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Length scale of interaction in spatiotemporal chaos
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Extensive systems have no long scale correlations and behave as a sum of their parts. Various techniques
are introduced to determine a characteristic length scale of interaction beyond which spatiotemporal chaos is
extensive in reaction-diffusion networks. Information about network size, boundary condition, or abnormalities
in network topology gets scrambled in spatiotemporal chaos, and the attenuation of information provides such
characteristic length scales. Space-time information flow associated with the recovery of spatiotemporal chaos
from finite perturbations, a concept somewhat opposite to the paradigm of Lyapunov exponents, defines another
characteristic length scale. High-precision computational studies of asymptotic spatiotemporal chaos in the
complex Ginzburg-Landau system and transient spatiotemporal chaos in the Gray-Scott network show that these
different length scales are comparable and thus suitable to define a length scale of interaction. Preliminary studies
demonstrate the relevance of these length scales for stable chaos.
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I. INTRODUCTION

Spatiotemporal chaos (STC) is a generic pattern in extended
nonequilibrium systems exhibiting a rapid decay of spatial and
temporal correlations [1]. Asymptotic STC is reported, for
example, in fluid experiments [2], chemical reaction-diffusion
systems [3], and in cardiac fibrillation [4]. In transient STC
the spatiotemporal dynamics spontaneously collapses into a
regular behavior [5]; manifestations include turbulence in
shear flow [6], models for semiconductor charge transport [7],
or chemical reaction-diffusion models [8,9].

STC is characterized by sensitivity to initial conditions;
infinitesimal perturbations grow on average exponentially in
time to yield a positive Lyapunov exponent. Lorenz famously
described the possibility that the flap of a butterfly’s wings in
Brazil may set off a tornado in Texas [10]. Although perturba-
tions certainly have a course-altering impact on the evolution
of the entire system, they will leave no observable mark on the
system’s long term space-time behavior; information about
these perturbations quickly becomes lost, i.e., although the
flap of a butterfly’s wings in Brazil may set off a tornado in
Texas, the citizens of Texas have no way of knowing of the
existence of the butterfly from solely observing the weather. It
would be absurd for the citizens of Brazil and Texas to attempt
to communicate through butterflies and tornados.

Even though every part of an STC system has the ability
to change the evolution of the entire system, there exists an
effective decoupling between distant parts; this can be quanti-
fied with correlation length scales [1,11], time-delayed mutual
information between distant points [12,13], or transfer entropy
[14]. This decoupling directly relates to Ruelle’s claim [15]
that extended chaotic systems without long-range interactions
are uncorrelated at large length scales and therefore should
behave as a sum of their parts. Then STC is extensive, and the
attractor dimension grows in direct proportion to the volume
of the system [1,16]. If this linear relation is fulfilled for small
changes of system size, STC is said to be microextensive [17].
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Lyapunov dimension, sum of positive Lyapunov exponents,
and the logarithm of the average lifetime in the case of
transient STC have been reported to be extensive in large
systems [7–9,11,17–24]. STC in small extended systems
can exhibit significant deviations from microextensivity in
Lyapunov dimension [25].

This paper introduces and explores various techniques to
determine a characteristic length scale beyond which STC is
extensive in reaction-diffusion networks. For systems much
larger than this characteristic length scale the local dynamics
is independent of the system size and microextensivity is
expected. We also find that irregularities in the network
topology (boundary condition, network shortcut) do not
influence the system characteristics much beyond this length
scale. Several candidates for this length scale will be presented,
and length scale of interaction should be understood to
mean an order-of-magnitude value that could refer to any
one of these. Section II introduces the two models, the
complex Ginzburg-Landau (cGL) reaction-diffusion network
with asymptotic STC and the Gray-Scott reaction-diffusion
network with transient STC. Section III provides candidates
for the length scale of interaction based on time-averaged
system variables. The information flow in reaction-diffusion
networks is discussed in Sec. IV via transfer entropy. In
Sec. V space-time information flow is probed with finite
bump perturbations and measured with particular space-time
averages. Section VI discusses the relevance of these length
scales of interaction for stable chaos in a coupled map lattice.
A discussion of the results is presented in Sec. VII.

II. REACTION DIFFUSION NETWORKS EXHIBITING
SPATIOTEMPORAL CHAOS

The network consists of N diffusively coupled, identical,
continuous-time dynamical elements,

dxn

dt
= F(xn) + DH

N∑
j=1

�nj xj . (1)

At each network node n (n = 1,2, . . . ,N ) the local dynamics
is given by F(xn) with xn a d-dimensional state vector and
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F : Rd → Rd a function. The diffusive coupling term depends
on the global coupling parameter D, and on the d × d matrix
H , which controls the relative diffusion and mixing of the
d components of xn. � is a discrete N × N symmetric
Laplacian matrix required to meet the condition∑N

j=1 �ij = 0. The network topology and boundary
conditions are defined by � [20].

Equation (1) is approximately invariant under the variation
of N and D with N/

√
D fixed. If N goes to infinity with

N/
√

D held constant, the system approaches a continuous
form. On the other hand if N (and hence D) is made too small,
discretization effects will become significant and eventually
the system will no longer support chaos. D controls the charac-
teristic length scale; it is chosen large enough for the networks
to be good approximations for the continuum system [20].

We consider two dynamical systems, the complex
Ginzburg-Landau (cGL) system [1,26] and the Gray-Scott
(GS) system [27]. The dynamical state of each of these
systems consists of two real variables per node (d = 2); thus,
spatiotemporal chaos is induced by the diffusive coupling of
the non-chaotic dynamical elements.

The complex Ginzburg-Landau system describes a wide
range of physical phenomena including aspects of super-
conductivity, superfluidity, Bose-Einstein condensation, and
liquid crystals [26]. It represents a normal form for a transition
between a stationary homogeneous state to an oscillatory
state close to a Hopf bifurcation [1]. In the cGL system
the two-dimensional real system state xn [Eq. (1)] is usually
described by a single complex variable zn; the equations are

d

dt
zn = zn − (1 − ic3)|zn|2zn + D(1 + ic1)

N∑
j=1

�njzn. (2)

The multiplicative factor 1 + ic1 corresponds to the 2 × 2
matrix H in Eq. (1) for the real states. For consistency with
the GS system we define the two real variables, an := Re(zn)
and bn := Im(zn).

