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Using bivariate signal analysis to characterize the epileptic focus: The benefit of surrogates
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The disease epilepsy is related to hypersynchronous activity of networks of neurons. While acute epileptic
seizures are the most extreme manifestation of this hypersynchronous activity, an elevated level of interdependence
of neuronal dynamics is thought to persist also during the seizure-free interval. In multichannel recordings from
brain areas involved in the epileptic process, this interdependence can be reflected in an increased linear cross
correlation but also in signal properties of higher order. Bivariate time series analysis comprises a variety of
approaches, each with different degrees of sensitivity and specificity for interdependencies reflected in lower-
or higher-order properties of pairs of simultaneously recorded signals. Here we investigate which approach is
best suited to detect putatively elevated interdependence levels in signals recorded from brain areas involved
in the epileptic process. For this purpose, we use the linear cross correlation that is sensitive to lower-order
signatures of interdependence, a nonlinear interdependence measure that integrates both lower- and higher-order
properties, and a surrogate-corrected nonlinear interdependence measure that aims to specifically characterize
higher-order properties. We analyze intracranial electroencephalographic recordings of the seizure-free interval
from 29 patients with an epileptic focus located in the medial temporal lobe. Our results show that all three
approaches detect higher levels of interdependence for signals recorded from the brain hemisphere containing the
epileptic focus as compared to signals recorded from the opposite hemisphere. For the linear cross correlation,
however, these differences are not significant. For the nonlinear interdependence measure, results are significant
but only of moderate accuracy with regard to the discriminative power for the focal and nonfocal hemispheres.
The highest significance and accuracy is obtained for the surrogate-corrected nonlinear interdependence
measure.
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I. INTRODUCTION

A characterization of interactions between dynamical
systems from the analysis of signals recorded from them
is key to an understanding of many phenomena studied in
natural and social sciences. A paradigmatic example for this
setting is the brain and the study of electrophysiological
recordings derived from it. Complex brain functions are
based on neuronal interactions at a variety of temporal
and spatial scales, and neurological disorders often involve
distorted balances in these interactions. In epilepsy, distorted
neuronal interactions are assumed to result in recurrent acute
dysfunctions of the brain that manifest themselves as seizures.
During epileptic seizures, large groups of neurons discharge
hypersynchronously. In consequence, the electroencephalo-
gram (EEG) recorded during epileptic seizures is characterized
by rhythmic oscillations of high amplitude. During the seizure-
free interval, only intermittent bursts of hypersynchronous
activity of local neuron groups occur, resulting in so-called
interictal epileptiform waveforms in the EEG. Except for
these episodes of interictal epileptiform activity, which can
last tens of milliseconds to seconds, the EEG recorded during
the seizure-free interval often appears unspecific with regard
to the epileptic process. It can be conjectured, however, that
even in the absence of evident interictal epileptiform activity,
the epileptic process is associated with an elevated level of
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neuronal synchronization. In the case of focal epilepsies,
this synchronization can furthermore be conjectured to be
most pronounced in the seizure generating area, the so-called
epileptic focus.

To test these conjectures, a number of conceptually different
bivariate signal analysis techniques were applied to intracra-
nial EEG recordings from the seizure-free interval of epilepsy
patients in order to characterize interactions between brain
areas underlying different recording sites. These approaches
include linear coherence [1,2], linear cross correlation [3], gen-
uine linear cross correlation [4], a nonlinear correlation coef-
ficient [5], nonlinear interdependence measures [3,6], Hilbert
phase synchronization [3,7,8], or event phase synchronization
[9]. Results of these studies provide converging evidence that
the overall interdependence between EEG signals recorded
close to the epileptic focus is higher than in those recorded from
nonepileptogenic brain regions. Furthermore, the predominant
direction of information flow and interdependencies between
the epileptic focus and nonepileptogenic brain regions was
studied using information theoretic measures [10–12] or mea-
sures derived from estimated Fokker-Planck coefficients [13].
Together, these studies [1–13] suggest that bivariate signal
analysis techniques could be used to localize the epileptic
focus and thereby provide useful diagnostic information.

To provide further progress in this direction, we compare
here the accuracy of three different approaches: bivariate
linear time series analysis, bivariate nonlinear time series
analysis, and surrogate-corrected bivariate nonlinear time
series analysis. Linear time series analysis allows quantifying
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lower-order properties of time series. For example, uni-
variate and bivariate linear time series analysis measures
are based on autocorrelation and cross-correlation functions.
Nonlinear time series analysis has been developed to study
higher-order structure, which is characteristic for nonlinear
deterministic dynamics. Univariate nonlinear measures allow
quantifying properties of individual deterministic dynamics
such as the number of active degrees of freedom. Bivari-
ate nonlinear measures allow detecting signatures indicative
of interdependence between deterministic dynamics. Both
univariate and bivariate nonlinear measures are, however,
strongly influenced by linear correlations of the signals.
Deterministic dynamics typically show some degree of
autocorrelation, and a coupling between deterministic dy-
namics manifests itself not only in higher-order signatures
of interdependence, but also in a strong cross correlation.
Likewise, however, linear stochastic processes can be strongly
autocorrelated, and arbitrary degrees of cross correlation
can be obtained for multivariate linear stochastic processes
or from superpositions of completely independent signals
originating from any type of dynamics. Hence, nonlinear
time series analysis measures are sensitive for properties
of nonlinear deterministic dynamics without being very
specific.

This lack of specificity can be addressed with the Monte
Carlo concept of surrogates [14], first origins of which
can be found in the literature on electrocardiogram [15]
and electroencephalogram [16] analysis. Surrogates allow
testing a variety of well-defined null hypotheses about the
dynamics underlying experimental signals. For this purpose,
surrogate time series can be generated from a constrained
randomization of the original time series. Therefore, only
well-specified properties of the original time series, such
as the autocorrelation and cross correlation, are mimicked
by the surrogates. Otherwise, the surrogates are random. It
depends on the particular null hypothesis to be tested as to
which properties have to be preserved and which have to be
randomized [14,17,18]. Comparing values of nonlinear time
series analysis measures calculated for the original time series
against a distribution of values calculated from an ensemble
of surrogate times series allows one to test the surrogates’ null
hypothesis.

