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The modeling of epidemic-like processes on random networks has received considerable attention in recent
years. While these processes are inherently stochastic, most previous work has been focused on deterministic
models that ignore important fluctuations that may persist even in the infinite network size limit. In a previous
paper, for a class of epidemic and rumor processes, we derived approximate models for the full probability
distribution of the final size of the epidemic, as opposed to only mean values. In this paper we examine via
direct simulations the adequacy of the approximate model to describe stochastic epidemics and rumors on
several random network topologies: homogeneous networks, Erdös-Rényi (ER) random graphs, Barabasi-Albert
scale-free networks, and random geometric graphs. We find that the approximate model is reasonably accurate
in predicting the probability of spread. However, the position of the threshold and the conditional mean of
the final size for processes near the threshold are not well described by the approximate model even in the
case of homogeneous networks. We attribute this failure to the presence of other structural properties beyond
degree-degree correlations, and in particular clustering, which are present in any finite network but are not
incorporated in the approximate model. In order to test this “hypothesis” we perform additional simulations on
a set of ER random graphs where degree-degree correlations and clustering are separately and independently
introduced using recently proposed algorithms from the literature. Our results show that even strong degree-degree
correlations have only weak effects on the position of the threshold and the conditional mean of the final size. On
the other hand, the introduction of clustering greatly affects both the position of the threshold and the conditional
mean. Similar analysis for the Barabasi-Albert scale-free network confirms the significance of clustering on the
dynamics of rumor spread. For this network, though, with its highly skewed degree distribution, the addition of
positive correlation had a much stronger effect on the final size distribution than was found for the simple random
graph.
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I. INTRODUCTION

The spread of infection is highly topical, with recent
examples of epidemic or pandemic outbreaks including the
“swine flu” outbreak of 2009, SARS in 2003, and HIV, which
was first recognized in 1981. There are many earlier examples,
including “black death” (plague) in the fourteenth century,
and the 1918–19 influenza pandemic, in both of which huge
numbers of deaths occurred. Epidemics in animals can have
disastrous effects too, the UK 2001 foot and mouth epidemic
being one such example. Mathematical models of the spread of
infection have a major role to play in understanding the most
important determinants of spread and investigating the effects
of different control strategies without the need for empirical
implementation ( [1,2]). Many otherwise endemic infections
are kept under control by the use of vaccination strategies,
where the targets for the vaccinated proportion necessary to
confer herd immunity are determined from epidemic models.
Destructive viruses affect not only humans and other animals
but also computers. On the other hand, viral marketing can be
used to increase brand awareness and for fundraising purposes
via social networks. Gossip algorithms are used to spread
large amounts of information over the Internet ( [3–5]). In
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such instances the aim is to maximize spread, rather than to
limit it.

This paper is concerned with the effect of network structure
on the spread of infection or information. The basic stochastic
epidemic model for the spread of infection is the general
stochastic epidemic [or Susceptible, Infected, Removed (SIR)]
model; see, for example, Bailey [6] or Andersson and Britton
[7]. In this model, individuals in a population of fixed size
n are classified as being in one of three states: susceptible
to infection, infective (that is, infected and infectious), and
removed. We denote the numbers in these states at time
t by X(t),Y (t), and Z(t), where X(t) + Y (t) + Z(t) = n.
Under a homogeneously mixing assumption, new infections
occur at a rate proportional to the product X(t)Y (t), and
these individuals are instantly infective. We may assume
that each infective makes potentially infectious contacts at
a rate β, choosing the contacted individual independently and
uniformly over the population, so that the total rate at which
infections occur is βX(t)Y (t)/n (there is no loss of generality
in allowing “self-contacts”). Each infective independently
remains infectious for an identically distributed random time,
assumed here to have an exponential distribution with mean
1/δ, so that infectives cease to be infectious and transfer to the
removed state at a total rate δY (t). The removed individuals
may be recovered and immune from reinfection, or perhaps
quarantined and no longer transmitting infection. There are
many generalizations of this basic epidemic model to allow for
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population demography and age structure, stages of infection
such as a latent period between infection and infectiousness,
and population heterogeneity (see, for example, Ref. [7]), but
these will not be discussed here.

