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Methods for computing Hashin-Shtrikman bounds and related self-consistent estimates of elastic constants
for polycrystals composed of crystals having orthorhombic symmetry have been known for about three decades.
However, these methods are underutilized, perhaps because of some perceived difficulties with implementing the
necessary computational procedures. Several simplifications of these techniques are introduced, thereby reducing
the overall computational burden, as well as the complications inherent in mapping out the Hashin-Shtrikman
bounding curves. The self-consistent estimates of the effective elastic constants are very robust, involving a
quickly converging iteration procedure. Once these self-consistent values are known, they may then be used to
speed up the computations of the Hashin-Shtrikman bounds themselves. It is shown furthermore that the resulting
orthorhombic polycrystal code can be used as well to compute both bounds and self-consistent estimates for
polycrystals of higher-symmetry tetragonal, hexagonal, and cubic (but not trigonal) materials. The self-consistent
results found this way are shown to be the same as those obtained using the earlier methods, specifically those
methods designed specially for each individual symmetry type. But the Hashin-Shtrikman bounds found using
the orthorhombic code are either the same or (more typically) tighter than those found previously for these special
cases (i.e., tetragonal, hexagonal, and cubic). The improvement in the Hashin-Shtrikman bounds is presumably
due to the additional degrees of freedom introduced into the available search space.

DOI: 10.1103/PhysRevE.83.046130 PACS number(s): 62.20.de

I. INTRODUCTION

Although it is well-known that isotropic elastic materials
have compressional/extensional modes measured typically
by a bulk modulus as well as distortional modes measured
typically by a shear modulus, the majority of elastic materials
have more complicated behavior than that observed in the
isotropic case. In general there may be as many as five shear-
like modes and just one bulk-like mode. But for anisotropic
media the coupling among shear and bulk modes is nontrivial,
and can lead to complexities in the analysis of elastic data,
whether laboratory or field measurements, and whether the
data are derived from quasistatic or dynamic measurements,
as is often the case when acoustic or seismic waves are used
to probe such media.

There are basically seven types of elastic crystal symmetries
(see Nye [1]) usually considered: cubic, hexagonal, tetragonal,
trigonal, orthorhombic, monoclinic, and triclinic. Of these
seven, cubic symmetry is the only one that has a simply defined
bulk modulus, since the bulk modulus in this case can be
precisely determined and will give the same value whether the
measurement is made in compression via uniformly applied
external pressure, or in either extension or compression if
the sample can be uniformly strained. In all other cases, the
measured results can differ depending on whether they are
obtained using applied strains, applied stresses, or combina-
tions of these. Furthermore, the shear behavior of anisotropic
media can be quite complex since there are three independent
twisting shears that can be applied to any material sample, as
well as three quite different shearing forces that result (for
example) from applying a uniaxial compression in any of
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the three principal orthogonal directions. These cases do not
exhaust all the possibilities for shearing motions, but the others
can normally be found by considering linear combinations of
the ones already mentioned.

It is because of these complexities that Voigt [2] and
Reuss [3] studied elastic systems and determined that there
were two sets of constants that seemed to capture much of
the nature of a linear elastic material. These results were then
called the Voigt and Reuss averages of shear and bulk behavior
until Hill [4] showed that these same averages were actually
rigorous bounds on the possible responses and behaviors of
these complicated systems. Since Hill’s work, the Voigt and
Reuss estimates of elastic response have become known as the
Voigt and Reuss (rigorous) bounds on elastic system behavior.

Subsequently, Hashin and Shtrikman [5] also studied the
problem of finding bounds on elastic constants and deter-
mined that it was possible to do somewhat better than these
early bounds of Voigt and Reuss. They established general
procedures for computing such bounds and carried the work
through themselves for some of the simpler cases, including
cubic materials. Other workers continued to elaborate the
theory, including first Peselnick and Meister, [6] Watt and
Peselnick, [7] and also Watt [8] alone, who subsequently
published a series of papers on methods for many of the crystal
classes of common interest.

Another line of thinking on such problems arose around the
same time as the work of Peselnick and Meister, [6] and was
focused on effective-properties estimates, rather than rigorous
bounding methods. This work was based in part on early
scattering theory approaches by Soven [9] and Taylor [10] via
the coherent potential approximation (CPA), and then carried
further for elastic constants by Gubernatis and Krumhansl [11],
and also by Willis [12], who based some of his ideas on earlier
work in this area by Hill [13].
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The present study has grown out of a need to understand
more clearly, while also quantifying more precisely, the
relationships among the bounding and estimation methods,
and to try to make these threads of the theory both easier
to understand and to apply to the harder problems (such as
orthorhombic, monoclinic, and triclinic) that continue to arise
in current practice.

This work concentrates mainly on establishing some useful
refinements of the work by Watt [8] and others, [14] and
at the same time incorporating ideas related to CPA and/or
self-consistent estimates of the same elastic properties of poly-
crystals. The work is restricted to orthorhombic systems and/or
more symmetric systems including tetragonal, hexagonal, and
cubic elastic polycrystals, which in fact will all be viewed
here as special cases of orthorhombic symmetry. We also
take advantage of this fact in the choices of examples to be
considered.

II. ELASTIC PROPERTIES OF CRYSTALS AND
POLYCRYSTALS

If the dimensionless second rank tensor of strain for an
elastic body in three dimensions is εij , with i,j = 1,2,3 being
the three spatial dimensions in some convenient choice of
coordinate system, and the second rank tensor of stress (having
dimensions of pressure) of the same body is σij in the same
coordinate system, then the stress is related to the strain (see
Landau and Lifshitz [15]) by the fourth rank tensor Cijkl

according to σij = Cijklεkl , assuming the Einstein convention
of summation over repeated indices k,l = 1,2,3. It is often
convenient to simplify the mathematics of these relationships
by replacing tensor with matrix notation. In this case, the
Cijkl’s are replaced by the matrix cij , while the stress and strain
tensors are replaced by vectors according to the well-known
(see Ting [16] for extensive discussion) Voigt prescription:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11

σ22

σ33

σ12
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⎞
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. (1)

The example shown in (1) is that for orthorhombic symmetry,
which is the most general case that will be considered in the
present work. The elastic constants c44, c55, c66 are elastic
moduli for the twisting shear strains: ε23, ε13, ε12, and their
related stresses. For isotropic elastic materials, c11 = c22 =
c33 = λ + 2μ, c44 = c55 = c66 = μ, and c12 = c13 = c23 = λ,
where λ and μ are the two Lamé constants, and the isotropic
bulk and shear moduli are given (in this very special case) by
K = λ + 2μ/3 and G = μ, respectively.