Beyond a binary decision derived from formal null hy-
pothesis testing, surrogates can be used to define a baseline
for nonlinear measures expected under the null hypothesis.
For the case of univariate time series analysis, we showed
that this surrogate correction improves the accuracy in char-
acterizing the spatial distribution of the epileptic process [19]
(see also [20,21] and references therein for applications of
different univariate time series analysis approaches to the
EEG of epilepsy patients). This previous study compared
univariate linear measures, univariate nonlinear measures,
and univariate surrogate-corrected nonlinear measures in
application to intracranial EEG recordings from the seizure-
free interval of 29 patients with an epileptic focus lo-
cated in the medial temporal lobe. The highest accuracy
in determining the focal hemisphere was obtained for the
surrogate-corrected nonlinear measures, while the discrimi-
native power of the other two approaches was weaker if not
insignificant.

We study here whether these findings carry over from
univariate to bivariate nonlinear time series analysis. For
this purpose, we analyze the same EEG recordings that
we previously studied using univariate measures in [19].
We combine a nonlinear interdependence measure with
bivariate surrogates and contrast the results from this
surrogate-corrected measure to those obtained from the
linear cross correlation and the nonlinear interdependence
measure without surrogate correction. In analogy to [19],
we determine the suitability of these different approaches
to determine the brain hemisphere containing the epileptic
focus.

II. METHODS

A. Bivariate time series analysis measures

1. Linear cross correlation

We suppose that a pair of scalar time series xn and yn,
with n = 0, . . . ,N − 1, were simultaneously recorded from
the dynamics X and Y , respectively. The cross correlation
quantifies the strength of the linear correlation between these
two time series’ amplitudes as a function of a temporal shift τ

between them:

Cxy(τ ) =
⎧⎨
⎩

1
N−τ

∑N−τ−1
n=0 x̂n+τ ŷn τ � 0,

Cyx(−τ ) τ < 0
(1)

for τ = −(N − 1), . . . ,N − 1. In Eq. (1), x̂n, ŷn denote the
time series xn, yn normalized to zero mean and unit variance.
As a linear bivariate measure, we use

C = |Cxy(τ = 0)|, (2)

where | · · · | denotes the absolute value. [We also tested
an alternative measure C∗ = max{|Cxy(τ )|}τ=−τmax,...,τmax . For
this measure, we limited the range of temporal shifts to
τmax = 2 s, because the number of summands contributing
to Cxy(τ ) is N − τ , resulting in strong fluctuations of Cxy(τ )
for τ → N . Since the final averaged results derived from C

and C∗ were very similar, and since the nonlinear interdepen-
dence measure was also calculated only for zero temporal
shift between the time series, we here only show results
of C.]

2. Nonlinear interdependence measure

A nonsynchronizing directional coupling between two
stationary deterministic dynamics X and Y results in a charac-
teristic signature of interdependence [6,22–24]. Consider a set
of similar states in the Y dynamics. These similar states will be
close in some state space representation of Y . If X is driving
Y , the states in X that are simultaneous to similar states in Y

are on average closer than expected for independent dynamics.
The opposite mapping, i.e., closeness in X implying closeness
in Y , generally holds only to a weaker degree. Various
nonlinear interdependence measures [6,18,22–28] quantify
this fundamental signature in order to detect directional
couplings.

For this paper, we use a nonlinear interdependence measure
L, which was shown to be of higher sensitivity and specificity

046203-2



USING BIVARIATE SIGNAL ANALYSIS TO . . . PHYSICAL REVIEW E 83, 046203 (2011)

for directional couplings than a number of related approaches
[28]. For the calculation of L, we first reconstruct the dynamics
X and Y from the pair of univariate time series xn and yn using
delay coordinates [29]

xn = (
xn,xn−τD

, . . . ,xn−(m−1)τD

)
,

(3)
yn = (

yn,yn−τD
, . . . ,yn−(m−1)τD

)
for n = (m − 1)τD, . . . ,N − 1. Here m and τD denote the
embedding dimension and embedding delay, respectively. We
then calculate the squared Euclidean spatial distances d(xi ,xj )
and d(yi ,yj ) for all i,j = (m − 1)τD, . . . ,N − 1. Here we
apply a Theiler window by imposing |i − j | > W [30]. To
test for directional couplings from X to Y , we carry out
the following steps. For each fixed i0,j0, we use g(xi0 ,xj0 )
to denote which rank the distance d(xi0 ,xj0 ) has in a sorted
ascending list of all N − (m − 1)τD − 1 distances d(xi0 ,xj ).
Furthermore, for each fixed i0, the j indices of the κ smallest
of all N − (m − 1)τD − 1 distances d(yi0 ,yj ) are denoted by
ji0,w for w = 1, . . . ,κ . We define the Y -conditioned mean
rank

Gκ
i0

(X|Y ) = 1

κ

κ∑
w=1

g
(
xi0 ,xji0 ,w

)
(4)

and carry out a normalized statistics across all embedding
vectors

L(X|Y ) = 1

N − (m − 1)τD

N−1∑
i=(m−1)τD

Gi(X) − Gκ
i (X|Y )

Gi(X) − Gκ
i (X)

, (5)

where Gi(X) = N−(m−1)τD

2 and Gκ
i (X) = κ+1

2 denote the mean
rank and minimal mean rank, respectively [28]. [Due to the
exclusion of temporal neighbors within a Theiler window of
length W , the numerator in the formula for Gi(X) needs to
be adjusted, and cases i < W + (m − 1)τD , i � N − W + 1
need to be further distinguished. To simplify the notation, here
we write it for W = 0. The source code to calculate L(X|Y )
based on the adjusted formulas is provided as supplementary
material of [28].]

