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Paucity of attractors in nonlinear systems driven with complex signals
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We study the probability of multistability in a quadratic map driven repeatedly by a random signal of length
N , where N is taken as a measure of the signal complexity. We first establish analytically that the number of
coexisting attractors is bounded above by N . We then numerically estimate the probability p of a randomly
chosen signal resulting in a multistable response as a function of N . Interestingly, with increasing drive signal
complexity the system exhibits a paucity of attractors. That is, almost any drive signal beyond a certain complexity
level will result in a single attractor response (p = 0). This mechanism may play a role in allowing sensitive
multistable systems to respond consistently to external influences.
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Nonlinear dynamical systems can respond in a variety of
ways to repeated external input. One possibility is that the
driven system is conditionally stable with respect to the exter-
nal signal and the resulting response is consistent regardless of
the initial state. Reproducible behavior is possible even when
the undriven dynamical system is chaotic, such as in the case
of generalized synchronization [1]. Consistent response has
been suggested as the common element behind information
transmission in biological and physiological systems and has
recently been studied in the context of neuronal models and
laser dynamics [2,3]. Another possibility is that the dynamical
system is not stable with respect to the external signal, but
is instead driven toward a chaotic attractor. Such systems
are consistent in a statistical sense because, although each
response depends sensitively on the initial state, all have
identical long-term statistics due to ergodicity.

The situation we wish to consider here is that the driven
system exhibits multistability; the phase space is divided into
more than one basin of attraction. Long-term statistics will
depend on the initial condition and this dependence can be
highly sensitive if the basin boundaries are fractal [4]. In the
context of driven systems multistability has been reported
in lasers [5] and in biological processes [6]. In some cases
external modulation induces multistability [7], whereas in
other cases it is quenched [8]. Recently, a rigorous study of a
driven logistic map reported that sinusiodal modulation tends
to destroy multistability as the modulation period is increased;
however, for dichotomous driving multistability is persistent
in some regions [9].

In this paper we analyze multiattractors in a logistic map
under generic modulation. We find that the probability of mul-
tistability depends on the complexity of the drive signal, where
complexity is quantified by the length, N , of the repeated
portion of the drive signal. For very simple signals coexisting
attractors are common, but for more complex signals we
observe a paucity of attractors. That is, the probability p(N )
that a randomly chosen signal results in multistability vanishes
exponentially with the complexity of the drive signal. The
mechanism behind the paucity of attractor phenomenon may
play a role in allowing multistable dynamical subsystems to
cooperate in complex systems.

We begin with a quadratic map,

xn+1 = fn(xn) = rxn(1 − xn) + δn, (1)

to which we have added an extra term δn. We wish to investigate
the number of attractors supported by the map with respect to
a repeated driving signal of period N such that δn = δn mod N .
Figure 1(a) shows an example where N = 3. Our notation
subsumes the driving signal into the definition of the map so
that the original picture of an externally driven system can be
expressed as a sequence of different map functions [Fig. 1(b)].
We have found that multiplicative modulation such as in [9]
does not qualitatively change the results presented here.

We recast this problem into studying the stability of the N th
composition [Fig. 1(c)]:

yn+1 = F (yn) = fN−1 ◦ fN−2 ◦ · · · ◦ f0(yn). (2)

A period one orbit of (2) corresponds to a periodic solution of
(1) of the same length as the drive signal. The existence and
stability of such solutions relates to the issue of consistency [2];
however, in this article we focus on the general question
of whether coexisting attractors are supported by (2). Our
definition of an attracting set is stated in the Appendix.
One exception will be attractors at infinity associated with
trajectories leaving the interval. Accordingly, we restrict the
motion of (2) to the [0,1] interval by enforcing 0 � δn �
1 − r/4.

By fixing r and restricting δ as described, we are defining a
family of maps [Fig. 2(a)]. The driven system we are studying
is equivalent to a composition of N random selections from
this family. A constant drive signal, or N = 1, is just a single
one of these maps. So long as a drive signal of length N is
also of prime period N—that is, it is not decomposable into
repeating parts shorter than N—the number of attractors of
(1) and (2) are equivalent (see also [9]). Such repetitions have
almost no probability of happening in a randomly generated
drive signal.

Each map has only one attractor, but compositions of
them may support more, including ones with fractal basin
boundaries [10]. Figure 2(b) is a sampling of the possible
responses to a drive signal consisting of N = 2 repeated (δ0,
δ1) pairs. The two grayscale ranges indicate different attracting
sets. Where only one grayscale is seen there is a single limit
set with the basin of attraction covering the entire interval.
Roughly half the parameter space is occupied by two-attractor
systems, being either periodic or chaotic with any combination
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FIG. 1. Three equivalent systems. (a) Quadratic map driven by
additive signal δn, (b) consecutive applications of quadratic maps
each shifted by δn, and (c) the composition of all the individual maps.

possible. The situation of multiple attractors has also been
noted in a driven Lorenz system [11].

