvalue E; the points have been
joined by a line for easier visualization. The thick black curve
corresponds to a fit by Eq. (4). The number of atoms is much
smaller than that used in the previous calculation because of
a rather large value of Nmax

b needed to get convergence for
the levels above the critical energy. In particular, results for
E/J > 1 (the flat part of the numerical dependence in Fig. 2)
are not converged.

A comparison with Fig. 1 shows that the results for the
Dicke model are fuzzier than those for the Jaynes-Cummings
model. They exhibit sizable fluctuations around a smooth
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FIG. 2. (Color online) Scaled atomic inversion as a function of
energy for the Dicke model, with calculations for ω0 = ω = 1, λ =
1.5, J = 30, and results smoothed over 20 points.
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dependence. Another peculiarity of the Dicke model is that the
order parameter is bimodal with two critical exponents: α1 =
0.25 for E < Ec, and α2 = 1.5 for E > Ec. Despite these
differences, Fig. 2 shows a qualitatively similar dependence
as Fig. 1, demonstrating a related type of singularity in
the Dicke model at the critical energy Ec/J = −1. We
therefore conclude that for λ > λc, both models exhibit an
ESQPT at Ec = Enorm

0 . This critical energy terminates the
domain of the superradiant phase present at low temperatures
[18].

IV. CHAOS AND EXCITED-STATE QUANTUM PHASE
TRANSITIONS

We know that the Dicke model is nonintegrable and partly
chaotic. The superradiant transition at zero temperature was
shown [2] to be correlated with a crossover from ordered
to chaotic behavior. Hence one may ask whether quantum
chaos is also somehow related to the critical behavior of
excited states. It can be anticipated that chaotic properties of
the spectrum introduce large fluctuations that partly hide the
singular dependence at the critical point in Fig. 2. However,
chaos and ESQPTs have some properties which are difficult
to conciliate. On one hand, the most significant feature of
quantum chaos is the level repulsion, which entails a null
probability of finding two levels at the same energy [21]. On the
other hand, an ESQPT as a rapid restructuring of excited states
is typically connected with a rather close approach of levels
(numerous sharp avoided crossings), often with a singular
accumulation of levels at E = Ec [7–9,11]. Therefore, the
relation between the level repulsion and spectral signatures of
an ESQPT constitutes an interesting theoretical challenge.

Let us consider the Dicke Hamiltonian with a value of λ

above λc, where the system is partly chaotic [2]. To analyze
how chaos and the ESQPT can dwell together, we calculate
the spacing distribution P (s), where s is a normalized (s = 1)
distance between two neighboring levels, on both sides of the
critical energy Ec. This distribution is known to interpolate
between the Poissonian and Wigner forms, P P = e−s and
P W = π

2 se−πs2/4, respectively, as the system transforms from
a regular to a chaotic regime [21]. In order to have a large
number of levels below the critical energy, we present results
for λ = 3; different choices lead to similar pictures.

In Fig. 3 we show the P (s) distributions calculated for
both subcritical (E < Ec) and supercritical (E > Ec) parts of
the spectrum, and for various atom numbers (see caption for
details). In all cases, we used the same number of levels for
building the histograms on both sides of the critical energy.
For E > Ec, the spectral statistics closely follow the Wigner
surmise. In contrast, for E < Ec, the shape of the histograms
is not clear: while for the Na = 46 case, it is rather close to
the Poissonian distribution, for lower atom numbers, it yields
neither the Wigner nor the Poissonian form. The most relevant
fact is that below Ec we observe P (s = 0) > 0, while above
Ec we obtain P (s = 0) ≈ 0. In other words, the levels start to
repel each other when crossing the ESQPT critical energy.