For independent dynamics, we obtain Gκ
i (X|Y ) ≈ Gi(X),

and values of L(X|Y ) are distributed around zero for inde-
pendent realizations of independent dynamics. For directional
couplings from X to Y states that are close for the driven
dynamics Y correspond more often to close contemporary
states in the driving dynamics X than expected for independent
dynamics. In consequence, Gκ

i (X|Y ) < Gi(X) and positive
values are obtained for L(X|Y ). Increasing coupling strengths
are generally reflected in increasing values of L(X|Y ). The
upper bound is obtained for identical synchronization, where
X = Y and we obtain Gκ

i (X|Y ) = Gκ
i (X) and L(X|Y ) = 1. To

test for directional couplings from Y to X, we calculate L(Y |X)
in the same way as L(X|Y ) by exchanging the roles of X and
Y in the above definitions. The difference L(X|Y ) − L(Y |X)
has an expected value of zero for independent dynamics,
and nonzero differences can be used to characterize the
direction of couplings [28]. Since here we focus on the overall
strength rather than on the direction of the coupling, we define

[31,32]

L = L(X|Y ) + L(Y |X)

2
. (6)

The measure L assumes values distributed around zero for
independent realizations of independent dynamics, and its
upper bound is L = 1 for identical synchronization. Increasing
coupling strengths are generally reflected in increasing values
of L.

3. Surrogate time series

We use bivariate surrogates constructed using an iterative
scheme proposed by Schreiber and Schmitz [17]. This par-
ticular type of bivariate surrogates is designed to test the
null hypothesis H0,biv: X and Y jointly represent a stationary
bivariate linear stochastic correlated Gaussian process. The
measurement functions by which xn and yn were derived from
the dynamics are invertible but potentially nonlinear. The
autocorrelation, cross correlation, mean, and variance of the
underlying Gaussian process are such that the measurement
results in the autocorrelation, cross correlations, and ampli-
tude distribution of the observed time series. Accordingly,
any pair of surrogate time series should have the same
autocorrelation and cross correlation as the original pair of time
series. Furthermore, to account for a potential nonlinearity of
the measurement function, the surrogates should have the same
amplitude distribution as the original time series. However,
any potential nonlinear deterministic structure, nonstationary
features, or potential signatures of nonlinear interdependence
in xn and yn should be destroyed. Bivariate surrogates that
fulfill these constraints were generated using the scheme
described in Appendix A.

4. Surrogate-corrected nonlinear interdependence measure

For each pair of time series, we calculate L for the
original time series xn and yn and for an ensemble of 19
independent realizations of pairs of surrogate time series x̃n

and ỹn. We denote the value obtained for the pair of original
time series by LO and the mean value obtained across all
19 pairs of surrogate time series by 〈LS〉. From this, we
define

K =
⎧⎨
⎩

LO − 〈LS〉 if LO − 〈LS〉 > 0,

0 otherwise.
(7)

B. Patients and electroencephalographic recordings

As stated in the Introduction, we analyze here the same
set of intracranial EEG recordings that were analyzed in [19].
These recordings were performed as part of the presurgical
epilepsy diagnostics (Department of Epileptology, University
of Bonn, Germany) in 29 patients who were refractory to
medical therapy. All patients were diagnosed with unilateral
medial temporal lobe epilepsy (left hemisphere: 18 patients;
right hemisphere: 11 patients). In consequence, all patients
underwent surgery (selective amygdalohippocampectomy),
which led to complete seizure control in all patients as
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FIG. 1. Scheme of implanted electrodes.

documented for at least 1 year after surgery (mean: 3.8 years,
range: 1–9 years).

The EEG was recorded using pairs of depth electrodes that
were implanted symmetrically in the hippocampal formations
of the two hemispheres (Fig. 1). Electrodes were each equipped
with 10 cylindrical contacts of 2.5 mm length and an inter-
contact distance of 4 mm. After neurosurgical implantation,
the placement of the electrodes was verified by magnetic
resonance imaging. The EEG was recorded against a common
average reference at a sampling rate of 173.61 Hz using a 12-bit
analog-to-digital converter and was band-pass filtered between
0.5 and 85 Hz at 12 dB per octave. Apart from the approval by
the local medical ethics committee, informed consent for retro-
spective analysis of the EEG recordings was obtained from all
patients.

Any EEG recording within a time window of 1 h before a
seizure until 2 h after a seizure as well as periods containing
artifacts were discarded. During the recordings, patients were
awake and at rest. No further preselection of the recordings
was carried out. In total, we analyzed 84 EEG recordings [19].
Across patients, the total recording duration ranged from 19 to
585 min, with an average of 130 min per patient. All recordings
were performed prior to, and independent of, the design of
this study and our previous study [19]. For further clinical
details regarding the patient group and EEG recordings,
see [19].

Since all patients were seizure free after unilateral resection
of the hippocampal formation, the focal and nonfocal hemi-
spheres are known for each patient and can be used as a gold
standard to validate the performance of each measure under
controlled conditions.

C. Moving window analysis and patient-wise
evaluation of results

The steps of analysis described in this section were carried
out for each individual patient and for all three measures
separately. We use the symbol M as a placeholder for the
measures C, L, and K . We performed the analysis using a
moving window technique with nonoverlapping windows of
4096 samples, corresponding to 23.6 s. For each window with
time index w, we carried out the following steps of analysis.
For each of the two electrodes, we calculated the measures
M for the 45 pairings of time series recorded with the 10
contacts. Pairings of contacts across the two hemispheres

were not considered. We averaged results separately for the
electrodes in the focal and nonfocal hemispheres. These
averages are denoted by MF

w and MN
w , respectively. For a

few datasets, single contacts of an electrode were broken
and therefore missing in the recordings. Note that values
of M can depend systematically on the distance between
contacts along the axis of the electrodes. Accordingly, in
order to have an unbiased comparison between the averages
of the focal and nonfocal hemispheres, in cases of a broken
contact, we also removed data from the homologous contact
of the electrode in the opposite brain hemisphere from the
analysis and took the averages of MF

w and MN
w only across the

remaining symmetric subsets of contacts. For each window, we
determined

�Mw = MF
w − MN

w

MF
w + MN

w

. (8)

We use this normalized difference to facilitate the comparison
across different measures. [The normalization of this expres-
sion relies on MF,N

w > 0. Even though C and K can attain zero
values and L can attain negative values, in practice, exclusively
positive mean values MF,N

w > 0 were obtained. Hence, Eq. (8)
can be applied.] Evidently, we get �Mw → −1,0,1 for
MF

w � MN
w , MF

w ≈ MN
w , and MF

w � MN
w , respectively. We

use angular brackets to denote the average (we obtained
very similar results when we at first took the average across
windows and only then the normalized difference between the
focal and nonfocal hemispheres) of �Mw across all windows:
〈�M〉.