For parameters above the Benjamin-Feir instability line,
c1c3 = 1, plane wave solutions are linearly unstable; phase
turbulence as well as defect chaos [Fig. 1(a)] exists. Very
recently, transient spatiotemporal chaos was reported for
parameters below that instability line [18]. We have used
the parameters D = 4, c1 = 3.5, and c3 ∈ {0.85,0.95,1.2}
to match the cases studied by Fishman and Egolf [25]. In
this range of parameters the system exhibits defect chaos:
space-time dislocations where a constant phase line stops
appear irregularly. The equal-time two-point correlation length
of a decreases by a factor of about 20 across the range of
parameters from c3 = 0.85 to c3 = 1.2 [25]. The uncoupled
systems exhibit an unstable focus at the origin (an = bn = 0),
surrounded by a stable limit cycle of radius 1.

The Gray-Scott system [27] represents an open autocatalytic
reaction A + 2B → 3B and B → C. The equations are

d

dt
an = 1 − an − μanb

2
n + D

N∑
j=1

�njan,

(3)
d

dt
bn = μanb

2
n − φbn + D

N∑
j=1

�njbn.

FIG. 1. Spatiotemporal chaos of the variable a in the (a) complex
Ginzburg-Landau (cGL) ring network and in the (b) transient phase
of the Gray-Scott (GS) ring network. The cGL system is plotted for
300 time units, N = 500 nodes, and for the parameters c1 = 3.5,
c3 = 0.95, and D = 4. The GS system is plotted for 300 time units,
N = 500 nodes, and for the parameters μ = 33.7, � = 2.8, and D =
16. A fourth-order Runge-Kutta integration method was used; large
values of a are color coded in white.

where an and bn are the dimensionless species concentrations
of A and B at node n, and φ and μ are bifurcation parameters.
We use the well studied parameters D = 16, μ = 33.7 and
� = 2.8.

In the GS system spatiotemporal chaos is transient [9]
with the transient lifetime increasing exponentially with the
network size N . Figure 1(b) shows a typical spatiotemporal
pattern during the transient phase. Within the parameter regime
of transient spatiotemporal chaos, the uncoupled system is
characterized by a stable node, a saddle, and an unstable focus.
Spatiotemporal chaos in the coupled system is Šilnikov-like;
a typical trajectory at a network node spirals away from the
unstable focus toward the stable node, to be reinjected into
the neighborhood of the unstable focus by the propagating
reaction-diffusion front [28].

A spatiotemporally chaotic system is extensive if it has no
long-range correlations and behaves as a sum of its parts. The
Lyapunov dimension DL grows then linearly with the size N of
the network [1,15,16]. If this linearity is exactly fulfilled, even
for arbitrarily small changes in size, then spatiotemporal chaos
is called microextensive [17]. As system parts only interact
weakly, a natural chaotic length scale ξδ was defined by Cross
and Hohenberg [1] that describes the size (number of nodes)
of a single degree of freedom,

ξδ = lim
N→∞

N

DL
. (4)
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TABLE I. Length scales of the exponential decay (in units of number of nodes) for various measures applied to the complex Ginzburg-Landau
(cGL) network (D = 4, c1 = 3.5) and to the Gray-Scott (GS) network (D = 16, μ = 33.7, φ = 2.8). The chaotic length scale ξδ [nodes] is
added for comparison. The Kolmogorov-Sinai entropy density [nats/(node · time)] and information transfer velocity [nodes/time] are used in
Sec. V. Cells marked “-” were not computed; no significant deviation from microextensivity in DL exists for cells marked “n/a.” |DL − N/ξδ|
refers to deviation from extensivity of Lyapunov dimension.

cGL: c3 = 0.85 cGL: c3 = 0.95 cGL: c3 = 1.2 GS

Decay of |X̄ − X̄0| Fig. 2 67 28 24 30
Decay of |〈Xn〉 − X̄0| Fig. 3 21 19 11 34
Decay of E Fig. 4 – 18 – 40
Decay of Mmn Fig. 5 25.1 6.19 3.40 7.72
Decay of |DL − N/ξδ| n/a 31.2 [37] 32.5 [37] n/a
Chaotic length scale ξδ Eq. (4) 10.7 [37] 8.7 [37] 6.7 [37] 16.3 [20]
Kolmogorov-Sinai entropy density limN→∞ �+/N – – – 0.001126 [20]
Information transfer velocity v Eq. (13) − 4.2 − 3.3

Earlier studies reported that spatiotemporal chaos in the
cGL system is extensive in Lyapunov dimension for large
system sizes [11]. For small system sizes significant deviations
from microextensivity exist in form of oscillations of the
Lyapunov dimension with system size [25]. These oscillations
were attributed to the existence of building blocks with the
length scale of the oscillations determining the number of
nodes of a building block. The magnitude of the deviations
from microextensivity decrease exponentially with system
size. Transient spatiotemporal chaos in the GS network is
extensive; the Lyapunov dimension, the sum of positive
Lyapunov exponents, as well as the logarithm of the average
transient lifetime increase linearly with the network size [20].
Whether transient STC is microextensive for small network
sizes is currently not known because of the short transient
lifetimes for small networks. We find that ξδ varies between 6
and 10 nodes for the cGL network, and ξδ = 16 nodes for the
GS network (Table I) [29].

III. MEASURING LENGTH SCALE OF INTERACTION
WITH NODE AVERAGES

Perhaps the simplest measure of the characteristics of a
local region of a spatiotemporal system is the time averaged
value of a variable X at node n [30], given by

〈Xn〉 = lim
T →∞

T −1
∫ T

0
Xndt. (5)

The convergence of the computational estimate for 〈Xn〉 is
slow and very large T are required to achieve the desired
precision [31]. A parallel code is applied that computes the
average over several different initial conditions and smaller T .

The local averages define a global spatiotemporal average,

X̄ = N−1
N∑

n=1

〈Xn〉. (6)

For a chaotic system governed by equations with translational
spatial symmetry (e.g., the GS ring network during the tran-
sient phase, or the cGL ring network) it should typically [32] be
the case that X̄ = 〈Xn〉. For a large enough ring network X̄ can
be interpreted as representing the characteristics of the natural
system behavior without the influence of boundary conditions

or other non-homogeneous elements. For an infinitely large
ring network a global average X̄0 is defined as

X̄0 = lim
N→∞

X̄. (7)

This value is used as a baseline against which deviations
from ordinary behavior can be defined. For the purposes
of this paper a good estimate for X̄0 was achieved with
N = 1000.

In a ring network (having translational node symmetry) the
average characteristics of dynamical variables X̄ depends on
the size of the network, but converges quickly to the limiting
value X̄0. Figure 2 reveals that the deviations of space-time
averages between small and large ring networks, |X̄ − X̄0|,
decrease exponentially with the network size N for both
systems (cGL, GS) and for a wide variety of variables X.
In all cases the corresponding linear trend in ln |X̄ − X̄0| is
obfuscated by fluctuations which are particularly significant
for small N and which are due to the complicated dependence
of the dynamics on N . In this paper we focus on the envelope
of the graphs, ignoring any transients for small N . The
determination of the envelope is limited by the noise floor
of the computation [Figs. 2(a)–2(c)] as N increases. For
example in Fig. 2(b), noise of magnitude e−10 dominates
the measured value of |ā − ā0| for N > 250. The noise
floor decreases slowly(1/

√
T ), which requires exponentially

increasing simulation times for extending the envelope to
larger N .