The underlying model for the spread of information that
we consider is a Maki-Thompson rumor model [8, Sec. 5.1],
which has a very similar structure. Again there is a fixed
population of size n, subdivided now into ignorants, spread-
ers, and stiflers, corresponding respectively to susceptibles,
infectives, and removed individuals. As with the SIR model,
a homogeneous mixing assumption means that ignorants
become spreaders at a total rate βX(t)Y (t)/n, while spread-
ers spontaneously stop spreading the rumor and become
stiflers independently at a per capita rate δ (this transition is
sometimes called “forgetting,” although the term is misleading
in that such spreaders do not return to the ignorant state).
In addition, though, the model includes an extra interaction
in that, with probability p, a spreader contacting either
another spreader or a stifler (at rate βY (t)[Y (t) + Z(t)]/n) is
stifled, thereby no longer spreading the rumor and themselves
becoming a stifler. It follows immediately that the epidemic
model is the special case of the rumor model in which p = 0. In
both cases, the interest is in properties such as the probability
that the infection or information will spread substantially, the
final number infected or informed and, in particular, in the
existence of any thresholds for such spread. Thresholds are
especially relevant for control purposes, and theoretical results
are available for large populations in the limit as n → ∞.

These epidemic and rumor models assume that the popula-
tion mixes homogeneously, an assumption that is unlikely to
be realistic, even approximately, if n is at all large. One way of
allowing for population structure, widely used in the context
of epidemic models, is via the development of metapopulation
models [9,10]. In such models the population is divided into
groups (sometimes referred to as households), and individuals
mix homogeneously within their own household, and again
homogeneously but at a lower rate with individuals chosen at
random from the whole population. In a recent paper [11], this
model is generalized so that the households are located on the
vertices of a network, with contacts only between connected
neighbors. Interest then focuses on the limiting behavior of the
epidemic when the household size stays fixed but the number
of households goes to infinity. Alternatively, the population
can be partitioned into classes with specified probabilities that
an individual in a particular class will contact an individual in
each other class, that individual then being chosen at random.
This type of model is used particularly to allow for population
heterogeneity [12], but the groups can also be used as a
surrogate for spatial structure. For the latter, rather than having
a fixed partition, it is more realistic to allow the neighborhoods
of different population members to overlap [13].

In this paper, however, we will represent heterogeneous
mixing by means of a network, with individuals able only
to transmit information or infection to those to whom they
are connected by edges of the network. This was investigated
for small world networks by Ref. [14]. Here we will build
on the earlier work of Isham et al. [15], using a range of
random networks (to be described briefly in the next section)
including homogeneous networks, simple random graphs,
Barabasi-Albert (scale-free) networks, and geometric random

graphs, to investigate the effect of different network structures,
and to determine which network properties are most important
in determining the spread of infection or information. In
Sec. II, we describe the rumor and network models to be
investigated. In Sec. III, we first investigate the adequacy of an
approximate model as an approximation to the full stochastic
rumor model. Then, in Sec. IV, specific results on the effects of
network structure on the transmission of rumors are presented.
Finally, a general discussion of the issues involved and broad
conclusions are given in Sec. V.

II. RUMOR MODELS ON NETWORKS

A homogeneous network is one where all the nodes have
the same degree, k, say (the number of nodes—termed
neighbors—to which a node is directly connected by edges).
Models for a homogeneously mixing population, such as
the SIR and rumor models described above, can be thought
of as taking place on a completely connected graph, that
is, a homogeneous network of degree n − 1. In such cases,
each node has the same total contact rate, denoted β above,
with contacts to each neighboring node (chosen at random)
taking place at rate β/n (since self-contacts were allowed
there, without loss of generality). In this paper, where in
general the networks are not homogeneous and the nodes
have varying degrees, it is preferable to assume that each
node contacts each neighboring node independently at rate
λ, and self-contacts are not allowed. Thus, a node of degree
k makes potentially infective contacts at a total rate λk, and
higher-degree nodes will not only be more likely to become
infected as they have more neighbors but also have the potential
for greater transmission through a greater total rate of contact
with their neighbors. This is often a realistic assumption, and,
in particular, a degree-dependent rate of transmission will
occur in simultaneous broadcasts of information.