For orthorhombic media, there are three simple eigenvec-
tors and eigenvalues, and these are the ones associated with
the twisting shear modes and the stiffnesses, namely, c44,
c55, and c66. There will also be three eigenmodes associated
with the 3 × 3 submatrix in the upper left-hand corner of
the full elastic matrix. But these modes will not generally
be simply related either to pure compression or extension or
pure shear modes. Thus, information about effective moduli

such as effective bulk and shear modulus of polycrystals
has a rather complex relationship to the simpler ideas of a
bulk modulus for pure compression or extension, and a shear
modulus for one of the five potentially distinct shear moduli
of any elastic material. It is this mixing of the modes that
makes the problem of analyzing the effective modal behavior
of (assumed) isotropic polycrystals difficult, and therefore
necessitates the use of the methods to be discussed here.
Analysis of these systems is usually designed to quantify
the behavior of random polycrystals, where the use of the
word “random” in this context normally implies that the
polycrystals are composed of a sufficiently large number of
small crystallites oriented randomly in space so the overall
polycrystalline behavior is close to isotropic. The effective
isotropic constants can therefore be taken to be effective bulk
K and shear G moduli.

III. BOUNDS AND ESTIMATES OF ELASTIC CONSTANTS
FOR POLYCRYSTALS

Results of Watt [8] for bounds on K±
HS and those of

Middya and Basu [14] for self-consistent estimates K∗
SC of

bulk modulus can both be written in the same form:

K±
HS = K± + 3B±

1 + 2B±
2

3 + α±(3B±
1 + 2B±

2 )
, (2)

where

3B±
1 + 2B±

2 = 9(KV − K±) + 2β±(d± + e± − c±) + 3β2
±�±

1 − a±β± − 9γ±(KV − K±) + D±
.

(3)

The corresponding results for shear modulus are presented
in Appendix A. The denominator of expression (3) is the
same as the denominator of the first term in (A12), and D±
is defined in (A13). Other terms not defined here already are
also found in Appendix A. The corresponding equation for
the shear modulus is again given in Appendix A, Eq. (A2).
In particular, B±

2 is itself defined in (A12). [The significance
of the various ± subscripts and superscripts—related to upper
and lower bounds—is also clarified following Eq. (A20) in
Appendix A.]

As is explained in more detail in Appendix A, these
equations can sometimes be simplified by taking advantage
of certain analytical structures that typically occur. [13] In
particular, if we add the quantity 4G±/3 to both sides of (2),
substitute the value of α± from (A4), and then rearrange the
resulting equation, we find that

1

K±
HS + 4G±/3

= 1 − (B±
1 + 2B±

2 /3)/(K± + 4G±/3)

K± + 4G±/3
, (4)

which should be compared to the analogous shear formula in
(A8), being analogous forms for the bulk and shear moduli,
respectively.

As first stated, these equations are for the upper and
lower bounds K±

HS on the bulk modulus. These bounds are
found when the constraints are optimal, meaning that [as
the �± are defined in Appendix A, Eq. (A19)] we must
have �± = det(X±) ≡ 0; and where X± is a 3 × 3 positive-
or negative-semidefinite matrix, as defined in (A18). This
required vanishing of det(X) is necessary because then, and
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only then, have we found either the greatest lower bound, or
the smallest upper bound. [Clearly, nonoptimal bounds can
also be found, but these are never our target values.]

As already shown by Middya and Basu [14], these same
equations can be used as well to determine the self-consistent
estimates, as well as the bounds. These self-consistent values
are determined instead specifically by the overall conditions:
B2 = 0 and 3B1 + 2B2 = 0. Both conditions must apply
simultaneously for the self-consistency conditions to be
satisfied. And so, it must also be true that B1 = 0; but we
never need to consider B1 separately. The self-consistency
conditions are therefore (obviously) given by

KSC = K∗ and GSC = G∗, (5)

where the conditions that determine the values of K∗ and
G∗ are exactly the ones that cause B1 and B2 to vanish
simultaneously. Although this simultaneity condition might
sound hard to achieve, actually it is very easy to obtain by
applying an iterative process wherein some initial K0 and G0

values are first chosen and substituted into (4) and (A2) for the
K± and G± values. The results that are then obtained for the
left-hand sides of both these equations next become the new
trial values for K0 and G0. Repeating this process has always
been found to converge quickly as long as some reasonably
intelligent choices are made for the initial values of K0 and
G0. In any case, this part of the overall procedure is actually
very easy in practice.

Determining the HS bounds from this same set of equations
is comparatively harder, but some tricks were developed in the
course of this work that made the process easier to complete,
as will be elaborated in the following discussion. In particular,
Sec. IVD provides an overview of a useful “shooting method
of optimization” developed here.

IV. EFFECTIVE ELASTIC CONSTANTS FOR
ORTHORHOMBIC MATERIALS

The results and methods described in the preceding sections
and the Appendices were applied to 10 examples of orthorhom-
bic materials. Tables I and III provide the input data used for
these 10 materials. Tables II and IV contain the results found
from the bounding and self-consistent estimation procedures.
Sources of all the single-crystal data used in the paper are
listed in Appendix C.

A. Materials considered

The first five cases include aragonite, an orthorhombic poly-
morph of calcite (CaCO3), danburite (CaB2Si2O8), enstatite
(MgSiO3), forsterite (Mg2SiO4), and topaz [Al2(F,OH)2SiO4].
Some of these materials were purposely chosen because they
had been studied by previous authors (in order to provide
baseline comparisons), while others have apparently not been
treated before.

The second set of five cases includes two examples of
OsN2 (having marcasite crystal structure), where these first
two sets of values are taken from two different computations
based, respectively, on the generalized gradient approximation
(GGA) and the local-density approximation (LDA). The

TABLE I. Elastic stiffness constants and Voigt-Reuss-Hill aver-
ages of the bulk (K) and shear moduli (G) for the orthorhombic crys-
tals: aragonite (CaCO3), danburite (CaB2Si2O8), enstatite (MgSiO3),
forsterite (Mg2SiO4), and topaz [Al2(F,OH)2SiO4]. References for
the data are found in Appendix C. All constants are in units of GPa.

CaCO3 CaB2Si2O8 MgSiO3 Mg2SiO4 Al2(F,OH)2SiO4

c11 160.0 131.0 224.7 328.0 281.0
c22 87.2 198.0 177.9 200.0 349.0
c33 84.8 211.0 213.6 235.0 294.0
c12 37.3 50.0 72.4 69.0 108.0
c13 1.7 64.0 54.1 69.0 132.0
c23 15.7 34.0 52.7 73.0 131.0
c44 41.3 64.0 77.6 66.7 125.0
c55 25.6 59.8 75.9 81.3 84.0
c66 42.7 74.9 81.6 80.9 88.0
KVRH 46.9 91.7 107.8 129.5 167.4
GVRH 38.5 64.2 75.7 81.1 114.8

TABLE II. Computed effective elastic constants for the or-
thorhombic crystals aragonite (CaCO3), danburite (CaB2Si2O8), en-
statite (MgSiO3), forsterite (Mg2SiO4), and topaz [Al2(F,OH)2SiO4].
All constants are in units of GPa.