The space-time characteristics X̄ for small ring networks
is clearly different from the limiting characteristics X̄0 for
larger network sizes despite the translational node symmetry
inherent in ring networks. This reflects that a ring network
below a certain network size does not behave as the sum of
weakly interacting small ring networks, and deviations from
microextensivity are apparent. The inverse of the envelope
slope defines a length scale of interaction beyond which
an STC system can be considered to be just a sum of its
constituent parts. For the cGL system this length scale of
interaction is decreasing with increasing parameter c3 (Table I).
In general, envelope slope as well as length scale of interaction
appear to be the same regardless of the variable X being
measured, although the particulars of the fluctuations are
slightly different. This is demonstrated in Figs. 2(b) and
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FIG. 2. Deviation of space-time averages [X̄, Eq. (6)] from those
of a large (N = 1000) ring network [X̄0, Eq. (7)] as a function
of network size N : (a) ln |r̄ − r̄0| for the cGL ring network (c1 =
3.5, c3 ∈ {0.85,0.95,1.2}) with r = |z| the distance to the unstable
focus; (b) ln |ā − ā0| for the GS ring network (μ = 33.7, � = 2.8);
(c) ln |X̄ − X̄0| for the same GS ring network as in (b) and different
variables X (X = a2, X = (da/dn)2, and X = r with r the distance
to the unstable focus). The envelopes of the curves in (a) and (b) are
fitted with a subjectively chosen linear function. The linear fit from
(b) is copied into (c) to guide the eye. The deviations of space-time
averages in (a) do not match the deviations from extensivity of the
Lyapunov dimension in [25].

2(c) for the GS ring network and four typical variables X,
X ∈ {a,a2,(da/dn)2,r} [34]; their length scale of interaction
is 30 nodes (Table I).

The rapid convergence of X̄ → X̄0 for large N suggests
the conjecture that observations from a local region do not
determine the size of a large STC ring network. This claim

can be justified in terms of information transfer. The ring size
is determined by observation of information that originates
at the local region, travels around the ring, and finally reaches
the local region again. For a ring network much larger than
the length scale of interaction very little information will
remain after a round trip, and the local region contains very
little information about the ring size. Consequently, measures
such as 〈Xn〉 (which, by symmetry, is typically equal to
X̄ for chaotic systems with periodic boundary conditions)
must be constant over the range of sufficiently large system
sizes.

In a regular network with broken translational node sym-
metry due to no-flux boundary conditions the local averages
〈Xn〉 near the boundaries do not match the space-time average
for a large ring network X̄0 [32]. Nodes that are sufficiently
far away from the boundary on the other hand do not have
access to information about the boundary and 〈Xn〉 → X̄0

as the distance from the boundary increases. The deviations
|〈Xn〉 − X̄0| decrease exponentially with the distance from the
boundary for both systems (cGL, GS) and for a wide variety of
variables X [Figs. 3(a)–3(c)]. The sharp dips in ln |〈Xn〉 − X̄0|
are due to zero-crossings of 〈Xn〉 − X̄0 and occur at different
nodes for different variables [35]. The comments about noise
floor and fluctuations made in reference to Fig. 2 apply here
as well.

The influence of a boundary condition rapidly diminishes
as a function of distance from the boundary, since information
about the presence of a boundary gets scrambled before it can
be communicated with distant nodes. The inverse of the enve-
lope slope defines a length scale of interaction below which an
STC system depends on the boundary condition and reveals
deviations from microextensivity. For the cGL system this
length scale decreases with increasing parameter c3 (Table I).
It is the same regardless of the variable X being measured (to
within observational limits) as shown in Figs. 3(b) and 3(c)
for the case of a GS ring network and four typical variables
X, X ∈ {a,a2,da/dn,r} [34]; the length scale of interaction is
34 nodes (Table I).

Nonlocal coupling (shortcut) between two network nodes
also breaks the translational node symmetry within a ring
network and affects the local dynamics. Local averages 〈Xn〉
near the two shortcut nodes differ from the space-time average
for a large ring network X̄0. Unlike in the case of the no-flux
boundary, the nodes that are connected by the shortcut can
be chosen. Consequently, varying the length of the shortcut
within the ring network allows to measure the degree of
interaction between the local disturbances surrounding each
of the shortcut nodes.

To study the deviations of local dynamical characteristics
in the presence of a single shortcut, we consider the reference
case of a large ring network with a long shortcut between
two nodes k1and k2 (N = 2000, and k2 − k1 = 1000); these
nodes are separated by a distance much greater than the length
scale of interaction. In this reference network, Xs

n := 〈Xk1+n〉
denotes the average value of X for a node that is |n| nodes
away from the shortcut linkage k1. Then the estimate Xe

n for
the local average 〈Xn〉 at node n for a large ring network with
a single shortcut of arbitrary length is given by

Xe
n − X̄0 = (

Xs
|n−k1| − X̄0

) + (
Xs

|n−k2| − X̄0
)
; (8)
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ā
0
|

n(b)

-12

-10

-8

-6

-4

-2

0

1 51 101 151 201 251

ln
s X

X
n

X̄
0
|

n(c)

X = a2

X = da/dn
X = r

FIG. 3. Deviation of time averages [〈Xn〉, Eq. (5)] from the
space-time average of a large ring network [X̄0, Eq. (7)] for varying
nodes n near a no-flux boundary (N = 1000): (a) ln |〈rn〉 − r̄0| for
the cGL ring network (c1 = 3.5, c3 ∈ {0.85,0.95,1.2}) with r = |z|
the distance to the unstable focus; (b) ln |〈an〉 − ā0| for the GS ring
network (μ = 33.7, � = 2.8); (c) ln(sX|〈Xn〉 − X̄0|) [35] for the
same GS ring network as in (b) and different variables X (X = a2,
X = da/dn, and X = r with r the distance to the unstable focus).
sX is a scale factor chosen to align all three traces vertically. The top
trace corresponds to ln[maxX(sX|〈Xn〉 − X̄0|)]; it is raised above the
other traces for clarity. Envelopes of curves in (a) and (c) are fitted
with a subjectively chosen linear function. The slope of the linear fit
in (c) is shown in (b) for reference.