In an earlier paper [15], we began an investigation of the
stochastic spread of epidemics and rumors on networks by
focusing on a stochastic approximation to the Maki-Thompson
model that had recently been discussed, in a deterministic
setting, by Nekovee et al. [16] and looked especially at the
effects of network size and structure. This approximation takes
into account the structure of the underlying network at the
level of the degree-degree correlation function, but ignores the
stochastic conditional dependence of the states of neighboring
nodes given their degrees. Using embedded Markov chain
techniques, a set of equations were derived for the final size
of the epidemic or rumor on a homogeneous network that
could be solved numerically. The resulting distribution was
compared with the solution of the corresponding mean-field
deterministic model as well as with the full Maki-Thompson
model. Further investigation shows that it is possible to
extend the embedded Markov chain approach to other net-
works. However, the enumeration of the set of equations and
their boundary conditions rapidly becomes infeasible if the
support of the degree distribution consists of more than a
few values [17]. In addition, the time taken to solve these
equations numerically increases very rapidly, in contrast to
the speed with which large numbers of simulations of the
full stochastic model can be generated with arbitrary degree
distributions.
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The advantage of having a numerically exact form for
the final size distribution is that it is straightforward to
determine the threshold at which the distribution changes
shape from monotonically decreasing (unimodal, when the
infection or information dies out rapidly from a small number
of initial cases) to a bimodal form that indicates that, with
nonzero probability, a substantial spread will occur. For the
deterministic rumor model on a homogeneous network, the
condition for rumor spread is that R0 = (1 + p)/(ψ + p) > 1,
where ψ = δ/(λk), that is, that ψ < 1 [16]. Note that, when
δ = 0, such spread always occurs; stifling alone is never
sufficient to control the outbreak. Correspondingly, in the
asymptotic case, for the stochastic approximation model on
a homogeneous network, it is necessary that δ � λk to control
the spread of the rumor, regardless of the value of p. Isham
et al. [15] showed that the threshold value of ψ is lower than
that for the deterministic model; i.e., less “forgetting” is needed
to control the outbreak if the other parameters are fixed, as the
stochastic fluctuations increase the chance of an extinction. In
addition, the difference between the two thresholds decreases
with the network size n, apparently following a n−1/3 behavior.
It was also shown that fluctuations in the final size of the
epidemic are retained as the network size increases so that,
even in a limiting infinite size case, the deterministic model
greatly overestimates the mean of the final size of the epidemic.
Isham et al. [15] then compared the thresholds (obtained
by Monte Carlo simulation) for the full stochastic model
on a homogeneous network, including density correlations at
neighboring nodes, with those for the approximating stochastic
model and showed that the latter can reproduce the exact
simulation results with great accuracy. Finally, further Monte
Carlo simulations of the full stochastic model were used in
a preliminary exploration of the effects of network size and
structure on the final size distribution.

In this paper we present further results to investigate
the parts of the parameter space in which the stochastic
approximation model provides a useful alternative to the exact
rumor model on a homogeneous network. We also give a much
more thorough discussion of the effects of network structure on
the final size distribution. We begin by giving brief definitions
of the rumor models and networks to be considered.

A. The random network models

One of the simplest random graphs is the so-called simple
(Erdös-Rényi) random graph [18], in which each pair of
the n nodes is independently connected by an edge with
probability π , so that the degree of each node has a binomial
distribution with index n − 1 and probability π ; the degree
of a node is the number of nodes to which it is connected
by an edge ( i.e., its number of neighbors). For large n,
the degree distribution is approximately Poisson, with mean
nπ . With this construction, the degrees of distinct nodes are
dependent but are asymptotically independent. For a general
degree distribution, the Molloy-Reed algorithm ( [19,20]) can
be used to construct an uncorrelated graph. The idea is that n

independent degrees are first generated, specifying the number
of “arms” emanating from the nodes, and then these arms
are joined at random to form edges (resampling may be
necessary to ensure that the total number of arms is even), and

multiple edges are not allowed. For such graphs, the degrees
are uncorrelated; for neighboring nodes the correlation is zero
once the common edge is removed.

Various degree distributions are of interest, in addition to
the Poisson distribution. If an overdispersed distribution (in
which the variance exceeds the mean) is required, the negative
binomial distribution (which can be thought of as a Poisson
distribution in which the mean is itself a gamma random
variable) is an obvious possibility. The degree distributions
of empirical networks are often shown to have a power-law
tail and may have moments that are formally infinite. Such
distributions are “scale-free” and are characterized by the
presence of “hubs,” where a few nodes have very high degrees
while most nodes have relatively low degrees. One such
example is the Yule-Simon distribution [21] in which the
probability of a degree d has the form ρB(d,ρ + 1) ∝ d−(ρ+1)

as d → ∞,(d = 1,2, . . . ,ρ > 0) where B is the beta function.
This distribution was originally put forward as the equilibrium
distribution of a preferential attachment process in the context
of a biological application, and Simon [21] gives an example
of a model for writing a book where words are added one at
a time. At each step, with a fixed probability a new word is
added, while with the complementary probability, the word
is sampled from the existing words in the book in proportion
to their current frequencies. The Molloy-Reed algorithm can
then be used to generate an uncorrelated graph with this degree
distribution.