To obtain a more quantitative description, we analyze how
the spectral statistics change as one moves in the spectrum.
To increase the accuracy of the procedure, we rely on the
accumulated spacing distribution F (s) = ∫ s

0 dxP (x). Given a
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FIG. 3. Nearest-neighbor spacing distribution P (s) for the Dicke
model with λ = 3. Histograms are shown for E < Ec (left column)
and E > Ec (right column). The rows from bottom to top correspond
to Na = 22, 30, 38, and 46. The short dashed lines correspond to
the Poisson distribution, and the long dashed lines correspond to the
Wigner-Dyson distribution.

numerical sequence of spacings {si}, we measure its “distance”
from the Wigner surmise by means of the following quantity:

� =
∑

i
[F W(si) − F (si)]

2

∑
i
[F W(si) − F P(si)]

2
, (5)

where F W and F P are accumulated distributions derived from
P W and P P, respectively. Therefore, � = 0 if the numerical
sequence follows the Wigner distribution, while � = 1 for a
Poissonian sequence. We have constructed sequences of 200
consecutive spacings and, using Eq. (5), we have calculated
the distance � of each sequence from the Wigner statistics.
These distances are plotted in Fig. 4 as a function of the
mean energy of the respective sequence. We can see that a
quite abrupt transition from finite values of � to � ∼ 0 takes
place just below the critical energy Ec. Although the range of
the covered values of Na is not large enough to approach the
thermodynamic limit, it suffices to confirm that the critical
behavior in the order parameter is accompanied by a change in
the spectral statistics. Furthermore, as this change is so abrupt
in finite size systems, we are led to attribute it to the precursors
of the ESQPT.

We are now able to go beyond the hypothesis of Ref. [2],
stating that the spectrum of the Dicke model with λ > λc

is regular at low energies. From our numerical results, we
conclude that a transition to chaos takes place around the
critical energy Ec. A compact picture of various dynamical
regimes implicit in the Dicke model can therefore be stated as
follows: We start at λ = 0, with the ground state having Nb =
N↑ = 0. Increasing λ leaves the ground state unperturbed until
we cross the critical point λc for the superradiant transition,
where the expectation values 〈Nb〉 and 〈N↑〉 start to increase.
For any value of λ > λc, there exists a region above the ground
state in which we find no level repulsion, P (s = 0) > 0. This
seems to be a common feature of almost the entire superradiant
domain in the λ × E phase diagram. If the energy is increased
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FIG. 4. (Color online) Onset of chaos in the Dicke model, with
λ = 3 measured by the distance (5) of actual level statistics from
the Wigner distribution. The distance (�) is plotted as a function
of the mean scaled energy of the relevant fraction of the spectrum,
with the vertical line indicating the critical energy. Calculations are
done for various atom numbers: Na = 22 (very light yellow dotted
line), 30 (light green dashed-dotted line), 38 (dark red dashed line),
and 46 (very dark blue solid line).

closely below the critical value Ec = −Jω0, where 〈N↑〉 drops
sharply, the level repulsion sets in, leading the spectrum to the
Wigner type of statistics. Above Ec, the system becomes fully
chaotic.

V. CONCLUSIONS

In conclusion, we have demonstrated the existence of
an excited-state quantum phase transition in two models
describing the collective matter-light interaction. In the in-
tegrable Jaynes-Cummings model, the ESQPT leads to a neat

nonanalyticity of the order parameter 〈Jz〉 at the critical energy
Ec. The nonintegrable Dicke model exhibits a similar type of
ESQPT, but the signatures are blurred by the onset of chaotic
behavior in the spectrum. Level repulsion (a fundamental
feature of quantum chaotic systems) and a cumulation of
sharp avoided crossings (a typical signature of an ESQPT)
are difficult to conciliate in general. However, our numerical
calculations show that a crossover, from the regime with no
level repulsion to the one with the Wigner level statistics,
takes place precisely around the critical energy. Moreover,
our results are compatible with the hypothesis that this abrupt
emergence of level repulsion is caused by the precursors of
the ESQPT, in a similar way as discussed in Ref. [2] for
the ground state. We anticipate the existence of a similar
qualitative behavior in other nonintegrable systems with
ESQPTs. Moreover, other dynamical effects of ESQPTs, such
as, for instance, anomalous decoherence factors previously
obtained in the Lipkin model [11], are expected to take place
in a fuzzier manner in quantum chaotic systems.
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