CaCO3 CaB2Si2O8 MgSiO3 Mg2SiO4 Al2(F,OH)2SiO4

G−
HS 37.56 63.50 75.52 80.352 114.73

GSC 38.31 64.27 75.70 80.354 115.06
G+

HS 38.35 65.06 75.71 80.888 115.09
K−

HS 45.56 91.37 107.65 128.489 167.37
KSC 46.36 91.89 107.83 128.493 167.46
K+

HS 46.41 92.40 107.83 128.493 167.73
Gr

eff 40.11 58.23 70.95 86.18 102.21
Gv

eff 46.22 65.33 72.83 92.00 104.50
x1 77.07 108.00 116.30 149.34 165.56
x2 15.36 22.66 29.37 34.66 42.44

TABLE III. Elastic stiffness constants and Voigt-Reuss-Hill av-
erages of the bulk (K) and shear moduli (G) for the orthorhombic
crystals: OsN2-GGA with marcasite crystal structure, OsN2-LDA
also with marcasite crystal structure, Rochelle salt (where RS =
KNaC4H4O6 · 4H2O), sulfur (S), and α-uranium (U). References
for the data are found in Appendix C. For OsN2, the constants
were obtained by numerical methods: GGA = generalized gradient
approximation; LDA = local-density approximation. All constants
are in units of GPa.

GGA LDA
OsN2 OsN2 RS S α-U

c11 744.0 835.0 25.5 24.0 215.0
c22 913.0 1038.0 38.1 20.5 199.0
c33 581.0 663.0 37.1 48.3 267.0
c12 178.0 212.0 14.1 13.3 46.0
c13 277.0 323.0 11.6 17.1 22.0
c23 88.0 105.0 14.6 15.9 107.0
c44 134.0 142.0 13.4 4.3 124.0
c55 340.0 381.0 3.2 8.7 73.0
c66 175.0 189.0 9.8 7.6 74.0
KVRH 364.2 418.3 19.7 19.1 112.9
GVRH 225.0 247.2 8.2 6.7 84.3
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TABLE IV. Computed effective elastic constants for the or-
thorhombic crystals OsN2-GGA and OsN2, both having the marc-
asite crystal structure, Rochelle salt (RS = KNaC4H4O6 · 4H2O),
sulfur (S), and α-uranium (U). GGA = generalized-gradient approx-
imation; LDA = local-density approximation. All constants are in
units of GPa.

GGA LDA
OsN2 OsN2 RS S α-U

KR 359.0 412.6 19.3 17.56 111.3
K−

HS 363.4 417.9 19.7 18.76 112.5
KSC 364.5 418.6 19.7 18.85 112.7
K+

HS 365.4 419.6 19.8 18.87 113.1
KV 369.3 424.0 20.1 20.60 114.6
GR 207.2 225.6 7.2 6.17 80.7
G−

HS 221.8 243.6 8.4 6.61 83.6
GSC 224.1 246.2 8.5 6.64 84.1
G+

HS 227.3 250.1 8.6 6.66 84.9
GV 242.8 268.8 9.3 7.22 87.9
Gr

eff 249.5 277.6 9.6 6.03 74.9
Gv

eff 282.5 316.0 10.1 7.75 84.3
x1 468.4 524.9 16.2 13.32 139.6
x2 96.6 107.1 3.9 2.18 29.1

remaining cases include Rochelle salt (KNaC4H4O6 · 4H2O),
sulfur (S), and α-uranium (U).

Of the final four materials considered (results summarized
in Tables V–VIII), three were cases treated previously by the
author—one each of tetragonal (urea), cubic (copper), and
hexagonal (water ice). The remaining example (Table VIII) is
cubic methane hydrate, which had not been treated previously.

B. Discussion of the bound optimization method

It should be clear from the detailed mathematical struc-
ture presented here that the self-consistent calculations are

TABLE V. Measured and computed effective elastic constants
for the tetragonal crystals and polycrystals of urea [CO(NH2)2].
References for the data are found in Appendix C. All constants are in
units of GPa.

Urea CO(NH2)2

Elastic Previous Present
constants results results

c11 21.7 KR 11.6 KR 11.6078
c12 8.9 K−

HS 12.6 K−
HS 14.8104

c13 24.0 KSC 16.5 KSC 16.4761
c33 53.2 K+

HS 18.7 K+
HS 17.5505

c44 6.26 KV 23.4 KV 23.3778
c66 0.45 GR 1.67 GR 1.6707
K 16.5 G−

HS 2.51 G−
HS 3.4755

G 3.91 GSC 3.91 GSC 3.9137
G+

HS 4.33 G+
HS 4.1640

GV 5.24 GV 5.2406
μ3 6.40 Gv

eff 6.83 Gr
eff 4.4348

Gv
eff 6.6167

x1 11.7309
x2 1.5025

TABLE VI. Measured and computed effective elastic constants
for the cubic crystals and polycrystals of copper (Cu). References for
the data are found in Appendix C. All constants are in units of GPa.

Cu Copper

Elastic Previous Present
constants work results

c11 171.0 KR 138.0 KR 138.3
c12 122.0 K−

HS 138.0 K−
HS 138.3

c44 69.1 KSC 138.0 KSC 138.3
K+

HS 138.0 K+
HS 138.3

K 138.0 KV 138.0 KV 138.3
G 45.6 GR 40.0 GR 39.98

G−
HS 44.8 G−

HS 46.23
GSC 46.3 GSC 46.30
G+

HS 47.2 G+
HS 46.32

GV 51.3 GV 51.26
μ3 24.5 Gv

eff 24.5 Gr
eff 24.51

Gv
eff 24.60

x1 38.87
x2 10.33

straightforward, while the bound evaluation methods require
some careful choice of search procedure. For self-consistency,
we require B±

2 = 0 = B±
1 , which might seem like a hard

condition to achieve, but in practice it is quite easy to reach
by establishing a straightforward iteration scheme. It only
takes a very few iterations to find that the values of B1

and B2 approach numerical values on the order of 10−12

and below, having started at values comparable to the input
stiffness values. On the other hand, the main requirement for
the HS bounds themselves involves finding values such that
the key constraint matrix [found in Eq. (A19)] �± ≡ 0. The
difficulty with this is certainly not that zeros are hard to find,

TABLE VII. Measured and computed effective elastic constants
for the hexagonal crystals and polycrystals of H2O ice. References
for the data are found in Appendix C. All constants are in units of
GPa.

H2O Ice

Elastic Previous Present
constants work results

c11 13.85 KR 8.89 KR 8.8966
c12 7.07 K−

HS 8.89 K−
HS 8.8966

c13 5.81 KSC 8.89 KSC 8.8966
c33 14.99 K+

HS 8.89 K+
HS 8.8966

c44 3.19 KV 8.89 KV 8.8967
c66 3.39 GR 3.48 GR 3.4871
K 8.89 G−

HS 3.52 G−
HS 3.5180

G 3.52 GSC 3.52 GSC 3.5194
G+

HS 3.52 G+
HS 3.5231

GV 3.55 GV 3.5540
Gv

eff 4.61 Gr
eff 4.6099

Gv
eff 4.6100

x1 9.2200
x2 2.4705
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TABLE VIII. Measured and computed effective elastic constants
for the cubic crystals and polycrystals of methane hydrate (ideally
CH4 · 5.75H2O) at P = 1 atm and T = 270 K. References for the
data are found in Appendix C. All constants are in units of GPa.