Another construction for network growth that gives a
scale-free degree distribution is due to Barabasi and Albert
[22]. There are several variants of the algorithm. The version
used in this paper starts with a small number of unconnected
nodes and then adds additional nodes one at a time. These
nodes each come with a fixed number of edges, m say, that are
attached randomly to the existing nodes with probabilities that
are in proportion to the current degrees of those nodes. Multiple
edges are not permitted, and we start with m unconnected
nodes at outset to ensure the network is connected. The
resulting graph is asymptotically uncorrelated, and the density
of the degree distribution behaves approximately as d−3 as
d → ∞, although this can be modified by generalizing the
algorithm.

The final random graph that we consider in this paper
is the random geometric graph [23]. The starting point for
this construction is a spatial homogeneous Poisson process.
The neighbors of each node are defined to be those within a
fixed critical distance, and neighboring nodes are connected
by edges to give the resulting graph, in which the original
spatial distances are not retained. The properties of the
random geometric graph are closely linked to those of the
spatial Poisson process. As well as having a Poisson degree
distribution, it is a matter of simple geometry to show
that the correlation is 1 − 3

√
3/(4π ) � 0.59. Graphs with

a high degree of positive correlation between neighboring
nodes appear highly clustered, and the words are often used
interchangeably. However, the cluster coefficient measures
the extent to which the graph is triangulated and is the
proportion of connected triples of nodes that form a triangle.
It follows from the conditional independence property of the
Poisson process that, for a random geometric graph, the cluster
coefficient and the degree correlation are identical, both being
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equal to the average (over r) area of overlap of two unit discs
whose centers are a distance r apart (0 < r < 1).

B. The stochastic rumor models

The stochastic rumor model considered in this paper is an
extension of the Maki-Thomson model described in Sec. I for a
homogeneous network. The properties of the rumor dynamics
on the network will be taken conditionally on the realization
of the network, which is generated from one of the random
mechanisms described above and then held fixed. At time t ,
each node is in one of three states: ignorant, spreader, or stifler.
Each spreader contacts each of its neighbors independently in
a Poisson process of rate λ, so that λ represents the mean
number of contacts per neighbor per unit time. At a contact,
two possible transitions may occur: If the node contacted
is an ignorant, then that node itself becomes a spreader; if
the contacted node is another spreader or a stifler then, with
probability p, the node initiating the contact becomes a stifler;
otherwise no transition occurs. In addition, spreaders may
become stiflers spontaneously at a rate δ. If p = 0, the model
corresponds to an SIR epidemic model on the network. At
time t = 0, all nodes are initially ignorant, and a single node
is chosen at random to be a spreader.

The approximate model [15] is a Markov model in which
the state is given by the instantaneous numbers of ignorant,
spreader, and stifler nodes of degree k, for each possible
k. Thus, suppose that, at time t , there are nk nodes of
degree k and that of these Xk, Yk , and Zk are, respectively,
ignorants, spreaders and stiflers (where the dependence on time
is omitted and Zk = nk − Xk − Yk). We denote the network
degree-degree correlation function by

pj k = Prob(neighbor node has degree k |
index node has degree j ).

For example, in an uncorrelated graph, pj k ∝ kpk , where
{pk} is the marginal degree distribution. Nekovee et al. [16]
and Isham et al. [15] discuss an analysis of this model in which
the influence of the network structure is wholly encapsulated
by the pj k matrix. Specifically, the total rate of transitions
from (Xk,Yk) to (Xk − 1,Yk + 1) is approximated by

λkXk

∑
j

pk jYj/nj . (1)

Effectively, the probability that, at time t , a node is a spreader
given that it has degree j and is the neighbor of an ignorant
node of degree k, is approximated by the unconditional
probability that the degree j node is a spreader. Thus the
dependence of the rumor status of the degree j node on that
of its neighbor is ignored. A similar approximation is made
with regard to stifling so that the total rate of transitions from
(Xk,Yk) to (Xk,Yk − 1) is

Yk

[
δ + λpk

∑
j

pk j (nj − Xj )/nj

]
. (2)

In the next section, we will discuss the adequacy of this
approximate model to the full rumor model, before going on
in the following section to investigate the effects of population

size and network structure on the properties of the full model.
Thresholds for rumor spread and the final size distribution will
be of particular interest.