it depends on data Xs
i of the reference ring network with a

long shortcut. This estimate is trivially fulfilled if the local
characteristics is measured at a node n clearly away from
both linkages ki , i.e., |ki − n| much larger than the length
scale of interaction, since then Xs

i ≈ X̄0 in Eq. (8). If the

local characteristic is measured at a location n that is within
the interaction length scale of at least one of the linkages,
then at least one of the differences Xs

|n−ki | − X̄0 in Eq. (8) is
nonzero, and the estimate represents a linear superposition
of local characteristics. Equation (8) is used to determine
shortcut-induced deviations from linearly additive behavior
(E) expressed as the RMS error between the estimate Xe

n and
the true local average 〈Xn〉 at node n,

E =
√

N−1
∑N

n=1

(
Xe

n − 〈Xn〉
)2

. (9)

The logarithmic variation of the RMS error E with the shortcut
length k2 − k1 is plotted in Fig. 4 for the cGL system (a) and
the GS system (b) using different variables X. Only a few
variables X were available for the cGL system, because the
U (1) symmetry of the dynamical equation leads to 〈Ap

n 〉 =
〈Bp

n 〉 for even powers p and 〈Ap
n 〉 = 〈Bp

n 〉 = 0 for odd powers.
In all cases E approaches zero for large shortcut lengths. This
is expected since the local regions around the two linkages do
not interact for long shortcuts, the linear superposition in the
estimate is valid, and the ring network behaves as a sum of
its parts in the presence of a long shortcut. This is similar to
the case of no-flux boundary conditions in Fig. 3 where the
deviations from extensivity also vanish for increasing distance
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FIG. 4. Shortcut-induced deviations from microextensivity E

[Eq. (9)] that are based on time averages 〈X〉 for varying shortcut
lengths k2 − k1 in a ring network (N = 1000) with a single shortcut
between node k1 = 1 and k2, for (a) the cGL system (c1 = 3.5,
c3 = 0.95) and for (b) the GS system (μ = 33.7, � = 2.8). In each of
the figures a subjectively chosen linear fit is determined and plotted
twice (with the same slope) as a visual reference.
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from the boundary condition. For smaller shortcuts however,
E does not vanish, which indicates that the two local regions
centered at the linkages do interact to cause deviations from
microextensivity. In both systems there is an exponential decay
of E with increasing shortcut length. The length scale of the
decay is independent of the variable X within observational
accuracy (Fig. 4, Table I).

The measure E was designed to quantify shortcut-induced
deviations from microextensivity. E determines the degree to
which the local regions near the linkages of the shortcut interact
dynamically with each other in a nonlinear way. It determines
how far apart the nonhomogeneous nodes (linkages) of a
network need to be in order for the network to be extensive; a
nonzero E represents the degree to which the network is not
simply a linear sum of its parts.

In this section we have quantified the length scale of
interaction with long-time averages of various variables X.
The variables however fluctuate in time, as does the nature
of the local dynamics; long-time averages span over many
temporally local artifacts. For example, STC in the GS system
exhibits an irregular distribution of local extinctions where
neighboring trajectories approach the stable steady state of the
uncoupled system (a = 1 and b = 0). These local extinctions
are quickly erased by an excitation wave that travels inwards
from both sides [white triangular structures in Fig. 1(b)].
Such an excitation wave carries the information (without
loss) that the local extinction is not a global extinction [36],
since an excitation wave cannot be present in the case of a
global extinction. Local extinctions occur with a frequency
that diminishes exponentially with their width, so the range
of information transfer by excitation waves due to local
extinctions is limited; small extinctions don’t have long
range and large extinctions are very rare and not statistically
significant.

IV. MEASURING INFORMATION TRANSFER VELOCITY

Although the characterization of a length scale of interac-
tion via node averages (Sec. III) does not involve information
theoretic concepts, the detectability of a boundary condition
by a node that is some distance from the boundary necessarily
involves transmission of information. In this section we
examine the flow of information through a reaction-diffusion
network.

The mutual information quantifies the amount of informa-
tion about an observable shared between two nodes, or more
specifically the amount of information that can be learned
about the variable X at node m through observation of variable
X at node n. The mutual information Mmn between nodes m

and n as observed through variable X is defined as

Mmn =
∑

Xm,Xn

p(Xm,Xn) ln
p(Xm,Xn)

p(Xm)p(Xn)
. (10)

p(Xm) and p(Xn) are the marginal probabilities and p(Xm,Xn)
is the joint probability associated with the pair of measure-
ments Xm and Xn of observable X at nodes m and n. The
probabilities were computed from histograms with 100 bins for
each variable, so 1002 bins for the joint probability p(Xm,Xn).
In this case the noise floor, which is a function of simulation
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FIG. 5. Logarithm of same-time mutual information Mmn vs.
node separation |n − m| for (a) the variable a of the cGL ring network
(c1 = 3.5) and for (b) the variable a of the GS ring network (μ = 33.7,
� = 2.8). For variable r the deviations from the linear trend were
more pronounced. Each curve was approximated with a least-squares
linear fit for the largest range of node separations |n − m| with an
approximately linear relation. The probabilities were computed from
histograms with five bins for each variable, so 25 bins for the joint
probability p(Xm,Xn).

time and number of histogram bins, is too large and limits
the range of |n − m| with usable values of Mmn. A reduction
to five bins per variable sufficiently decreases the noise floor
(Fig. 5).

For the cGL as well as the GS system the logarithm of
the mutual information ln Mmn decays rather linearly with
node separation |n − m|, until it flattens due to the noise
floor [Figs. 5(a) and 5(b)]. The length scales associated with
the least-squares linear fit are listed in Table I. It is clear
that the length scales (inverse slopes) associated with ln Mmn

vs. |n − m| (Fig. 5) are not equal to those associated with
node averages, ln |X̄ − X̄0| vs. N (Fig. 2) or |〈Rn〉 − R̄0|
vs. n (Fig. 3), but they are equal to each other within an
order of magnitude. The length scales associated with mutual
information show much greater variation across the various
parameter values of c3 in the cGL system than do the length
scales associated with the other measures (Table I).

Mutual information is similar to the temporal node averages
from Sec. III in that both describe the ability of the network to
communicate across distances. There are however important
differences between temporal node averages and mutual in-
formation. Mutual information is measured by comparing two
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nodes to each other and node averages involve measurement of
individual nodes. Mutual information can therefore be applied
to a homogeneous network with fixed size, when temporal
node averages would be constant across the nodes and thus
obscure the information flow within the system. Node averages
on the other hand measure the characteristics of individual
parts of a system to identify unusual node characteristics (such
as near a no-flux boundary).