Methane hydrate

Elastic Previous Present
constants method method

c11 12.8 KR 8.41 KR 8.41
c12 6.215 K−

HS 8.41 K−
HS 8.41

c44 3.6 KSC 8.41 KSC 8.41
K+

HS 8.41 K+
HS 8.41

K 8.41 KV 8.41 KV 8.41
G 3.54 GR 3.470 GR 3.470

G−
HS 3.474 G−

HS 3.474
GSC 3.474 GSC 3.474
G+

HS 3.474 G+
HS 3.474

GV 3.477 GV 3.477
μ3 3.293 Gv

eff 3.293 Gr
eff 3.293

Gv
eff 3.293

x1 5.19
x2 1.39

but rather that there are multiple zeros. This fact does not
mean that the optimal solution is nonunique, but rather that
it is important to choose the right zeros corresponding to the
best choices of upper and lower bounds, which are unique.
This process goes smoothly if we have the proper information
at hand: in particular, we need to know what the signs are
of the various quantities previously defined that need to be
positive or negative semidefinite. These quantities are the six
principal minors [see (A21)] of the appropriate 3 × 3 matrices
X±. If we find a region in which these minors are all (say)
positive and then some of them become negative as we pass a
certain boundary, then we have found a candidate for one of
the HS bounds (and it is necessary that this transition occurs
simultaneously for both K±

HS and G±
HS). Similarly, if the values

of these principal minors are all negative and some become
positive at some boundary, then we have found another pair
of candidates for values for the bounds. As we scan through
these sign changes, it becomes clear that the best choices for
the bounds are the ones that happen closest to the well-defined
self-consistent values K∗

SC and G∗
SC. It can and does happen

that there are several of these sign changes near the vicinity of
the self-consistent values; and then the algorithm for choosing
the best bounds is also clear: the ones that occur closest to K∗

SC
and G∗

SC without violating the constraints are the values we
want.

C. Discussion of results

Two examples considered in Tables I and II were also
considered by Watt, [8] although the data sources were not
the same as the data used here. For comparison, Watt’s
Voigt-Reuss-Hill values (in GPa) for danburite were KVRH =
91.7 and GVRH = 64.1, whereas the corresponding values
presented here in Table I are KVRH = 91.7 and GVRH = 64.2.
Similarly, for forsterite, Watt’s Voigt-Reuss-Hill values (in
GPa) were KVRH = 129.1 and GVRH = 81.6, whereas the

corresponding values presented here in Table I are KVRH =
129.5 and GVRH = 81.1. So Watt’s values and ours agree
quite well, despite the use of somewhat different values for
the input constants. Middya and Basu [14] also considered
forsterite, and found the self-consistent estimates (in GPa) to
be KSC = 128.8 and GSC = 81.5. Our results for forsterite are
also comparable, being KSC = 128.5 and GSC = 80.4 GPa.
The only differences anticipated between these calculations
of the self-consistent estimates in the previous work and the
present work are those due to differences in input values of the
elastic constants themselves. However, there are anticipated
to be some more significant differences in results for the HS
bounds between Watt’s approach and our approach, due to the
introduction here of the additional comparison moduli x1 and
x2 (Appendix B) that were not considered by Watt.

Although the two OsN2 (osmium nitride with marcasite
crystal structure) examples (GGA and LDA) in Tables III
and IV are nominally for the same material, the results differ
substantially. We can quantify these differences by considering
first the percentage discrepancies between input values for the
cij ’s: LDA results are higher than GGA results in all cases. The
differences for c11, c22, c33 ranged from 12%–14%; differences
for c12, c13, c23 ranged from 17%–19%; while differences
for c44, c55, c66 ranged from 6%–12%. Computed polycrystal
values for bulk moduli differed by about 15%; for the shear
moduli by 9–11%; for the auxiliary constants (i.e., Gr

eff, Gv
eff,

x1, x2), the range was about 11%–12%. Thus, the range of
the input (data) differences was about 6%–19%, while the
range for the output (averaged) constants was narrower, being
about 9%–15%. So the averaging process does tend to narrow
the range of these differences by about a factor of 2 for this
particular set of input elastic constants. It would obviously be
of some practical concern if the averaging process made these
differences larger, rather than smaller.

D. A restatement and evaluation of the methods developed

Voigt and Reuss bounds are determined by simple formulas
depending only on the stiffness (cij ) or compliance (Sij )
matrix elements of the anisotropic rock crystals. These easy-to-
compute Voigt (A14)–(A15) and Reuss (A16)–(A17) bounds
on both bulk (K) and shear (G) moduli can be viewed as
establishing a rectangle in the two-dimensional space (G,K),
since—if the point (GR,KR) falls at the lower left-hand corner
of a rectangle—then the point (GV ,KV ) lies at (and defines)
the upper right-hand corner of this rectangle. All the modulus
values of interest in this paper must always fall inside this
rectangle. In particular, the self-consistent estimator (G∗,K∗)
falls somewhere in the middle, but seldom (if ever) lies exactly
at the center of this rectangle. In fact, the center point of
the rectangle is exactly the Hill estimator (GH,KH ) based
on the arithmetic means of the shear and bulk moduli. But
this point is only a very crude estimate of the points of most
interest—both of the Hill averages GH and KH , both typically
being somewhat too high in value.

The next easiest point to compute is actually the self-
consistent estimator (G∗,K∗). This point will also always fall
within the Voigt-Reuss rectangle, but again not necessarily
exactly in the middle. Virtually the same equations that
determine these self-consistent estimators also determine the
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Hashin-Shtrikman bounds on G and K . However, these
equations for the Hashin-Shtrikman bounds actually may
be used to determine many effective constant estimates,
depending on exactly what algorithm is used to explore the
values within the Voigt-Reuss rectangle already defined. So
one method (which is NOT the one used here) would be to
evaluate all points on some fine grid within this rectangle, and
then choose the values that produce the best results for the
Hashin-Shtrikman bounds. Although this is clearly another
viable searching approach, it was not the one pursued in the
present work.

Other researchers have used more complicated search
routines, instead of the simplified method proposed and
employed here, which we will term (for presumably obvi-
ous reasons) a “shooting method.” The method in outline
first finds the self-consistent values G∗ and K∗, which
are themselves easily and uniquely determined. The self-
consistent values must also by their nature also fall within the
smaller HS rectangle determined by the points (G−

HS,K
−
HS) and

(G+
HS,K

+
HS).

The entire Hashin-Shtrikman rectangle itself must also
necessarily lie within the Voigt-Reuss rectangle. So, if we
shoot toward the self-consistent point (G∗,K∗) from anywhere
on the boundary of the Voigt-Reuss rectangle, we must cross
the Hashin-Shtrikman rectangle boundary somewhere along
the way. When we cross such a boundary, sign changes occur
in the factors that we monitor, indicating that the values of the
functionals of interest are passing through zero. Hence, we can
map out this boundary defined by Hashin-Shtrikman bounds
while taking a relatively small number of “shots” toward
the self-consistent point near the middle of the Voigt-Reuss
rectangle.