Suppose a certain measure M was completely unspecific
with regard to the dynamics of the focal versus the nonfocal
hemisphere. In this case, MF

w and MN
w would follow the

same distribution, and the mean value 〈�M〉 would tend to
zero for a large number of windows. However, for any finite
number of windows, typically some nonzero 〈�M〉 will be
obtained. The expected magnitude of this 〈�M〉 would not
only depend on the total number of windows, but also in some
nontrivial way on the particular shape of the distributions
MF,N

w across windows and on the degree of correlations
between results for subsequent analysis windows. Hence, a
general analytical significance threshold for 〈�M〉 can not be
given.

As an alternative, one could consider to use a Monte Carlo
resampling procedure to numerically derive a significance
threshold for 〈�M〉. However, it is not straightforward to
account for the correlations between results for subsequent
analysis windows in such a resampling procedure, and the
degree of these correlations is different for the different
measures C, L, and K . [We calculated the linear Pearson
correlation coefficient between �Mw and �Mw+1 across
windows w for all 84 EEG recordings. Across these recordings,
we found the following mean correlation coefficients (〈c〉) and
numbers of significant correlation coefficients (#pc< 0.05).
Linear cross correlation C: 〈c〉 = 0.29, #pc< 0.05 = 51
of 84; nonlinear interdependence measure L: 〈c〉 = 0.24,
#pc< 0.05 = 42 of 84; surrogate-corrected nonlinear inter-
dependence measure K: 〈c〉 = 0.15, #pc< 0.05 = 28 of 84.]
We therefore restrict ourselves to the statistics described in the
following section to assess the significance of the results across
patients.
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D. Patient group statistics

Here we denote by 〈�M〉(v) the average across windows
for an individual patient with index v. In contrast to the �Mw

across windows with index w, the 〈�M〉(v) across patients are
independent samples. The mean value across all 29 patients
is denoted by 〈�M〉. We test here the null hypothesis that M

is completely unspecific with regard to the focal and nonfocal
hemispheres in two different ways. Given a certain number
of positive 〈�M〉(v) values, we use the binomial distribution
to determine the probability p

sign
M to obtain this or a higher

number of positive values in 29 independent trials with a hit
probability of 50%. This probability p

sign
M only takes the sign of

〈�M〉(v) into account. To also evaluate the magnitude of these
〈�M〉(v) values, we used a simple Monte Carlo simulation
based on a random switching of results for the focal and
nonfocal hemispheres:

〈�M〉rand = 1

29

29∑
v=1

rv〈�M〉(v) (9)

with

rv =
{

1 with probability 0.5,

−1 else.
(10)

We calculated an arbitrary but high number of 109–1
independent realizations of 〈�M〉rand and determined the
quantile that 〈�M〉 fell within the resulting distribution
across realizations. If the null hypothesis of the measures’
unspecificness was true, the probability pval

M to get 〈�M〉
or a higher result is given by the complementary of this
quantile.

E. Choice of parameters

We used κ = 5 nearest neighbors and a Theiler window
of W = 25. No other values for κ or W were tested. To
set the values of the embedding dimension m and time
delay τD , we started out by analyzing individual windows
of EEG time series and single data sets from patients 3
and 29. For this preanalysis, we scanned the ranges m =
[2,3,4, . . . ,20] × τD = [2,4,6, . . . ,20]. We found stable re-
sults of �Lw, �Kw, 〈�L〉(v), and 〈�K〉(v) for the approximate
range m = [8, . . . ,12] × τD = [10,12,14]. In contrast, for
higher (m → 20, τD → 20) and lower (m → 2, τD → 2)
values, small changes in either m or τD resulted in more
substantial changes of �Lw, �Kw, 〈�L〉(v), and 〈�K〉(v). We
therefore set the parameters to the middle of the stable regime,
i.e., m = 10 and τD = 12, and provide detailed results for these
values in Sec. III. To further test the robustness of our results
against changes of the embedding parameters, we calculated
the results across patients (〈�L〉, p

sign
L , pval

L , 〈�K〉, p
sign
K ,

and pval
K ) for ranges of m = [8, . . . ,12] × τD = [10,12,14]

and exemplary settings of very low (m = 2, τD=2) and very
high (m = 20, τD = 20) values of the embedding parameters.
Consistently with the results of the preanalysis, we found stable
results within the range m = [9, . . . ,12] × τD = [10,12,14]
(see Table I in Appendix B). In contrast, deviations from
the results obtained for m = 10 and τD = 12 were found for
m = 8 × τD = [10,12,14] and, in particular, for the exemplary

settings of very low and very high values of the embedding
parameters. Importantly, while testing the robustness of our
results against changes in the parameters, we did not carry out
any kind of parameter optimization with regard to the results
presented below. In fact, maximal values for 〈�L〉 and 〈�K〉
as well as minimal values for p

sign
L , pval

L , p
sign
K , and pval

K were
found for parameter values different from m = 10 and τD = 12
(see Appendix B).