III. COMPARISON OF THE FULL AND APPROXIMATE
RUMOR MODELS

Earlier papers [15,24] showed a good correspondence
between the final size distribution for the approximate model
and that for the full stochastic model. However, only rumors
spreading on homogeneous networks were considered, and
only limited parameter sets were used. These corresponded to
widespread transmission of the rumor, and the approximation
is expected to work well in this case. In the approximate
model, for example, an ignorant node can be infected even
if all its neighbors are stiflers, but this scenario is unlikely to
arise if the contact rate λ is sufficiently high. If the dynamics
are around the threshold level, the approximation is likely
to have a much more dramatic effect. Similarly, the network
structure is highly relevant. Ignorant nodes with many neigh-
bors are unlikely to get in the position of being isolated from
infection by stifler neighbors, whereas random effects may
easily result in the isolation of those with only one or two
neighbors. For all network types, the approximate model is
a better approximation to the full model as the mean degree
increases.

In this section we discuss some results from a simulation
study used to explore the differences between the approximate
and full models, and therefore concentrate on effects around
the threshold level. In each case, we consider a network of
1000 nodes, as being large enough to illustrate the main effects
whilst still keeping the computing time reasonable. The four
network structures considered are the homogeneous graph,
the simple random graph, the Barabási-Albert graph, and
the random geometric graph. The homogeneous, simple, and
random geometric graphs were created using the algorithms of
the R-package Igraph [25], while the Barabási-Albert graphs
were created using the algorithm described in Sec. II A. The
first three structures are approximately uncorrelated, whereas
the random geometric network is correlated. For the results
reported here, the mean of the degree distribution for each
network is fixed at 6, the contact rate is λ = 1, and the
stifling probability is p = 0.1. The “forgetting” parameter δ

ranges from 0 to 8, so that the parameter ψ = δ/(λk), where
k now denotes the mean degree of the nodes, varies from
0 to 4/3 (where, for the deterministic approximation to the
model, ψ < 1 is required for rumor spread). The final size
distributions are averaged first over 1000 simulations of the
rumor dynamics on a fixed network, with the initial spreader
chosen independently and at random for each simulation,
and then over the distributions obtained by using the three
independent simulations of the random network (i.e., 3000
simulations in all). Averaging over the network provides
some protection against the selection of an atypical network
configuration.

In Fig. 1, results are shown for a homogeneous random
graph with k = 6. Note that although frequencies of up to
3000 are possible, the scale is capped at 1000 to show the
patterns of the smaller frequencies more clearly. As can be
seen, for both the full and approximate stochastic models,

046128-4



SPREAD OF INFORMATION AND INFECTION ON FINITE . . . PHYSICAL REVIEW E 83, 046128 (2011)