We need to make several of these shots to be sure that we
have located the four HS boundaries—i.e., G−

HS, G+
HS, K−

HS,
K+

HS—in this two-dimensional space, and not some spurious
solution of these equations. (This reasonable concern did
not ever appear to become a problem in actual practice.)
Other researchers who have attempted to find the Hashin-
Shtrikman boundaries have typically used global searching
techniques, and these methods—while certain to locate the
boundaries eventually—are not usually as efficient as the
shooting method proposed and used here. Furthermore, if
these searching methods are terminated too soon, they may
in fact miss the optimal bounds. So it is the existence of the
uniquely defined and quite easily determined point (G∗,K∗)
that makes the present shooting method both viable and
attractive.

V. SUMMARY AND CONCLUSIONS

A modification of earlier methods has been developed
for determining effective elastic constants in polycrystals
composed of crystalline grains each of which has orthorhombic
symmetry or higher. The methods employed are in fact fairly
well-known, since the main ideas used are based on the
early work of Hashin and Shtrikman, [5] Hill [13], Peselnick
and Meister [6], Gubernatis and Krumhansl [11], Watt and
Peselnick [7], Willis, [12] Watt [8], Middya and Basu [14],
and Berryman [17]. There were, however, two innovations
added to the known approaches to be found in these references.

The first innovation was to introduce the concept of two
effective shear moduli for the comparison materials needed
by the Hashin-Shtrikman approach (see Appendix B) in
orthorhombic polycrystals. These two effective shear moduli
are neither eigenvalues, nor normal shear moduli in any usual
sense, but they nevertheless supply reasonable comparison
numbers for use in the search routines that are necessary to
determine (i.e., piece together) the complicated boundaries of
the Hashin-Shtrikman bounding construction for orthorhom-
bic materials.

In particular the smaller of these two comparison shear
moduli is typically much smaller than all the other per-
tinent shear moduli present, and thus widens the search
region for the Hashin-Shtrikman lower bounds. Similarly,
the other comparison shear modulus is sometimes larger
than all the other shear moduli in the system, which then
widens the search region for the Hashin-Shtrikman upper
bounds.

The second innovation revolves around the fact that some
of the more symmetric elastic materials, including hexagonal,
tetragonal, and cubic symmetries (but not trigonal), can be
considered special cases of orthorhombic symmetry. There-
fore, just one (for the orthorhombic case) routine can be
used to determine constants for all these four types (including
orthorhombic itself of course) of elastic polycrystalline media.
It has then been shown explicitly in these case studies that
this approach never leads to worse Hashin-Shtrikman bounds,
and can actually lead to somewhat tighter bounds for some
of the materials considered. All the other constants found,
including the self-consistent estimates and the Voigt and Reuss
averages, are not altered by using the orthorhombic code for
these purposes. In three cases studied, direct comparisons were
made to previously published results of the present author on
tetragonal, cubic, and hexagonal media. Results were found
always to be consistent, and often identical (to a precision
consistent with the available experimental input data on the
elastic constants themselves).

One overall conclusion reached is that the self-consistent
results always lie within the bounds, as would normally
be expected. This result, together with the fact that the
self-consistent iteration process for these estimates is itself
always very robust and quickly converging, has suggested
that these same self-consistent values can be used to simplify
the search routines used for locating the HS bounding values
and/or curves. This approach was the one used here and was
found to be a very effective tool for speeding up the search
processes for the HS bounding curves and limiting modulus
values.
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APPENDIX A: SIMPLIFIED RESULTS NEEDED FOR
SPECIAL CASES, INCLUDING TETRAGONAL,

HEXAGONAL, AND CUBIC ELASTIC MATERIALS

In earlier work the author has discussed the Peselnick
and Meister [6] and the Watt and Peselnick [7] bounds
for hexagonal, trigonal, tetragonal, and cubic symmetries.
It seems worthwhile to make note of some simplifications
in these bounding methods that can be understood now,
especially since similar simplifications apply to the main
case being studied, which is the orthorhombic class of elastic
symmetry.

Parameters needed to optimize Hashin-Shtrikman bounds
can be taken to be K± and G±, where the ± symbols designate
the best comparison material values for the upper bounds +
and lower bounds −, with the K± being bulk moduli and G±
being shear moduli of the comparison materials needed in the
Hashin-Shtrikman approach. Normally K+ and G+ are used
together, and K− and G− are used together, without mixing of
the subscripts in the same formulas. An exception is the limit
of the self-consistent estimates, in which case only one set of
constants applies, and we typically label the starting values
as K0 and G0, and the final results as K∗ and G∗, although
KSC and GSC or some variant thereof may also be used by
some authors. The Hashin-Shtrikman bounds themselves will
be labeled K±

HS and G±
HS, although other labels are sometimes

also used to give credit to the workers who obtained bounding
results for specific crystal symmetries.

Formulas for the Hashin-Shtrikman bounds in the notation
of Peselnick and Meister [6] take the form

K±
PM = K± + KV − K±

1 + 2β±
(
G± − Gv

eff

) (A1)

and

G±
PM = G± + B±

2

1 + 2β±B±
2

. (A2)

The Hashin-Shtrikman bounds themselves are then given
exactly by K±

HS ≡ K±
PM and G±

HS ≡ G±
PM. Here KV is the Voigt

average of bulk modulus, and the remaining constants are
defined carefully in Appendix B. Definitions of Gv

eff depend
specifically on the crystal symmetry, and examples will be
provided later in this Appendix.

It is worthwhile noting that two additional quantities that
essentially always play a role in the Hashin-Shtrikman bounds
and also in the self-consistency conditions are the quantities
4G±/3 and the combinations:

ζ± ≡ G±(9K± + 8G±)

6(K± + 2G±)
. (A3)

These quantities have been shown by Hill [13], Willis [12], and
others (including Olson and Avellaneda [18]) to be important
factors specifically for comparison materials having spherical
shapes. Such spherical shapes are the ones typically assumed,

whether explicitly or implicitly, in such work on polycrystals.
The source of these contributions can probably be most easily
understood by considering Eshelby’s work [19] on elasticity
of composites containing ellipsoids. In such cases, it is again
exactly such factors that play the same type of role in the
formulas for effective elastic constants [17]. If the comparison
materials have other shapes, then other combinations [20] of
constants can come into play, but the spherical shapes have
been the only ones usually considered for polycrystal studies
to date.