What bounds are there on the number of attractors versus
N? Also, what is the probability of encountering multiattrac-
tors given a random choice of drive signal of length N? This
second topic is equivalent to calculating the fill fraction of
multiattractor systems in parameter space. Since the parameter
space is N -dimensional we take a statistical approach to this
question.

For maps with negative Schwarzian derivative, the first
question has an analytic answer in terms of critical points.
The property of everywhere negative Schwarzian derivative

f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

< 0 (3)

is satisfied for the family of quadratic maps studied here and for
all compositions of them. Almost all smooth one-dimensional
maps reported in the literature share this property. Under
this assumption, Singer [12] showed that there are a finite
number of stable periodic attractors, each of which attracts
the iterates of some critical point. As a result, the number of
periodic attractors cannot exceed the number of critical points.
In the Appendix we show that the trapping region of a chaotic
attractor contains at least one critical point as well. Together,
these results imply that the total number of attractors of F is
bounded by the number of critical points.

A critical point x∗ marks the location of an extremum:
F ′(x∗) = 0. Using the chain rule we can expand F ′(x) as a
product of the derivatives of its constituent maps:

dF

dx
= dfN−1

dx

∣∣∣∣
fN−2◦···◦f0(x)

· · · df1

dx

∣∣∣∣
f0(x)

· df0

dx

∣∣∣∣
x

. (4)
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FIG. 2. Attractors as a function of driving signal amplitudes for
r = 3.4. (a) For N = 1 the map has a single attractor for each drive
signal level δ0. (b) N = 2, δ0 is fixed at 0.07 and δ1 is scanned over
its full range. The two grayscales indicate coexisting attractors. For
δ1 > 0.1 there is only one attractor.

In our case, each fn has a single extremum at 1/2. From
this we can infer that the extrema of F (x) take on one of
N different values: fN−1(1/2), fN−1 ◦ fN−2(1/2), . . . ,fN−1 ◦
· · · ◦ f0(1/2). Since all the critical points map to at most N

different critical values (peak/valley heights), the total number
of attractors is bounded above by N . We can trivially construct
a system that achieves this upper bound by taking the N th
composition of a map with a stable period N orbit. The
resulting composition has N stable fixed points. In general,
the number of attractors of a stable period P map composed
N times with itself is the greatest common denominator of
N and P . Note that this construction is consistent with our
stated upper bound because gcd(N,P ) � N . This connection
between attractors and critical values makes possible a drastic
simplification in the upcoming attractor counting algorithm.

Although the bound allows for an increasing degree of mul-
tistability as N → ∞, what we find in practice is the opposite
behavior: The likelihood p that a randomly chosen system (2)
hosts multiple attractors drops rapidly with increasing signal
complexity N . In what follows we use the relationship between
critical points and attractors as the basis of an algorithm to
estimate p as a function of the signal complexity.

We take a statistical approach to estimating the probability
of finding multiple attractors versus N . To isolate the effect
of increasing the complexity, N , we use a large ensemble of
uniformly random signals, each with the same rms power as
that expected for an infinite random sequence. For each random
signal we construct the composition map F (x) and compute its
critical values. The next task requires testing each member of
the ensemble for the presence of multiple attractors. Based on
the prior analysis, we need only follow the N critical values,
since all attractors attract at least one member of this set.
About each critical value we place an interval of near machine

046205-2



PAUCITY OF ATTRACTORS IN NONLINEAR SYSTEMS . . . PHYSICAL REVIEW E 83, 046205 (2011)

precision width (10−15) and propagate each interval for 4000
iterations of F . The intervals are not allowed to contract below
their initial width. The resulting N sets of 4000 intervals are
intersected with one another to determine which belong to
the same limit set. The use of interval arithmetic serves two
purposes: It eliminates the problem of round-off error giving
multiple values to the same limit set and it greatly facilitates
the detection of chaotic sets as the intervals grow exponentially
in that case. We find that this algorithm provides reliable
detection of multiple attractors in most cases; however, it can
overcount when convergence to the limit set is extremely slow
(critical slowing). This issue can be minimized by increasing
the number of iterations. The charts that follow were generated
using several months of CPU time.

We denote the probability of the occurrence of multiattrac-
tors as p and define it to be the ratio of the number of confirmed
multiattractor systems over the total number of systems tested.
The size of each ensemble is adjusted to achieve reasonable
confidence intervals about p. For the data presented here the
ensembles range from a few hundred to several million.

In all cases we see the same qualitative result: For small N

multiattractors are not uncommon, but as N increases p(N )
drops steeply. For N � 15 there is significant fluctuation in
p(N ) depending on whether N is even or odd; the dominance
of even period orbits causes enhanced multistability for even
period driving signals over odd period ones. Beyond N = 15
this difference becomes small. On a log plot the p values fall on
a fairly straight line for N > 15, implying an exponential rela-
tionship characterized by the slope � (Fig. 3). This parameter
could be viewed as an extinction coefficient for multiattractors
and when it is negative it serves as a mathematical definition
of the paucity of attractors phenomenon. In Fig. 4 we show
the results of repeating the procedure for estimating �(r) for
2.8 � r � 3.6 in increments of 0.01. We find � < 0 over this
range of r , suggesting that the paucity phenomenon is universal
in this system. Estimating �(r) for r > 3.6 is numerically
difficult due to the very small probability of multistability.