III. RESULTS

Exemplary segments of EEG recordings along with the
values of C, L, and K obtained for these segments are shown in
Figs. 2–4. Common to these examples is a prominent similarity
between the patterns in the matrices of C and L. This similarity
reflects the well-known strong impact of linear cross correla-
tion on nonlinear interdependence measures [18]. In contrast,
there is only little resemblance between the matrices of K

versus those of C and L. We furthermore note a segmentation
of the matrices of C and L. Prominent square structures
next to the diagonal reflect that, for these two measures in
general, higher dependencies are found within certain channel
groups as opposed to channel combinations across these
groups. This segmentation reflects that the different channel
groups are located in different anatomical substructures of the
hippocampal formation and that EEG recordings from within
the same substructure are mutually correlated (cf. [6,33]). In
general, no such clear segmentation is found in the matrices
of K .

As described in the Introduction, it can be conjectured that
the epileptic process is related to an elevated level of neuronal
synchronization that persists in the absence of actual seizure
activity. Accordingly, the interdependence between recordings
from within the focal hemisphere is expected to be higher than
that between recordings from within the nonfocal hemisphere.
We therefore expect to obtain positive values for �Mw and the
derived mean values 〈�M〉(v) and 〈�M〉. Values of 〈�C〉(v)

are positive for 19 of the 29 patients (Fig. 5). However, the
probability to have 19 or more positive values by chance
amounts to p

sign
C = 0.068. Hence, regarding the fraction of

positive values, results for the linear cross correlation C are not
significant at a level of α = 0.05. The strong impact of linear
cross correlation on nonlinear interdependence measures
is further evidenced by a very strong correlation between
〈�C〉(v) and 〈�L〉(v) across patients (Fig. 5). Nonetheless,
results for the nonlinear interdependence measure L turn
out to be significant. We observe 23 positive 〈�L〉(v) values
(psign

L = 0.0012). A far higher contrast between the focal
and nonfocal hemispheres is obtained once we apply the
surrogate correction to the nonlinear interdependence measure.
We observe positive 〈�K〉(v) values for 27 out of 29 patients
(psign

K = 8.1 × 10−7).
The overall magnitude of 〈�K〉(v) values is higher than

that of 〈�C〉(v) and 〈�L〉(v) (Figs. 5 and 6). For the lin-
ear cross correlation, the average across patients results in
〈�C〉 = 0.026. This, or a higher mean value, is expected
with probability pval

C = 0.078, given the distribution of the
29 values of 〈�C〉(v) (Fig. 6). Hence, also when averaged
across patients, the results for the linear cross correlation
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FIG. 2. (Color online) Top: Exemplary window of an EEG recording. The scale bar on the right indicates 500 μV. For this particular
patient, the epileptic focus was in the hippocampal formation of the left brain hemisphere, and we obtain 〈�C〉(v=16) < 0, 〈�L〉(v=16) < 0, but
〈�K〉(v=16) > 0 (see Fig. 5). Bottom: Grayscaled values of the different measures obtained for this EEG window. By construction, all these
result matrices are symmetric. The diagonals are left empty. See Fig. 1 for the channel labeling.

remain not significant at a level of 0.05. In contrast, we
again obtain significant results for the nonlinear interdepen-
dence measure: 〈�L〉 = 0.074 (pval

L = 4.6 × 10−4). Again,
the highest contrast between results for the focal and non-
focal hemispheres is obtained for the surrogate-corrected
nonlinear interdependence measure, yielding 〈�K〉 = 0.269.
This value of 〈�K〉 is located in the very tail of the
distribution 〈�K〉rand (see Fig. 6). Under the null hypothesis
that K was unspecific with regard to focal and nonfocal
hemispheres, we expect this, or a higher value, with a
probability of only pval

K = 6.5 × 10−7. We found no dis-
cernible dependence of 〈�C〉(v), 〈�L〉(v), or 〈�K〉(v) on the
total recording duration across patients. Testing for linear
dependencies between these values and the total recording
duration, we obtained only low and nonsignificant values
of Pearson correlation coefficients (〈�C〉(v): c = 0.05, pc =
0.78; 〈�L〉(v): c = −0.10, pc = 0.62; 〈�K〉(v): c = −0.25,
pc = 0.20).

IV. DISCUSSION

We summarize that all three bivariate interdependence
measures tested here showed higher average values for EEG
recordings from the focal brain hemisphere than for those from
the nonfocal hemisphere. This general result is congruent with
those reported in earlier studies [1–9]. For the linear cross
correlation C, however, the differences between the focal and
nonfocal hemispheres were found to be not significant. Results
for the nonlinear interdependence measure L were significant,
but still had only a moderate accuracy in determining the
side of the focal hemisphere. The highest accuracy and sig-
nificance was obtained for the surrogate-corrected nonlinear
interdependence measure K . Hence, a specific result of our
study is that the bivariate surrogate correction seems key to
a successful characterization of the spatial distribution of the
epileptic process.

We emphasize that this surrogate correction is concep-
tually very straightforward. One calculates the nonlinear
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FIG. 3. (Color online) EEG window from another patient and corresponding results. Same organization as in Fig. 2. For this patient,
the epileptic focus was in the hippocampal formation of the right brain hemisphere, and we obtain 〈�C〉(v=22) > 0, 〈�L〉(v=22) > 0, and
〈�K〉(v=22) > 0 (see Fig. 5).

interdependence measure not only for the original EEG time
series, but also for an ensemble of surrogate time series.
The surrogate-corrected nonlinear measure is defined by the
rectified difference between the results for the original time
series and the mean result for the surrogates [Eq. (7)]. The
exact definition of this difference is not crucial. We obtained
very similar results when the maximum rather than the mean of
the surrogates was used or when the K values were not rectified
to non-negative values. Importantly, a surrogate correction can
be applied to any nonlinear or linear [39] time series analysis
measure.