Parameters α± and β± that appear repeatedly in the PMW
(Peselnick-Meister-Watt) works [6,7] can be related to the
Eshelby results by rewriting them in the form

− 1

α±
= K± + 4G±/3 (A4)

and

− 1

2β±
= G± + ζ±. (A5)

Another combination of these two that also frequently appears
in the formulas is

γ± = α± − 3β±
9

. (A6)

The reason for pointing out this similarity across the
different applications is that the resulting rather complicated
formulas often collapse in unexpectedly simple ways if we
look for formulas of the right type. For example, the Hashin-
Shtrikman bounds for bulk modulus found by PMW can be
rewritten as

K±
PM = KV

(
Gr

eff + ζ±
)

Gv
eff + ζ±

, (A7)

which is valid for hexagonal, tetragonal, and also trigonal (not
otherwise considered here) crystal structures. The quantities
Gv

eff (Gr
eff) are the uniaxial shear energies per unit volume

for a unit applied shear strain (shear stress), whose main
compressive strain (stress) is applied to the grains along
their axes of symmetry (also see Berryman [17] for more
discussion). (Note that cubic symmetry is special in this regard,
since it has a well-defined bulk modulus—so neither bounds
nor estimates are required for bulk modulus in this case.)
Similarly, if we add ζ± to both sides of (A2), then we find
that this result can be simplified to read

1

G±
PM + ζ±

= 1 − B±
2 /(G± + ζ±)

G± + ζ±
, (A8)

which is valid for the same three crystal symmetries. After
determination of the B±

2 factors, these results imply for
hexagonal crystals that

1

G±
hex + ζ±

= 1

5

[
1 − α±(KV − K±)

Gv
eff + ζ± + α±

2β±
(KV − K±)

+ 2

c44 + ζ±
+ 2

c66 + ζ±

]
, (A9)
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where Gv
eff = (c11 + c33 − 2c13 − c66)/3. For tetragonal crys-

tals, we have

1

G±
tetr + ζ±

= 1

5

[
1 − α±(KV − K±)

Gv
eff + ζ± + α±

2β±
(KV − K±)

+ 1

μ3 + ζ±
+ 2

c44 + ζ±
+ 1

c66 + ζ±

]
, (A10)

where μ3 ≡ (c11 − c12)/2, and Gv
eff = (c11 + 2c33 + c12 −

4c13)/6. And similarly, for polycrystals of cubics, we have

that

1

G±
cub + ζ±

= 1

5

[
2

Gv
eff + ζ±

+ 3

c44 + ζ±

]
, (A11)

where Gv
eff = μ3 = (c11 − c12)/2.

For the main results of the present paper, we also need the
formulas for the shear modulus of orthorhombic media. The
general forms shown in (A2) and especially (A8) hold without
change for orthorhombic media, but the formula for the main
factor B±

2 for shear modulus bounds and estimates is now
given by

15B±
2 = a± − b± + β±(2d± − 2c± − e±) + 3γ±(d± − c± + e±) + α±β±�±

1 − a±β± − 9γ±(KV − K±) + D±

+ 3(G± + ζ±)2

(
3

G± + ζ±
− 1

c44 + ζ±
− 1

c55 + ζ±
− 1

c66 + ζ±

)
.

(A12)

The constants α±, β±, and γ±, appearing here, were defined
earlier in (A4), (A5), and (A6). The term D± is given by

D± = β±(β± + 2γ±(c± − d±) − 2e±β±γ± − α±β2
±�±
3

.

(A13)

The Voigt average of the bulk modulus is

KV = 1
9 [c11 + c22 + c33 + 2(c12 + c23 + c13)]. (A14)

Similarly, the Voigt average of the shear modulus is

GV = 1
15 [c11 + c22 + c33 − c12 − c23 − c13

+ 3(c44 + c55 + c66)]. (A15)

For completeness, we also note that the corresponding Reuss
averages [21] for orthorhombic crystals are determined by

1

KR

= (S11 + S22 + S33) + 2(S23 + S31 + S12) (A16)

and

15

GR

= 4 (S11 + S22 + S33) − 4 (S23 + S31 + S12)

+ 3 (S44 + S55 + S66) , (A17)

where the Sij ’s are the compliance matrix elements, related to
the stiffness matrix elements by the matrix equation S = C−1.

Some of these constants are defined in terms of the
comparison matrices X± having matrix elements:

X±
11 = c11 − K± − 4

3G±, X±
12 = c12 − K± + 2

3G±,

X±
22 = c22 − K± − 4

3G±, X±
13 = c13 − K± + 2

3G±, (A18)

X±
33 = c33 − K± − 4

3G±, X±
23 = c23 − K± + 2

3G±.

Then the determinant of this matrix is given by

�± ≡ det (X±) = X±
11X

±
22X

±
33 + 2X±

12X
±
23X

±
13 − X±

11(X±
23)2

−X±
22(X±

13)2 − X±
33(X±

12)2. (A19)

The remaining constants appearing in (A12) are given by

a± = X±
11 + X±

22 + X±
33, b± = X±

12 + X±
23 + X±

13,

c± = X±
11X

±
22 + X±

22X
±
33 + X±

33X
±
11,

d± = (X±
12)2 + (X±

23)2 + (X±
13)2, (A20)

e± = X±
12X

±
13 + X±

13X
±
23 + X±

23X
±
13

−X±
11X

±
23 − X±

22X
±
13 − X±

33X
±
12.

[Notational clarification: The symbol ± always appears here
as a subscript for scalar quantities, except for the scalar
Hashin-Shtrikman bounds themselves, where the bound label
is used as a subscript. The symbol ± appears as a super-
script for all quantities that are themselves matrix elements
(therefore having additional subscripts), and for quantities
that are combinations only of such matrix elements. For scalar
quantities that are themselves combinations of scalars and also
quantities derived from matrix elements, the subscript version
is again used—except as already noted for the scalar bounds
themselves.]

The pertinent conditions on the matrix elements of X±
come from the requirement of either positive semidefiniteness
or negative semidefiniteness. (Positive or negative definiteness
implies that zero is never attained; positive or negative semidef-
initeness means that zero limiting values are permitted.)
These requirements mean that all the principal minors of
the determinant �± must be either simultaneously positive
semidefinite, or simultaneously negative semidefinite. Thus,
the requirements are for positive semidefiniteness are

X+
11 � 0, X+

11X
+
22 − (X+

12)2 � 0,

X+
22 � 0, X+

22X
+
33 − (X+

23)2 � 0, (A21)

X+
33 � 0, X+

33X
+
11 − (X+

13)2 � 0,

and �+ � 0. For negative semidefiniteness, all the superscript
pluses are replaced by superscript minuses, and the � symbols
are replaced by �’s.
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APPENDIX B: TWO EFFECTIVE SHEAR MODULI FOR
COMPARISON MATERIALS IN GRANULAR

POLYCRYSTALS OF ORTHORHOMBIC ELASTIC
MATERIALS

Elastic materials generally have six modes (which we treat
as eigenvalues in this discussion), one of which may be
viewed approximately as a bulk mode (i.e., an eigenvector
whose elastic response is dominated by pure compression or
extension, but may still have a small component of shear),
while the other five modes are mostly dominated by shearing
responses of the elastic system. The Voigt and Reuss averages
for overall shear response for orthorhombic media may be
defined by

GV = 1
5

[
2Gv

eff + c44 + c55 + c66
]

(B1)

and

1

GR

= 1

5

[
2

Gr
eff

+ 1

c44
+ 1

c55
+ 1

c66

]
. (B2)

We are using these forms as the first step in a process of defining
two effective composite shear constants for polycrystals of
orthorhombics:

Gv
eff ≡ 1

6 [c11 + c22 + c33 − c12 − c13 − c23] (B3)

and

3

Gr
eff

≡ 2



[c11(c22 + c33) + c22(c33 + c13) + c33(c11 + c12)

− c13(c13 + c12) − c12(c12 + c23) − c23(c23 + c13)],

(B4)

where the factor 
 is given by


 = c11c22c33 + 2c12c23c13 − c11c
2
23 − c22c

2
13 − c33c

2
12,

(B5)

which is the pertinent determinant of the upper left 3 × 3
segment of the elastic constant matrix. Equations (B1) and
(B2) are exactly the usual definitions of the Voigt [2] and
Reuss [3] averages for shear if we substitute the expressions
(B3) and (B4) into these formulas. Formula (B4) could also
be written more simply in terms of compliances, but to do so
requires inversion of the stiffness matrix, and this has already
been accomplished explicitly by using the expressions in the
present equation. We will follow Watt [7,8] in this regard,
while trying to simplify the notation somewhat as we go by
introducing these two useful combinations of shear stiffness
constants: Gv

eff and Gr
eff.