0

500

1000

0 25 50 75 100

δ = 0

p_sp =  1
mean_sp =  100 %

0

500

1000

0 25 50 75 100

δ = 1

p_sp =  0.83
mean_sp =  98 %

0

500

1000

0 25 50 75 100

δ = 2

p_sp =  0.65
mean_sp =  90 %

0

500

1000

0 25 50 75 100

δ = 3

p_sp =  0.5
mean_sp =  73 %

0

500

1000

0 25 50 75 100

δ = 4

p_sp =  0.38
mean_sp =  47 %

0

500

1000

0 25 50 75 100

δ = 5

p_sp =  0.26
mean_sp =  19 %

0

500

1000

0 25 50 75 100

δ = 6

p_sp =  0.17
mean_sp =  7 %

0

500

1000

0 25 50 75 100

δ = 7

p_sp =  0.12
mean_sp =  3 %

0

500

1000

0 25 50 75 100

δ = 8

p_sp =  0.08
mean_sp =  2 %

Final size

F
re

qu
en

cy

(a) Approximate model

0

500

1000

0 25 50 75 100

δ = 0

p_sp =  1
mean_sp =  100 %

0

500

1000

0 25 50 75 100

δ = 1

p_sp =  0.8
mean_sp =  95 %

0

500

1000

0 25 50 75 100

δ = 2

p_sp =  0.6
mean_sp =  73 %

0

500

1000

0 25 50 75 100

δ = 3

p_sp =  0.39
mean_sp =  29 %

0

500

1000

0 25 50 75 100

δ = 4

p_sp =  0.24
mean_sp =  5 %

0

500

1000

0 25 50 75 100

δ = 5

p_sp =  0.14
mean_sp =  3 %

0

500

1000

0 25 50 75 100

δ = 6

p_sp =  0.09
mean_sp =  2 %

0

500

1000

0 25 50 75 100

δ = 7

p_sp =  0.05
mean_sp =  2 %

0

500

1000

0 25 50 75 100

δ = 8

p_sp =  0.03
mean_sp =  2 %

Final size

F
re

qu
en

cy

(b) Full model

FIG. 1. (Color online) Comparison of final size distributions as
percentages of the total population for the homogeneous network
using the approximate and full models on a network with 1000
nodes, λ = 1, k = 6, p = 0.1; p sp is the probability of spreading
to above 1% of the population; mean sp is the conditional mean
final size, given that the rumor has spread to above 1% of the
population.

the threshold values of ψ between unimodal and bimodal
forms for the final size distribution are lower than for the
corresponding deterministic model (for which ψ = 1). This is
because stochastic effects make it more likely that the rumor
will die away soon after its introduction, and therefore less
“forgetting” is required to control its spread. As described
above, the approximate model allows spreading to isolated
ignorants whereas the full model does not, and its threshold
value of ψ (seen to lie in the interval ( 5

6 ,1)) is therefore
much closer to the deterministic critical value ψ = 1 and
substantially overestimates the value for the full model [which
can be seen to lie in ( 3

6 , 4
6 )]. These ranges for the threshold

values of ψ can be narrowed by using a much more extensive
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FIG. 2. (Color online) Thresholds for the homogeneous network
with λk fixed at 6, p = 0.1.

set of simulations, but the graphs are intended to show the
qualitative picture, which is clear. In Fig. 2 for comparison,
we show the threshold value of ψ for a homogeneous network
as a function of the degree (k), where λ is adjusted so that
the total contact rate per node is kept fixed (λk = 6). Here
we have determined more exact threshold levels by running
a further set of simulations for each model, with δ varying
within the appropriate narrower range identified in the initial
set. The threshold value of ψ for the approximate model is
a constant in Fig. 2 as it depends only on the product λk,
while the threshold for the full model approaches this value
as k increases. A mean degree of 6 has been chosen for most
of the comparisons as an interesting compromise. Note that
the error in the approximate model is primarily an effect of
network connectivity and remains an issue for larger network
sizes.

Results for the other three network structures show that the
threshold value of ψ for the approximate model consistently
overestimates that for the full model. For the simple random
graph the corresponding ranges of values for ψ are ( 4

6 , 5
6 )

for the full model and (1, 7
6 ) for the approximate model;

for the Barabási-Albert network, the approximate model
has a threshold of around ψ = 11

6 , while that for the full
model is about 8

6 ; for the random geometric graph the
corresponding threshold is close to 1

6 for the full model, with
a range of (1, 7

6 ) for the approximate model. The final size
distributions for these networks for the full model are shown in
Fig. 3.

It is interesting to consider separately the probability of
spread to above 1% of the population, and the conditional
mean final size given this level of spread (denoted as p sp
and mean sp, respectively, in the histograms). In Fig. 4 we
have plotted these for all four network types, showing that
the former is fairly accurately represented by the approximate
model, whereas the latter is less well approximated, especially
for the random geometric network.

As can be seen from the figures, the approximation for the
scale-free Barabási-Albert network is relatively good. This is
because the presence of the hubs in the network drives the
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(a) Homogeneous Network
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(b) Simple Random Network
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(c) Scale Free Network
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(d) Geometric Random Network

FIG. 3. (Color online) Final size distributions as a percentage of total population for different network structures with 1000 nodes, λ = 1,
k = 6, p = 0.1; p sp is the probability of spreading to above 1% of the population; mean sp is the conditional mean final size, given that the
rumor has spread to above 1% of the population.

dynamics, with little scope for ignorant hubs to get isolated.
On the other hand, for the random geometric graph, with its
structure of weakly connected groups, it is relatively easy
for ignorant nodes to become permanently separated from
spreaders, and the approximate model does not allow for
this.