The bivariate surrogates used here represent the null
hypothesis H0,biv: X and Y jointly represent a stationary
bivariate linear stochastic correlated Gaussian process. The
measurement functions by which xn and yn were derived
from the dynamics are invertible but potentially nonlinear.
The autocorrelation, cross correlation, mean, and variance of
the underlying Gaussian process are such that the measure-
ment results in the autocorrelation, cross correlations, and
amplitude distribution of the observed time series. A main

result of our study is that the EEG recorded in the focal
hemisphere is less consistent with this null hypothesis than
the EEG recorded in the nonfocal hemisphere. As a possible
conclusion, let us consider the following hypothesis H1,biv:
The dynamics of neuronal groups in the focal and nonfocal
hemispheres have nonlinear deterministic properties, and the
coupling between neuronal groups is on average stronger
in the focal hemisphere than in the nonfocal hemisphere.
Does the rejection of H0,biv prove the correctness of H1,biv?
The answer is no. The null hypothesis H0,biv is composed
of a number of distinct assumptions, and the violation
of any of these assumptions is by itself sufficient for a
rejection of H0,biv. Hence, one of many possible alternatives
to H1,biv could be that the dynamics in the focal and
nonfocal hemispheres are consistent with a bivariate linear
stochastic process, but the dynamics of the focal hemisphere
is more nonstationary. The assumption of stationarity is not
only included in the surrogate null hypothesis, but it also
underlies the calculation of the nonlinear interdependence
measure L. A variety of physiological mechanisms can cause
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FIG. 4. (Color online) EEG window from another patient and corresponding results. Same layout as in Figs. 2 and 3. For this patient,
the epileptic focus was in the hippocampal formation of the right brain hemisphere, and we obtain 〈�C〉(v=27) > 0, 〈�L〉(v=27) > 0, but
〈�K〉(v=27) < 0 (see Fig. 5).

nonstationarities that are reflected in the EEG on a range
of different time scales. Intermittent interictal epileptiform
activity during the seizure-free interval and the reduction
of antiepileptic medication during the presurgical epilepsy
diagnostics (cf. [34]) can lead to further nonstationary features
that are evident on different time scales. In consequence,
regardless of the window length used for the analysis, the
assumption of stationarity can not be fulfilled in a strict
sense. Furthermore, we have to keep in mind that the EEG
results from the superposition of electrical potentials of a
huge number of individual neurons. These neurons interact
in local circuits as well as with remote neurons. Hence,
EEG time series recorded at individual contacts incorporate
a large number of degrees of freedom. Accordingly, delay
coordinates with some limited embedding dimension will
probably not suffice to obtain a reasonably projection-free
reconstruction of the underlying dynamics. The embedding
dimension can not, on the other hand, be increased arbitrarily
due to the limited length of the time series. Indeed, the
highest accuracy and significance of the measure K in

determining the side of the focal hemisphere was found
for intermediate values of the embedding dimension, while
both low and high values of this parameter led to a weaker
performance.

Seeking a further interpretation of our results, we turn
to previous findings of ours [19] (see also [20,21]). Based
on the same set of EEG recordings studied here, this
previous study determined the degree to which different
univariate time series analysis approaches allowed us to
determine the side of the focal hemisphere. We found that
the accuracy of both linear and nonlinear univariate measures
was low if not insignificant. In contrast, a high accuracy
was obtained for univariate surrogate-corrected nonlinear
measures. In particular, the focal EEG was less consistent
with the surrogates’ null hypothesis than the nonfocal EEG.
Accordingly, our previous study [19] and this study have
an important conclusion in common. A combination of
nonlinear measures with surrogates allows one to extract
information from experimental time series that can not be
extracted using the nonlinear measures alone. This is remark-
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〈�M〉(v) values for these random subsamples. The error bars indicate
ranges of 〈�M〉(v) obtained for 100 independent realizations of the
random subsamples. The patient index corresponds to the one used
in Fig. 4 of Ref. [19].
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FIG. 6. (Color online) Results averaged across patients: Values of
〈�M〉 are shown as vertical lines. Distributions of 〈�M〉rand across
109–1 independent realizations of Eq. (9) are shown in gray.

able since univariate and bivariate time series analysis are
based on conceptually different approaches. While univariate
analysis characterizes local aspects of the dynamics, bivari-
ate analysis characterizes the interaction between different
dynamics.

The null hypothesis tested by the particular univariate
surrogates we used in [19] is that the dynamics are a univariate
linear stationary Gaussian stochastic process and that the
time series were recorded using an invertible but potentially
nonlinear measurement function. The autocorrelation, mean,
and variance of the underlying Gaussian process are such
that the measurement results in the autocorrelation and
amplitude distribution of the observed time series (H0,univ)
[35]. Hence, these surrogates are the univariate analog to
the bivariate surrogates used here. The difference is that the
bivariate surrogates account for possible cross correlations
between X and Y . Nonetheless, a violation of the univariate
null hypothesis for either X or Y implies a violation of
the bivariate null hypothesis for the pair X and Y . This
holds independent of the degree of dependence between the
two dynamics. If, for example, X and Y are independent,
but one or both of them exhibit nonlinear deterministic
structures, then both the univariate and the bivariate null
hypotheses are violated. Hence, taking [19] into account, a
possible explanation of our findings obtained from bivariate
measures is that the focal EEG is less consistent with a
linear stationary Gaussian stochastic process than the nonfocal
EEG. These considerations could imply that the results of our
bivariate analysis mainly reflect properties of the individual
univariate EEG time series rather than any signatures of
coupling or nonlinear interdependence between pairs of time
series. Indeed, there is a noticeable correlation between the
results of K and those of univariate surrogate-corrected
measures (compare Fig. 5 with Fig. 3 in Ref. [19]). [To
appreciate this, one has to calculate the normalized differ-
ence of the univariate surrogate-corrected measure values
shown in Fig. 3 of Ref. [19] according to Eq. (8). The
Pearson correlation coefficient between the resulting values
and the 〈�K〉(v) values across patients is c = 0.61 (pc =
0.0004).]