Mutual information defines a length scale over which a
system becomes decorrelated; a temporal consideration must
be added to characterize information flow. One option is to
introduce a delay in the measurement of one of the nodes, so
that a measurement Xm(t) is compared with Xn(t + �t) for
some delay time �t . For a given pair (m,n), the delayed mutual
information should reach a first local maximum at some delay
�t . If �t is proportional to the node separation |n − m| for
a range of |n − m| values, their ratio defines an information
velocity, v = |n − m|/�t . Time delayed mutual information,
however, does not distinguish between information traveling
from one node to the other versus information reaching the
two nodes from a source external to them. For spatiotemporal
chaos in the cGL and GS system delayed mutual information
did not qualify to define a (constant) information velocity.

Schreiber has proposed to study information flow via
transfer entropy [14]. The transfer entropy T�n�t describes
the amount of information that is revealed about node n + �n

at time t + �t by measurement of a node n at time t and at
earlier times t − 1,t − 2, . . ., but that is not available from
measurements of node n + �n at times previous to t + �t

(t + �t − 1, t + �t − 2, . . .). Due to memory constraints, we
only used a single sample at node n (i.e. only the sample at
time t) and a single historical sample at node n + �n (i.e., the
subject sample at time t + �t and the historical sample at time
t + �t − u for a constant value u). In this case, the equation
for Schreiber’s transfer entropy reduces to

T�n�t =
∑

A,B,C

p(A,B,C) ln
p(B|A,C)

p(B|C)
, (11)

with

A = Xn(t),

B = Xn+�n(t + �t), and (12)

C = Xn+�n(t + �t − u).

�n is the spacing between the two nodes, �t is the transfer
time delay, and u is the historical time delay for node
n + �n. p(B|C) is the conditional probability of measurement
B conditioned on measurement C and p(B|A,C) is the
conditional probability of measurement B conditioned on
measurements A and B.

Transfer entropy measures the flow of information through
a system, and as such requires an entropy source. Any system
with a positive Lyapunov exponent spontaneously creates
entropy; however, we introduce an additional source of entropy
at node n by adding a unidirectional shortcut between node n

and another node m that is far away from n (|n − m| = N/2)
so that entropy produced in a remote part of the system gets fed
into node n. Specifically, an extra diffusion path δin(δjm − δjn)
is added to the Laplacian term �ij in Eq. (1). This additional

source of entropy greatly enhances the effectiveness of the
algorithm to determine information velocities.

For the observable X in Eq. (12) we have used the angle of
the trajectory in phase space in relation to the unstable focus,
as measured from the â direction. This observable has a clearly
defined range (−π to π ) and is uniformly distributed in the case
of the cGL system and rather evenly distributed in the case of
the GS system; these characteristics lead to efficient usage of
histogram bins. The probabilities in Eq. (11) were computed
from histograms for X with 30 bins; the joint probabilities
p(A,B,C) are accumulated into 303 bins. The historical time
delay u was chosen somewhat arbitrarily as u = 8 for the cGL
system and u = 2.4 for the GS system; these values are large
enough to allow evolution of the system (so that B and C

will often be in different histogram bins) but small enough
that measurement C still has predictive relevance regarding
measurement B.

For a range of �n the transfer entropy T�n�t was calculated
as a function of the transfer time delay �t ; the graphs exhibit
a peak for a positive value of �t with the maximum value
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FIG. 6. (Color online) Logarithm of transfer entropy T�n�t

vs. time delay �t for a variety of node spacings �n (�n =
0,5,10,15, etc. from top to bottom) for (a) the cGL ring network
(c1 = 3.5, c3 = 0.95) and for (b) the GS ring network (μ = 33.7,
� = 2.8). Each curve is shifted in �t using the estimated information
transfer velocity v (v = 4.2 for cGL system, and v = 3.3 for GS
system) to allow the peaks to align. The break in the graphs at �n = 0,
�t = u occurs because T�n�t = 0 at that point [Eqs. (11) and (12)].
The location m of the additional entropy source is at |n − m| = N/2
with N = 1000 the network size.
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decreasing with increasing distance �n to node n (Fig. 6).
The spatial progression of the maximum (increasing �n)
depends in good approximation linearly on its transfer delay
time for the two cases tested, which justifies the definition of
an information transfer velocity,

v = �n/�t. (13)

Due to complications caused by the extraneous oscillations of
T�n�t , the value of v was chosen subjectively, v = 4.2 for the
cGL system and v = 3.3 for the GS system. Figure 6 shows
the variation of the transfer entropy with the time delay �t

for the cGL system and the GS system, corrected by the
information velocity term to align the graphs for different �n.
The peaks align with some relatively small deviations, which
confirms the existence of an information transfer velocity ac-
cording to �t = �n/v. For the GS system there is an anoma-
lous shift in the peak toward larger values of �t at around
�n = 70.

In the absence of the additional entropy source in the form
of a unidirectional shortcut, the peaks of T�n�t are less well
defined, although the correction with the information transfer
velocity still yields an approximate alignment of the graphs.
Using delayed mutual information rather than T�n�t we get
similar results. In the presence of the unidirectional shortcut,
the transfer entropy propagates with an approximately constant
velocity for nodes within some distance �n from node n in
both systems. Without the shortcut we find an approximate
alignment for small �n of less well defined peaks for the
cGL ring network, and no alignment for the GS ring network.
For both information measures we find that the addition of
an additional entropy source clearly helps to determine the
velocity of the particular information flow.

The presence of an abnormal node (boundaries or shortcuts)
is a piece of information, and it takes time for this information
to travel to a remote area. The spatial localization of unusual
node characteristics due to boundary conditions and abnormal
network topology (e.g., shortcuts) as described in Sec. III can
be interpreted as information being attenuated as it travels
away from the abnormal nodes to neighboring nodes. The
limited spatial reach of this information is conjectured to be
related to the amount of time required for information to travel
from one region to another. Information transfer velocity could
then transform any of the length scales L defined in this paper
into characteristic time scales T for information attenuation
(T = L/v).

V. MEASURING SPACE-TIME INFORMATION FLOW
WITH FINITE PERTURBATIONS

The spatially limited influence of boundary conditions
defines various length scales of interaction (Sec. III). Finite
dynamical perturbations give insight into the spatiotemporal
information flow. Spatiotemporal chaos is exposed to a
spatially localized and temporally periodic perturbation. The
perturbation is added in Eq. (1), yielding

dxn

dt
= F(xn) + DH

N∑
j=1

�nj xj + p(t)q(n), (14)

where p is localized in time and periodic with period P , and
q is localized in space. In the interest of numerical stability,
p and q were chosen to be bump functions,

p(t) = f (2[(t mod P )/wt ] − 1), (15)

q(n) = q0f ([n − n0]/wn), (16)

with

f (α) =
{

exp
(
1 − 1

1−α2

)
if |α| < 1

0 otherwise
. (17)

wt refers to the duration of the perturbation; it needs to be long
enough to have a measurable effect on the system’s information
flow. P is the period between successive perturbations; it
needs to be large enough for the system to reach its natural
state before the next perturbation, wt 	 P . The perturbation
of radius wn is centered at the node n0 = N/2; it must be
wide enough such that the perturbation is not immediately
dampened by diffusion. wn = 10, wt = 1, P = 50 for the
cGL system, and P = 300 for the GS system were chosen
in this paper. q0 determines the direction and amplitude of
the perturbation; we used q0 = (5,0) for the cGL system, and
q0 = (2,0) for the GS system.