The magnitude of the paucity parameter � tends to be
greatest when the families are dominated by chaotic maps
(inset, Fig. 4) possibly because chaotic attractors are more
space filling. Plotting the average Lyapunov exponent versus
r for each ensemble bears out this general trend. Prior graph
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FIG. 3. (Color online) Log of the probability of multiattractors
as a function of signal complexity N . Cases r = 3.1 and r = 3.4 are
shown along with an estimate of the slope � for N � 15. The error
bars indicate 95% confidence intervals.
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FIG. 4. The paucity parameter � and the mean Lyapunov expo-
nent λ plotted versus r . Each value of r defines a family of maps (1)
where 0 � δn � 1 − r/4. For each map family the probablity p(N ) of
multiattractors for 15 < N � 45 is computed and the corresponding
paucity parameter � plotted (solid circles). The open circles show
the mean Lyapunov exponent for that particular family of maps. The
insets depict the family of maps (N = 1) just as in Fig. 2(a), but for
the indicated r values.

theoretic results show that random compositions of chaotic
unimodal maps cannot support more than one attractor [13];
however, we do not reach this ideal due to the presence of a
dense set of periodic windows in this system [14]. We note that
most known chaotic physical systems are structurally unstable
and display a similar dense set of periodic windows [15].

More complex drive signals tend to result in attractors
with greater Lyapunov exponents. A comparison of the mean
Lyapunov exponents for r = 3.1 and r = 3.4 versus N is
shown in Fig. 5. Unlike Fig. 4, the mean exponent is not
for the underlying map family, but for the attractors resulting
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FIG. 5. The mean Lyapunov exponent 〈λ〉 normalized by N

plotted versus N for r = 3.1 and r = 3.4. For each value of r

and N 8000 instances of randomly driven maps were generated
and the Lyapunov exponent of resulting attractors computed. The
Lyanpunov exponent per time step increases with the drive signal
length, indicating that more complex drive signals tend to push the
dynamics more often into less stable regions of the underlying map.
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from N random compositions of them averaged over an
ensemble of 8000. The exponent is normalized by N to allow
comparison of different length drive signals. Even when the
map family is dominated by stable maps, the composition of
them can be chaotic. Increasing N increases the probability of
a space-filling chaotic response, indicating that more complex
drive signals tend to push the dynamics into highly unstable
regions of the underlying map.

In summary, there is a relationship between the existence of
multistability and the complexity of the drive signal in driven
one-dimensional maps. In particular, we show that smooth
maps with negative Schwarzian derivative have a tight upper
bound on the number of attractors they can support given the
drive signal complexity. By following the iterates of critical
values we are able to exhaustively explore this relationship
in a driven quadratic map. It is possible to generalize the
approach here to higher-dimensional maps; critical points
become critical curves [16], although the analysis is likely to
be difficult to automate. For continuous time systems different
methods would need to be employed for the exhaustive
detection of attractors.

Given the remarkable success of quadratic maps in captur-
ing the rich dynamical behavior of a wide range of systems, we
expect that the reported behavior also appears elsewhere. The
predominant feature uncovered here is the paucity of attractors
phenomenon characterized by an exponential decline in the
probability of multistability with the complexity of the drive
signal. The significance of this behavior is that it is a prerequi-
site for consistent response between dynamical systems, and

therefore it is one mechanism that could allow highly complex
systems—possibly rife with fractal basins of attraction—to
signal each other in a reliable way.

APPENDIX

Definition. A closed, connected set U is called a trapping
region if Fj (U) ⊂ U, j > 0. Then

A def=
⋂
j�0

Fj (U)

is an attracting set [17].
Let I be an interval and F : I → I be at least C1 smooth.

Consider the case that there is an attracting chaotic set A
with an associated trapping region U ⊂ I . From Devaney’s
definition of chaos [18] we know that unstable periodic orbits
are dense in A, or equivalently, for j large enough Fj (x),
x ⊂ U has arbitrarily many fixed points where |dFj /dx| > 1.

Theorem. There is a critical point of F in U.
Proof. Let a < b be consecutive fixed points of Fj in U.

Continuity of the first derivative and the condition of instability
requires dFj /dx to have opposite signs at points a and b.
Therefore, there is a point in [a,b] where the derivative of Fj

passes through zero (a critical point). It is straightforward to
show that critical points of Fj are preimages of the critical
points of F. Since there is a preimage of a critical point of F
in U and U is a trapping region, it follows that there is at least
one critical point of F in U.
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