We, therefore, studied the potential influence of properties
of the individual univariate EEG time series on both L

and K by using time-shifted surrogates [18,24,36]. Similar
to so-called twin surrogates [37], time-shifted surrogates
represent the null hypothesis H∗

0,biv that the two dynamics
are independent and not cross correlated. No assumption
is made about the structure of the individual time series.
We constructed individual pairs of time-shifted surrogates
by performing a cycle shift of the yn time series by a
random interval of at least 1 s relative to the xn time series.
The mean L value obtained from 19 pairs of time-shifted
surrogates, denoted by 〈L∗

S〉, was used to replace 〈LS〉 in
Eq. (7) resulting in K∗. All subsequent steps of analysis
were kept the same. The 〈�K∗〉v values were found to be
almost identical to those of 〈�L〉v . The Pearson correlation
coefficient between these sets of values across patients was
c = 0.9991. (While this close match of 〈�K∗〉v and 〈�L〉v
has strong implications for the interpretation of our main
findings, it also implies that a description of the detailed results
obtained from time-shifted surrogates would not provide
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additional information. For the sake of better readability and
brevity, we therefore limited the description of the study on
time-shifted surrogates to this short exposition embedded in
the discussion of our main findings.) The reason is that K∗
was, in general, close to LO since 〈L∗

S〉 was, in general,
close to zero, which means that a surrogate correction for
L based on time-shifted surrogates has basically no effect.
This is to be expected since time-shifted surrogates repre-
sent the null hypothesis of independent dynamics, and the
measure L is defined to have an expected value of zero
for such independent dynamics. It has already been shown
for exemplary mathematical model systems that L is less
sensitive to properties of the individual time series and more
specific for signatures of nonlinear interdependencies than
other bivariate nonlinear interdependence measures [28]. The
fact that 〈L∗

S〉 was, in general, close to zero shows that, also
for the specific case of the EEG recordings studied here, L

is not sensitive to properties of the individual univariate time
series. Accordingly, while a violation of the univariate null
hypothesis H0,univ for either X or Y indeed formally implies a
violation of the bivariate null hypothesis H0,biv for the pair X

and Y , this violation is not likely to result in a nonzero value
of K .

In consequence, results from the univariate analysis pre-
sented in [19] and the bivariate analysis presented here
provide complementary perspectives on the dynamics of the
epileptic process. As outlined above, the epileptic process
is generally considered to induce hypersynchronous activity
of neuronal groups. This hypersynchronicity can have dif-
ferent manifestations on different spatial scales of neuronal
organization. For univariate signals recorded by individual
contacts, it can result in a more regular appearance of the
EEG. For bivariate signals recorded by pairs of contacts, it
can result in stronger signatures of interdependence. Across
these spatial scales, the hypersynchronicity assumed to be
induced by the epileptic process can result in an EEG that
is less consistent with a linear stochastic process and, rather,
exhibits some properties of a coupled nonlinear deterministic
dynamics.

We recall that, for our group of patients with unilateral
medial temporal lobe epilepsy, the clinical presurgical di-
agnostics allowed us to determine whether the left or right
hippocampal formation contained the epileptic focus. The
EEG was recorded with one depth electrode per hippocampal
formation (Fig. 1). The resection of the focal hippocampal
formation led to complete seizure control in all patients.
Accordingly, we compared averaged results at the level of
the two depth electrodes in order to retrospectively determine
the side of the focal brain hemisphere. The high accuracy
of the surrogate-corrected nonlinear interdependence measure
K shows that this approach carries the potential to extract
valuable information from the EEG of epilepsy patients. A
thorough assessment of the potential of such an analysis to
contribute to the presurgical diagnosis of epilepsy patients
certainly requires further comprehensive studies. First of all,
beyond a determination of the side of the focal hemisphere,
a precise localization of the epileptic focus down to the
spatial resolution of individual recording contacts should be
aimed for. This task can be addressed, for example, by study-
ing patients with neocortical epilepsies who are implanted

with laminar subdural grid electrodes. These electrodes are
equipped with grids of, e.g., 8 × 8, recording contacts and
are implanted beneath the dura mater onto the surface of
the cortex. Typically, brain areas covered by only a small
number of individual contacts are identified as the epileptic
focus and resected. Hence, these cases can be used to
study the capability of surrogate-corrected nonlinear inter-
dependence measures for a precise localization of epileptic
foci.

Beyond different types of epilepsies, future work should
study the impact of various factors on the discriminative power
of the different time series analysis techniques in localizing
the epileptic focus. These influencing factors can be, for ex-
ample, different states of vigilance or levels of anticonvulsive
medication. Aspects of the current clinical status and medical
history of individual patients, such as the mean frequency
of seizures or duration of the disease, are of interest. Future
work should also include patients for whom epilepsy surgery
did not lead to complete seizure control as negative controls.
An important methodological aspect of such future work will
be to evaluate not only the strength, but also the direction
of interactions between different brain areas [10–13]. This
work should also include advanced measures based on Granger
causality (see [38] and references therein). Leading beyond the
spatial averages studied here, such analysis can yield weighted
and directed interaction networks (for an overview, see [38,39]
and references therein). This approach can allow for an
advanced characterization of the spatiotemporal dynamics
of the epileptic focus and its interactions with other brain
areas.
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APPENDIX A

We used the following iteration scheme [17] to generate
bivariate surrogates. Let ak,xe

iφk,x and ak,ye
iφk,y denote the

discrete Fourier transforms of xn and yn (k = −N/2, . . . ,N/2,
and n = 0, . . . ,N − 1; for simplicity, we assume N to be
even). To generate a seed for the iteration scheme, the temporal
order of the time series xn and yn is permuted, resulting in x̃n

and ỹn. Importantly, two different unconstrained permutations
are used for X and Y . Each iteration step consists of the
following two procedures:

(i) Filtering. Calculate the discrete Fourier transform
bk,xe

iψk,x of x̃n and replace the amplitudes with the original
amplitudes ak,x . The random phases ψk,x are replaced with
new phases ψ̃k,x , which are specified below. Take the inverse
transform of ak,xe

iψ̃k,x resulting in x̃∗
n . Carry out the same

steps for Y . The use of the original amplitudes ak,x and
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ak,y imposes the periodograms of the original time series to
x̃∗

n and ỹ∗
n . The phases of the individual surrogates, on the

other hand, should remain random. Therefore, one aims to
minimize

hk = |eiψ̃k,x − eiψk,x |2 + |eiψ̃k,y − eiψk,y |2. (A1)

At the same time, to preserve the cross correlation, the circular
differences between the surrogate phases must coincide with
the original ones [40]:

ei(ψ̃k,x−ψ̃k,y ) = ei(φk,x−φk,y ), (A2)

which is fulfilled if we choose ψ̃k,x and ψ̃k,y such
that

ψ̃k,x − φk,x = ψ̃k,y − φk,y = αk. (A3)

A value for αk is found by first eliminating ψ̃k,x and ψ̃k,y from
Eq. (A1), which turns into

hk = 4 − 2 cos(αk −ψk,x +φk,x) − 2 cos(αk − ψk,y + φk,y).

(A4)

This hk is extremal for

tan αk = sin(ψk,x − φk,x) + sin(ψk,y − φk,y)

cos(ψk,x − φk,x) + cos(ψk,y − φk,y)
. (A5)

The solutions of Eq. (A5), which are {αk , αk + π , αk +
2π, . . .}, correspond to alternating maxima and minima of

Eq. (A4), as can be seen from the second derivative of Eq. (A4).
Hence, if the arctan function taken from Eq. (A5) results
in a maximum of hk , one has to add π before inserting it
in Eq. (A3) to determine ψ̃k,x and ψ̃k,y . This is carried out
for 0 > k > N/2. The real-valued Fourier coefficients for
k = 0 and k = ±N/2 are not filtered. Phases for negative
k are set to ψ̃−k,x = −ψ̃k,x and ψ̃−k,y = −ψ̃k,y to preserve
the symmetry of the discrete Fourier transform of real-valued
time series. As a result of the filtering, the autocorrelation
function and cross-correlation function of x̃∗

n and ỹ∗
n coincide

with those of the original time series. However, the amplitude
values of x̃∗

n and ỹ∗
n will no longer match the original

ones.
(ii) Amplitude adjustment. To restore the original amplitude

values in the time domain, replace the highest, second-highest,
..., smallest value of x̃∗

n with the highest, second-highest, ...,
smallest value value of xn. Assign the result of this rescaling
to x̃n and carry out the same steps for Y . After this adjustment,
the amplitudes of x̃n and ỹn coincide with the original ones.
However, the autocorrelation and cross-correlation functions
are distorted. Therefore, the iteration scheme is continued
with the filtering step using the reassigned x̃n and ỹn as
input.

After a few dozen iterations, this scheme typically con-
verges to diminishing distortions of the autocorrelation func-
tions and the cross-correlation function after the amplitude
adjustment step. We use here an arbitrary but high number
of 120 iterations. By construction, the amplitudes of the
surrogates x̃n and ỹn coincide exactly with the original
amplitudes.

APPENDIX B

TABLE I. Dependence of results on the embedding dimension m and time delay τD used for the delay coordinates.

m τD 〈�L〉(v) > 0 a p
sign
L 〈�L〉 pval

L
b 〈�K〉(v) > 0 a p

sign
K 〈�K〉 pval

K
b

2 2 22 4.1 × 10−3 0.065 6.3 × 10−3 24 2.7 × 10−4 0.349 1.5 × 10−6

8 10 20 3.1 × 10−2 0.068 1.4 × 10−3 26 7.6 × 10−6 0.220 8.2 × 10−7

8 12 23 1.2 × 10−3 0.073 6.9 × 10−4 26 7.6 × 10−6 0.288 5.2 × 10−7

8 14 23 1.2 × 10−3 0.070 1.1 × 10−3 26 7.6 × 10−6 0.254 9.3 × 10−7

9 10 23 1.2 × 10−3 0.076 4.3 × 10−4 27 8.1 × 10−7 0.278 5.8 × 10−7

9 12 23 1.2 × 10−3 0.074 5.5 × 10−4 27 8.1 × 10−7 0.271 6.3 × 10−7

9 14 23 1.2 × 10−3 0.072 6.8 × 10−4 27 8.1 × 10−7 0.268 7.7 × 10−7

10 10 23 1.2 × 10−3 0.074 5.1 × 10−4 27 8.1 × 10−7 0.242 6.4 × 10−7

10 12 23 1.2 × 10−3 0.074 4.6 × 10−4 27 8.1 × 10−7 0.269 6.5 × 10−7

10 14 23 1.2 × 10−3 0.070 7.3 × 10−4 27 8.1 × 10−7 0.234 9.8 × 10−7

11 10 23 1.2 × 10−3 0.077 3.0 × 10−4 27 8.1 × 10−7 0.262 6.3 × 10−7

11 12 23 1.2 × 10−3 0.074 3.8 × 10−4 27 8.1 × 10−7 0.252 8.8 × 10−7

11 14 23 1.2 × 10−3 0.073 4.8 × 10−4 27 8.1 × 10−7 0.248 8.8 × 10−7

12 10 23 1.2 × 10−3 0.077 2.6 × 10−4 27 8.1 × 10−7 0.257 7.0 × 10−7

12 12 23 1.2 × 10−3 0.075 3.4 × 10−4 27 8.1 × 10−7 0.249 8.5 × 10−7

12 14 23 1.2 × 10−3 0.073 4.3 × 10−4 27 8.1 × 10−7 0.236 1.0 × 10−6

20 20 23 1.2 × 10−3 0.071 3.1 × 10−4 25 5.2 × 10−5 0.176 1.1 × 10−5

aNumber of cases of a total of 29 cases.
bNote that the values of pval

M do not directly follow from 〈�M〉. Rather, these values are derived from the distribution of all 〈�M〉(v) values.
Accordingly, higher (lower) values of 〈�M〉 are not necessarily reflected in lower (higher) values of pval

M .
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