The consequences of the periodic perturbations for the local
characteristics of the dynamical variable X at a time τ after
the onset of each perturbative event are quantified via averages
〈Xnτ 〉,

〈Xnτ 〉 = lim
K→∞

1

K

K∑
k=1

Xn(t = kP + τ ), (18)

where n and τ (0 � τ < P ) represent the spatial and temporal
indices.

Figure 7 shows the spatiotemporal deviations of 〈Xnτ 〉
from the large-ring baseline average X̄0 for the cGL ring
network and the GS ring network. The spatially and temporally
localized perturbations clearly affect the dynamical character-
istics in the space-time neighborhood of the perturbation. The
pseudorandom structure filling the background of the plots
presents the noise floor, which decreases logarithmically as a
function of simulation time. The dotted lines in Fig. 7 have
a slope equal to the information transfer velocity [Eq. (13)];
these lines closely match the perturbation wavefront. On the
one hand this is to be expected since the perturbation can be
considered as a piece of information that travels through the
system. On the other hand, the connection between information
transfer velocity and the perturbation wavefronts in Fig. 7 is
not trivial. Information transfer velocity is defined in terms
of information theoretic quantities [Eq. (11)] and based on a
passive measurement of the dynamical system, whereas the
perturbation front is defined by a nodal average [Eq. (18)] and
measured by actively perturbing the dynamical system.

Information on injected signals (Fig. 7) as well as informa-
tion on boundary conditions (Fig. 3) cannot travel across great
distances through a medium (network) of STC in the case of
the cGL network and the GS network. A sender could encode
a message into the perturbation term p(t)q(n) of Eq. (14) to
be sent through the reaction-diffusion network. Due to the
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FIG. 7. Spatiotemporal deviations in the average nodal charac-
teristics for perturbed [Eq. (14)] and unperturbed [Eq. (1)] network
dynamics at node n and at a time τ after the onset of the
perturbation. (a) ln |〈rnτ 〉 − r̄0| for the cGL ring network [c1 = 3.5,
c3 = 0.95, N = 500, P = 50, q0 = (5,0), and K = 7.2 × 106], and
(b) ln |〈anτ 〉 − ā0| for the GS ring network [μ = 33.7, � = 2.8,
N = 500, P = 300, q0 = (2,0), and K = 6.0 × 105]. The other
parameters for the spatiotemporally localized finite perturbation are
n0 = N/2, wn = 10, and wt = 1. The dotted lines have slope equal
to the information transfer velocity [Eq. (13)] and are plotted for
comparison.

scrambling of information a receiver sufficiently far from the
sender could not observe any effect even after integrating over
millions of transmissions (K = 7.2 × 106 in Fig. 7(a)). In
analogy a boundary condition (shortcut) can be considered to
be a sender of the message “presence of a boundary condition
(shortcut),” and a far away receiver is not able to detect this
signal.

The temporal or spatial reach of the finite size perturba-
tion follows from the deviation |〈Xnτ 〉 − X̄0| by summation
over either the n or the τ parameter. The nodal deviations∫
τ
|〈Xnτ 〉 − X̄0| in Fig. 8(a) show a clear decrease with

distance to the perturbation. Whether this decay is exponential
with the distance |n − n0| to the perturbation is not clear;
longer simulations are necessary to reduce the noise floor,
although lowering the noise floor requires exponentially longer
simulation times. The current simulation times exceeded
108 time units. In case there is an exponential decay the decay
coefficient would provide another candidate for the length
scale of interaction. The temporal reach

∑
n |〈Xnτ 〉 − X̄0| of

the spatiotemporal perturbations across the entire network
decays with the time distance (τ ) to the onset of a perturbation
(Fig. 8(b)). It is again not clear whether this decay is
exponential; it appears that there is a transition from a fast
decay rate for small τ to a slower decay rate for larger τ . The
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FIG. 8. (a) The data from Fig. 7, collapsed along the temporal (τ )
axis. (b) The data from Fig. 7, collapsed along the spatial (n) axis.
Note that the time axis is scaled differently for the cGL and GS traces.

decay rate provides a measure of how fast the system recovers
from finite size perturbations.

The attenuation of deviations
∑

n |〈Xnτ 〉 − X̄0| over time τ

can be explained in terms of the Kolmogorov-Sinai entropy, but
the attenuation rate is clearly underestimated. Chaotic systems
have positive Lyapunov exponents and so they spontaneously
create information; the stretching process magnifies pieces of
information that were previously unobservable. The average
rate of information production is given by the Kolmogorov-
Sinai entropy, which is bounded from above by the sum of
positive Lyapunov exponents, �+ [39]. Because a system
has a maximum capacity of information that depends on
the resolution and the accuracy of the measurement, as
information is created other information must be destroyed
[40]. Therefore, the Kolmogorov-Sinai entropy (approximated
by �+) provides an estimate for the rate of information
loss. We compare the Kolmogorov-Sinai entropy with the
attenuation rate of

∑
n |〈Xnτ 〉 − X̄0| with τ in Fig. 8(b).

For the GS ring network the Kolmogorov-Sinai entropy
density (approximated by the slope of �+ vs. N in [20]) is
0.001126 nats/(node · time). The perturbation spreads out to
an area less than 300 nodes (Fig. 8(b)), which yields an entropy
less than 0.34 nats/time in this region. The inverse gives a
characteristic time for information loss greater than 3.0. In
contrast, the decay constant for

∑
n |〈anτ 〉 − ā0| in Fig. 8(b) is

somewhere in the range of 12 to 56 depending on which part
of the graph is considered. This shows that our calculation

046204-9



DAN STAHLKE AND RENATE WACKERBAUER PHYSICAL REVIEW E 83, 046204 (2011)

clearly underestimates the time of recovery from a finite
perturbation.