The two constants are not, however, our ultimate goal in this
process. Instead they provide an intermediate step in the task
of finding useful comparison values for the Hashin-Shtrikman
bounding process. From the structure of Eqs. (B1) and (B2),
we see that these two constants each play the role of a different
type of average of two other shear moduli. We will call these
two moduli x1 and x2. They are not intended to represent
typical shear moduli, and should not be interpreted as such.
Instead, they are helpful constructs that can be used in the
process of determining Hashin-Shtrikman bounds on shear
modulus for the polycrystal systems of interest. We need them,
because without them we are not able to explore the full region

that should be spanned by comparison materials. These two
quantities are defined by the following statements:

2Gv
eff ≡ x1 + x2, (B6)

while

2

Gr
eff

≡ 1

x1
+ 1

x2
. (B7)

Thus, we are treating Gv
eff and Gr

eff, respectively, as the Voigt
and Reuss averages of the two unknown shear-like quantities x1

and x2. We will call these two constants “effective comparison
shear moduli.” We find that their values are significantly
different from each other and also from the two quantities from
which they are derived in all cases considered here (see the
examples in Tables II, IV–VIII). Thus, they provide usefully
different measures of the possible range of shear modulus
to be explored in the process of locating the boundaries
needed ultimately to determine the Hashin-Shtrikman bounds
themselves. This feature helps to expand the search region for
the optimal Hashin-Shtrikman bounds.

To determine the values of x1 and x2, we also need to solve
the quadratic equation found by multiplying (B6) and (B7)
together, giving

4
Gv

eff

Gr
eff

= 2 + x1

x2
+ x2

x1
. (B8)

Then, with the definitions R ≡ Gv
eff/Gr

eff and r12 ≡ x1/x2,
while also defining the quantity C ≡ 2(2R − 1), we have

r12 = C ±
√

C2 − 1. (B9)

It is easy to see that R � 1 always holds and also that C � 2,
so the argument of the radical is always non-negative, and
r12 � 0 for either choice of the sign in front of the radical
(since C �

√
C2 − 1). Thus, we have

x2 ≡ 2Gv
eff/(1 + r12) (B10)

and

x1 ≡ r12x2. (B11)

The roles of x1 and x2 are reversed by making different sign
choices in (B9), but we are interested in both these quantities,
so this freedom actually makes no difference to us. Examples
of the values determined this way are shown in all the tables
of examples (i.e., Tables II, IV–VIII).

As is discussed more fully in the main text, the values of x1

and x2 have been found to differ substantially from the values
of both Gr

eff and Gv
eff, thus providing more insight into the total

range of behaviors being experienced by the orthorhombic
system in the presence of applied shear stress.

APPENDIX C: SOURCES OF SINGLE-CRYSTAL ELASTIC
DATA

The elastic data for orthorhombic materials considered in
Tables I and II for aragonite, danburite, enstatite, forsterite,
and topaz were all taken from Bass [22]. The data for Rochelle
salt, sulfur, and α-uranium in Tables III and IV were also taken
from Bass [22]. The same values can also be found in Musgrave
[23] and Huntington [24]. The two examples of OsN2 having
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marcasite crystal structure considered in Tables III and IV were
the results of first-principles physics calculations using the
GGA (the generalized gradient) and LDA (the local-density)
approximations in work by Wang et al [25].

In three cases (Tables V, VI, and VII), the examples were
purposely chosen from among the cases studied previously by
the author [17]. These cases include tetragonal urea, for which
the data came from Fischer and Zarembowitch [26], cubic
copper, for which the data were taken from the original paper
by Hashin and Shtrikman [5], and hexagonal H2O ice, for
which the data were obtained from Simmons and Wang [27].

The data for methane hydrate (Table VIII) were taken from
Shimizu et al. [28].

APPENDIX D: SIGNIFICANCE OF SELF-CONSISTENT
ESTIMATES

There are two main issues concerning the worth of self-
consistent estimates of the overall elastic constants. The
first issue is whether or not any special significance should
be accorded such estimates, and in particular should we
presume that the self-consistent estimates are actually the best
possible estimates of the overall bulk and shear moduli of
the polycrystals studied here. The answer to this question
may not be universal, but the more general answer in our
present context is surely that the self-consistent estimates,
while good and definite estimators, should not be viewed as
the “true values” of the effective bulk and shear moduli of
such polycrystals. They are very reasonable estimates (lying
always between the known rigorous bounds—as will be shown
next), but should not be given any more special interpretation
than this. Indeed, if the self-consistent estimates were always
the true values, there would clearly be no practical reason
to study the bounding methods. However, by combining the
information contained in the self-consistent estimates and
the bounds, we have not only these estimates themselves,
but we can also put rigorous error bars around these esti-
mates using the bounds. In general, we expect that different
polycrystalline realizations of the same material may have a
range (though perhaps not a very wide range) of behavior
due to differences in the random microstructural arrangements
that have not been explicitly accounted for in these models.
There can be significant consequences of local ordering
that affect the overall response even through the resulting
polycrystal behavior nevertheless remains macroscopically
isotropic.

A second question concerning the significance of the self-
consistent estimators is whether or not they are actually unique,
and also the related question of whether or not they are in fact
guaranteed to lie between the rigorous bounds. The answers
to both these questions are yes they are unique, and yes they
always lie between the bounds [14,17].

To demonstrate these facts in a case that is simple enough to
analyze (but also easily generalized to the other cases studied in
this paper), we will now consider only simple cubic materials.
This choice is most convenient from the point of view of
simplifying the math, because polycrystals of grains of the
same cubic elastic materials all have uniquely defined average
bulk moduli, which are determined by the identity 3K =
c11 + 2c12. So all the bulk modulus bounds collapse to this

constant K value for polycrystals having well-bonded simple
cubic grains of the same type, and therefore need not be
analyzed further. To see how this works out in the equations,
note again that

K±
PM = KV

(
Gr

eff + ζ±
)

Gv
eff + ζ±

. (D1)

But since we always have KPM → KR as ζ → 0 and KPM →
KV as ζ → ∞, while KR = KV = K , we must also have
(which is easy to verify) that Gr

eff = Gv
eff = (c11 − c12)/2. So

the bulk modulus bounds and estimates all collapse to the same
constant K , while at the same time we have the shear modulus
bounds:

1

G±
PM + ζ±

= 1

5

[
2

Gv
eff + ζ±

+ 3

c44 + ζ±

]
, (D2)

where 0 � 3
2G− � ζ± ≡ G±(9K + 8G±)/6(K + 2G±) �

2
3G+ � ∞. The next-to-final inequality follows in the limit
when G+ → some large, but still finite value.