For the ring network in Fig. 7 the message sent by the
localized perturbation is fully attenuated before it can complete
the loop around the ring. In this case the ring network is large
enough so that the information propagating in both directions
around the ring network is completely scrambled before the
propagation fronts meet; a local portion of the network is
then unable to communicate with itself across the ring, i.e. the
network is unable to “detect” its own size, and microextensivity
should be guaranteed. In contrast, if the ring network is smaller
(e.g., N = 100 or 200) there would be interference between
the right moving and left moving information fronts; the size
of the ring is detectable, and deviations from microextensivity
are expected. We further argue that even if information is
spontaneously generated from only within a system, like for
example the local extinct regions in the GS system, the spatial
extent of their influence is still governed by the results in
this chapter (Fig. 7). Consequently, the size of a ring network
is only detectable for small systems even in the absence of
external perturbations.

VI. LENGTH SCALE OF INTERACTION IN A SYSTEM
WITH STABLE CHAOS

We present preliminary results to show that the vari-
ous length scales of interaction introduced in the previous
chapters also apply to the phenomenon of stable chaos
[41,42], an irregular spatiotemporal dynamics with negative
Lyapunov exponent. Stable chaos is additionally characterized
by disordered spatial structures (finite correlation dimension),
exponentially decaying temporal and spatial correlations, and
a finite lifetime that increases exponentially with the size of
the system, a property shared by the Gray-Scott system and
other transient spatiotemporally chaotic systems. Stable chaos
is often studied in the following coupled map lattice (CML):

xn(t + 1) = ε

2
f [xi−1(t)] + (1 − ε)f [xi(t)] + ε

2
f [xi+1(t)],

(19)

f (x) =
{

bx if 0 < x < 1/b

a + c(x − 1/b) if 1/b � x < 1
,

where time t is discrete and n refers to the node number.
We use the same parameters as in [41], i.e., a = 0.07, b =
2.7, c = 0.1, and ε = 2/3, for which the system reaches an
asymptotically periodic state after a transient time.

We show that the techniques set forth in this paper apply
equally well to determining length scales of interaction in
this stable chaotic CML. Figure 6 shows an exponential
decrease of the deviation of time averages 〈xn〉 near a no-flux
boundary condition as compared to the space-time average
of a large ring network x̄0, using the technique outlined in
Sec. III. The linear fit gives a short characteristic length scale
of 2.5 nodes. Figure 6 shows the transfer entropy T�n�t for
this CML, using the technique outlined in Sec. IV. It is not
clear a priori that this measure provides a useful result in
the case of stable chaos; the negative Lyapunov exponent
relates to a zero Kolmogorov-Sinai entropy, and therefore a
vanishing local information production rate. Nevertheless the
sequence of transfer entropies in Fig. 6 defines an information

transfer velocity [Eq. (13)], similar to the chaotic and transient
chaotic system in Fig. 6. The information transfer velocity is
approximately 0.75 nodes/timestep.

An alternate measure of velocity was defined in [41] via
the propagation of disturbances. A localized perturbation is
applied to one of a pair of identical systems, and the radius of
the region (range of nodes) d(t) for which the two systems
differ by more than a small tolerance is measured. The
disturbance propagation velocity vd is then defined as

vd = lim
t→∞

〈d(t)〉
t

, (20)

where 〈·〉 represents an average over several simulations. We
compute vd = 0.557 ± 0.004 nodes/timestep for a tolerance
of 10−3 and an average over 100 simulations.

Figure 9(c) shows the average spatiotemporal response
to a localized perturbation using the technique of Sec. V.
The information transfer velocity (v = 0.75 nodes/timestep,
single-dotted line) provides a good match for the propagation
wave front for small times τ , and the disturbance propagation
velocity (vd = 0.557 nodes/timestep, double-dotted line) fits
well for later times τ .

As demonstrated in Figs. 9(a)–9(c) stable chaos in this
CML behaves similar to the asymptotic and the transient
spatiotemporally chaotic systems; information is attenuated
as it travels through the system and remote parts become
essentially independent of each other. The negative Lyapunov
exponent in stable chaos provides an interesting perspective
to the discussion in Sec. V; the Kolmogorov-Sinai entropy
is zero and yet information is attenuated. In this case there
must be more going on than new information pushing
out old information [40]. The negative Lyapunov exponent
results in quenching tiny perturbations, and thus in removing
information, but the analysis for large perturbations is more
complicated.

VII. DISCUSSION

In this paper we have put forth a variety of characteristic
length scales of interaction in reaction-diffusion networks,
applying them to spatiotemporal chaos (STC) in the complex
Ginzburg Landau (cGL) network, to transient spatiotemporal
chaos in the Gray-Scott (GS) network, and to stable chaos
in a coupled map lattice. Each of these length scales relates
to the localization of observable phenomena. Beyond the
length scale associated with space time averages |X̄ − X̄0|
for variable X (Fig. 2) the specific size of a ring network
begins to become insignificant. Effects of boundary conditions
become insignificant for nodes that are far from the boundary
in comparison to the length scale associated with nodal average
|〈Xn〉 − X̄0| (Fig. 3). Interactions between regions with special
network topologies (e.g., diffusion shortcuts between distant
nodes) become insignificant if the regions are separated by
a distance that is large in comparison to the length scale
associated with E (Fig. 4). These length scales are listed in
Table I together with the chaotic length scale ξδ [1] [Eq. (4)]
and the length scale based on mutual information (Fig. 5). They
are in general not proportional to each other, except that ξδ is
close to twice the length scale associated with |〈Xn〉 − X̄0|.
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FIG. 9. (Color online) Length scales of interaction for stable
chaos in the coupled map lattice [Eq. (19) with a = 0.07, b = 2.7,
c = 0.1, and ε = 2/3]. (a) Deviation of time averages [〈xn〉, Eq. (5)]
from the space-time average of a large ring network [x̄0, Eq. (7)] for
varying nodes n near a no-flux boundary (N = 1000), in analogy to
Fig. 3. (b) Logarithm of transfer entropy T�n�t vs. time delay �t

for a variety of node spacings �n (�n = 0,1,2,3, etc., from top to
bottom), in analogy to Fig. 6. Each curve is shifted in �t using the
estimated information transfer velocity v (v = 0.75 nodes/timestep)
to allow the peaks to align. (c) Spatiotemporal deviations in the
average nodal characteristics for perturbed [Eq. (14)] and unperturbed
[Eq. (19)] network dynamics at node n and at a time τ after the
onset of the perturbation, ln |〈xnτ 〉 − x̄0|, (with parameters N = 200,
P = 100, n0 = N/2, q0 = 1, K = 1.3 × 108, wn = 3, and wt = 2
[43]), in analogy to Fig. 7. The dotted lines have slope equal to
the information transfer velocity v [Eq. (13)], and the double dotted
lines have slope equal to the disturbance propagation velocity vd in
Eq. (20).

FIG. 10. A transformation that turns two ring networks each
having N nodes into one network with 2N nodes, without changing
the local network structure or the total number of nodes.

Further studies would reveal whether this is significant or just
a coincidence.

These various length scales of interaction are of practical
importance for Ruelle’s concept of extensivity [15]. Suppose
two identical ring networks each contain N nodes and each
have Lyapunov dimension DL, so that the composite system
(the set product of both rings) has Lyapunov dimension
2DL. Suppose that the two rings are joined together to
create a single ring network with 2N nodes (Fig. 10). If the
Lyapunov dimension for the transformed ring network (2N

nodes) is 2DL, the system is extensive [1,16]. Section III
demonstrates that such a transformation has no impact on node
averages 〈Xn〉 for a wide range of variables X if the ring
networks are large enough. Although there is no formal
connection between Lyapunov dimension and nodal average
〈Xn〉, it seems reasonable that any change in the support
and natural measure of a chaotic attractor that changes its
dimension DL would also impact 〈Xn〉 for some variable X.
Similarly, the length of a shortcut should have no impact on
Lyapunov dimension as long as the shortcut is much longer
than the length scale associated with E (Fig. 4).

The independence of local dynamics on system size (as
measured in Sec. III) for large enough systems should
guarantee microextensivity for large systems. According to
Ruelle extensive systems have no long scale correlations and
behave as a sum of their parts [15]. This implies that the
Lyapunov dimension density could be calculated through the
observation of local regions of an STC system. Although such
a method is not yet known, it can be assumed that any change
of Lyapunov dimension density (for certain network sizes)
would necessarily require some observable change in local
dynamics. Or in other words, if the total network size has no
observable effects on the local dynamics for large systems,
the Lyapunov dimension density should be constant as well.
This hypothesis is supported by the results of Fishman and
Egolf [25] who showed that the cGL system exhibits significant
deviations from microextensivity in Lyapunov dimension
for small system sizes: the magnitude of these deviations
decreases exponentially with the size of the system [25]. We
have calculated the length scale associated with the exponential
decay of these deviations from extensivity; they are printed in
Table I [37]. The length scales are about 30 nodes for the two
cGL networks where deviations were found.

Recently Karimi and Paul have reported deviations from
microextensivity in the Lorenz-96 model [44] that do not
diminish with system size. The Lorenz-96 model differs
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from the cGL and GS models in that the coupling between
adjacent nodes is nonlinear and not Laplacian. In addition the
spatiotemporal patterns appear to be approximately spatially
periodic even in the chaotic regime, in contrast to the (apparent)
lack of large scale structures in the cGL and GS patterns. This
may indicate that in the Lorenz-96 model the deviations from
microextensivity persist for truly large sizes. In this case the
techniques outlined in this paper may reveal large scrambling
length scales such that a boundary condition (Sec. III) or a
finite perturbation (Sec. V) could be observable far from its
source. The effect of boundary conditions on defect chaos
in the two-dimensional cGL system was studied by Eguiluz
et al. [45]. This might be another case with possibly long
interaction length scales as topological defects are conserved
and can only be created at the boundary; this is to be explored
in further studies.

Oscillatory deviations from extensivity that diminish with
network size have also been reported in the Wacker-Schöll
system for the logarithm of the average lifetime of transient
spatiotemporal chaos [20]. In this system spatiotemporal
chaos typically collapses into a spatiotemporally periodic
state, with certain spatial periods accessible to certain system
sizes (system sizes that are close to a multiple of the spatial
period) [20]. The resulting deviations from extensivity and
their decrease with network size [20] are expected to have
little in common with the deviations reported in [25] and
in this paper; this paper concerns measurements made on
the chaotic saddle (GS system) or on the chaotic attractor
(cGL system) whereas transient lifetime becomes manifest
only when a system exits from a chaotic saddle.

Space-time averages X̄ for a small ring network differ
significantly from the limiting case X̄0 for large networks
(Fig. 2). Thus any type of measurement on small networks can
be considered an anomaly. This is relevant for determining,
e.g., the average lifetime of transient spatiotemporal chaos,
which typically increases exponentially with network size
[5,8,9,18,20] in the range of network sizes that are cur-
rently computationally accessible (even with supercomputing
power). For the GS-ring network we can barely reach the
range for which network sizes do not matter anymore [20],
where X̄ approaches its limit X̄0 (N ≈ 200 in Fig. 2).
Therefore it is currently not clear whether this exponential
dependence reported widely in the literature will still hold
for large enough networks, or if so what value the slope of
log-lifetime vs. N will take as N → ∞.

In Sec. V space-time information flow was probed with
finite perturbations and measured with space-time averages
〈Xnτ 〉 [Eq. (18)]. This concept is somewhat opposite to the
paradigm of Lyapunov exponents. For STC an infinitesimal
perturbation will on average grow exponentially over time
whereas finite perturbations measured through 〈Xnτ 〉 − X̄0

decrease (somewhat) exponentially over time. On the one hand
chaotic systems are sensitive to small changes in initial condi-
tions, on the other hand initial conditions become qualitatively
irrelevant over time as the finite differences eventually get lost
in the dynamics of the system. The timescale associated with
the decay of finite perturbations tells how quickly a system
recovers from a large perturbation rather than how quickly a
system diverges due to a small perturbation. Another important
difference between finite and infinitesimal perturbations is that
finite perturbations are fully expected to behave nonlinearly;
i.e., the profile 〈Xnτ 〉 − X̄0 should be nonlinear with regards
to the perturbation p(t)q(n). For example, interference in the
space-time information flow arises from a perturbation q(n)
that describes two bump functions separated by a small spatial
distance.

The techniques presented in this paper have been explored
for reaction-diffusion networks and coupled map lattices, but
they are applicable to a wide variety of systems such as
extended systems without Laplacian diffusion (e.g., Lorenz-96
model) or fluids. For example, the information flow from
the local scale to the mean field scale could be measured
with finite perturbations (Sec. V), complementary to the
reverse information flow studied in a globally coupled network
[46]. With some modifications our techniques would also
be applicable to delay differential equations. They could be
extended to include higher order statistical moments besides
the nodal average (〈Xn〉). To some extent this was done in
Figs. 2, 3, and 4 for the variable a in the cGL network,
since 〈an〉 = 0 due to the U (1) symmetry of the dynamical
equation but 〈a2

n〉 
= 0. Even better would be the use of
histograms to compute the probability distribution of a variable
X at each node. The absolute difference (e.g., |〈Xn〉 − X̄0|)
could then be replaced by a statistical distance between
probability distributions. There is at least one advantage
to this approach. Averages 〈Xn〉 are one-dimensional scalar
quantities, and when compared against another scalar the error
(e.g., |〈Xn〉 − X̄0|) can cross zero, which yields large dips in
Fig. 3. Probability distributions should not have this problem
since they are not scalar quantities; in addition they should be
sensitive to a wider variety of changes in system behavior than
simple averages.
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