Now it is also known [12,17,19] that the self-consistent
shear modulus G∗ for simple cubic materials satisfies the cubic
equation:

8(G∗)3 + (9K + 4Gv
eff)(G

∗)2 − 3c44(K + 4Gv
eff)G

∗

− 6c44KGv
eff = 0. (D3)

In fact, it is straightforward to show that this result follows
from (D2) by replacing G± everywhere (including within the
definition of ζ±) by G∗. This cubic equation has three real
roots. Because the coefficient of (G∗)2 is positive while the
final constant term (independent of G∗) is negative, it follows
that these three eigenvalues cannot all have the same sign. The
final term also shows then that only one of the eigenvalues is
positive, while the other two are necessarily negative. Thus, it
is important to recognize that the only positive root is also the
only physically pertinent root of (D3), as well as being the one
consistent with (D2) for 0 � ζ± � ∞.

In particular, we can rearrange (D2) into the form

G±
PM = �(ζ±), (D4)

where

�(ζ±) ≡
[

1

5

(
2

Gv
eff + ζ±

+ 3

c44 + ζ±

)]−1

− ζ±. (D5)

This rearrangement is useful to us because

d

dζ
�(ζ ) = 6

25
[�(ζ ) + ζ ]2

(
1

Gv
eff + ζ

− 1

c44 + ζ

)2

� 0,

(D6)

and also because, as the argument ζ± goes to 0 or ∞, the results
are, respectively,

�(ζ−) →
[

1

5

(
2

Gv
eff

+ 3

c44

)]−1

≡ GR, as ζ− → 0, (D7)

and

�(ζ+) → 1

5

(
2Gv

eff + 3c44
) = GV , as ζ+ → ∞, (D8)
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according to the definitions given in (B2) and (B1), since here
c66 = c55 = c44.

Thus, for cubic symmetry, we find that the only pertinent
functional �(ζ ) is a monotonic function of its argument, and
ranges from the Reuss average GR for small arguments to
the Voigt average GV for large arguments. We can infer from
these facts that there exists one unique ζ corresponding to
each value of shear modulus G in the range GR � G � GV .

The equations already quoted therefore guarantee that there
exists a value of G = G∗ at which ζ (G∗) = ζ ∗. Proving this
kind of result in more general cases [12,29] is considerably
more difficult than for the cubic example because the resulting
polynomial can be of much higher order than 3. But never-
theless it is straightforward to check these facts numerically,
as has been done repeatedly in the examples presented in this
paper.

[1] J. F. Nye, Physical Properties of Crystals: Their Representation
by Tensors and Matrices (Oxford Science Publications, Oxford,
1985).

[2] W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928),
p. 962.

[3] A. Reuss, Z. Angew. Math. Mech. 9, 55 (1929).
[4] R. Hill, Proc. Phys. Soc. London A 65, 349 (1951).
[5] Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 10, 343

(1962).
[6] L. Peselnick and R. Meister, J. Appl. Phys. 36, 2879

(1965).
[7] J. P. Watt and L. Peselnick, J. Appl. Phys. 51, 1525 (1980).
[8] J. P. Watt, J. Appl. Phys. 50, 6290 (1979).
[9] P. Soven, Phys. Rev. 156, 809 (1967).

[10] D. W. Taylor, Phys. Rev. 156, 1017 (1967).
[11] J. E. Gubernatis and J. A. Krumhansl, J. Appl. Phys. 46, 1875

(1975).
[12] J. R. Willis, in Advances in Applied Mechanics, edited by C.-S.

Yih (Academic, New York, 1981), p. 1.
[13] R. Hill, J. Mech. Phys. Solids 13, 89 (1965).
[14] T. R. Middya and A. N. Basu, J. Appl. Phys. 59, 2368 (1986).
[15] L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Butter-

worth Heineman, Oxford, 1986), p. 32.
[16] T. C. T. Ting, Anisotropic Elasticity: Theory and Applications

(Oxford University Press, New York, 1996), pp. 53–56.

[17] J. G. Berryman, J. Mech. Phys. Solids 53, 2141 (2005).
[18] T. Olson and M. Avellaneda, J. Appl. Phys. 71, 4455 (1992).
[19] J. D. Eshelby, Proc. R. Soc. London A 241, 376 (1957).
[20] J. G. Berryman, J. Acoust. Soc. Am. 68, 1820 (1980).
[21] R. S. Carmichael, Practical Handbook of Physical Properties of

Rocks and Minerals (CRC, Boca Raton, Florida, 1989), p. 432.
[22] J. D. Bass, in Mineral Physics and Crystallography: A Handbook

of Physical Constants, edited by T. J. Ahrens (American
Geophysical Union, Washington, D. C., 1998), p. 45.

[23] M. J. P. Musgrave, Crystal Acoustics: Introduction to the Study
of Elastic Waves and Vibrations in Crystals (Acoustical Society
of America, AIP, New York, 2003), p. 281.

[24] H. B. Huntington, in Solid State Physics Vol. 7, edited by F. Seitz
and D. Turnbull (Academic, New York, 1958), pp. 213–351.

[25] Y. X. Wang, M. Arai, and T. Sasaki, Appl. Phys. Lett. 90, 061922
(2007).

[26] M. G. Fischer and J. Zarembowitch, C. R. Acad. Sci. Paris 270,
852 (1970).

[27] G. Simmons and H. Wang, Single Crystal Elastic Constants
and Calculated Aggregate Properties: A Handbook (MIT Press,
Cambridge, Massachusetts, 1971), p. 136.

[28] H. Shimizu, T. Kumazaki, T. Kume, and S. Sasaki, Phys. Rev. B
65, 212102 (2002).

[29] L. J. Walpole, in Advances in Applied Mechanics, edited by C.-S.
Yih (Academic, New York, 1981), p. 169.

046130-11

http://dx.doi.org/10.1002/zamm.19290090104
http://dx.doi.org/10.1088/0370-1298/65/5/307
http://dx.doi.org/10.1016/0022-5096(62)90005-4
http://dx.doi.org/10.1016/0022-5096(62)90005-4
http://dx.doi.org/10.1063/1.1714598
http://dx.doi.org/10.1063/1.1714598
http://dx.doi.org/10.1063/1.327804
http://dx.doi.org/10.1063/1.325768
http://dx.doi.org/10.1103/PhysRev.156.809
http://dx.doi.org/10.1103/PhysRev.156.1017
http://dx.doi.org/10.1063/1.321884
http://dx.doi.org/10.1063/1.321884
http://dx.doi.org/10.1016/0022-5096(65)90023-2
http://dx.doi.org/10.1063/1.336336
http://dx.doi.org/10.1016/j.jmps.2005.05.004
http://dx.doi.org/10.1063/1.350788
http://dx.doi.org/10.1098/rspa.1957.0133
http://dx.doi.org/10.1121/1.385172
http://dx.doi.org/10.1063/1.2472540
http://dx.doi.org/10.1063/1.2472540
http://dx.doi.org/10.1103/PhysRevB.65.212102
http://dx.doi.org/10.1103/PhysRevB.65.212102