The threshold point for each of the models can roughly be
identified from the plot of the conditional spread against δ, as
the point at which the curve flattens out. This could be made
clearer by increasing the network size, which would sharpen
the point at which the slope changes from positive to zero
(with the exception of the scale-free network, where the nature
of the structure means that the threshold increases as the
network size grows; see Sec. IV).

IV. THE EFFECTS OF NETWORK STRUCTURE ON
RUMOR DYNAMICS

A. Different network types

It is often thought that simple random graphs are similar to
uncorrelated homogeneous networks, and, for large networks
with a fairly high mean degree, the variability of the binomial
degree distribution is relatively unimportant. However, for a
small mean degree, this variability has noticeable effects. For a
mean degree below about 6, a simple random graph will often
not be connected. Even for connected graphs, the presence of
nodes with very low degrees makes the rumor less likely to
spread than for the corresponding homogeneous network. On
the other hand, the presence of other nodes with relatively high
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FIG. 4. (Color online) A comparison of the full and the approx-
imate models for different network structures; all have 1000 nodes;
λk = 6, p = 0.1.

degrees means that, if the rumor does spread initially, then it
is more likely to spread extensively.

The rumor dynamics of the Barabási-Albert network are
very different, particularly for large networks where the
truncation effect of the finite number of nodes on the power-law
tail of the degree distribution still permits the presence of
substantial hubs in the network. The network is characterized
by a number of very well-connected nodes, with the majority of
nodes having low degrees. The effect is that the threshold in ψ

is much higher than for the homogeneous network and simple
random graph, with much more forgetting needed to overcome
the effect of the hubs. For example, with n = 1000, a mean
degree of 6, and other parameter values as described in Sec. III,
simulations show that the threshold is approximately 1.3 as
compared with values under 1 for the homogeneous network
and simple random graph. The difference would be much
greater for larger networks. Using simulations for networks

with n = 1000 and various mean degrees (and correspondingly
adjusted values of λ so that the mean contact rate, λk is
fixed), we have found that for low values of ψ , broadly those
below the threshold for the homogeneous network, given that
it spreads at all, the rumor reaches a smaller proportion of
the population for the the Barabási-Albert network than the
other two structures. Intuitively, in this case the network has
relatively many low-degree nodes, some of which will not
hear the rumor before the better-connected nodes become
stiflers.

The deterministic analysis of Nekovee et al. [16] shows
that, for uncorrelated networks, to a first approximation the
threshold for ψ is 1 + c2

K , where cK is the coefficient of
variation of the degree distribution. Thus, it is to be expected
that the thresholds for the Barabási-Albert network in these
comparisons will be much higher than those for the simple
random graph, which in turn will be higher than those for
the homogeneous network. The random geometric graph has
a Poisson degree distribution as has, to a good approxima-
tion, the simple random graph once n is sufficiently large.
Nevertheless, the former is highly correlated, the network
structures are very different, and, as can be seen from Fig.
3, the rumor dynamics on the two graphs are very different.
For the parameter set considered in Fig. 3, the simple random
graph has a threshold in ψ somewhere between 4

6 and 5
6 ,

while that for the random geometric graph is less than 1
6 . (As

discussed above, however, the approximate models, which do
not properly take account of the dependence of the node states
on their connectivity, give very similar results for the two
networks.)

This result raises the question of what properties of the
network are driving this difference in dynamics. It is often
assumed to be a result of the high correlation (0.59) of the node
degrees of the random geometric graph, but the graph also has
a high cluster coefficient (proportion of connected triples that
are triangles) and a much greater mean geodesic distance (the
average path length between connected pairs of nodes). For
example, in the network simulations underlying Fig. 3, the
mean geodesic distance for the homogeneous network was
4.2, for the simple random graph 4.0, for the Barabási-Albert
network 3.5, and for the random geometric graph 16.0. This
provides a numerical quantification of the underlying much
less interconnected structure of the latter. As a first step in
investigating this question, in the next section we will look
at the impact of separately adding positive correlation and
clustering to the simple random graph.

B. Impact of adding positive correlation and clustering to the
simple random graph

We start with our 1000 node simple random graph, with
its negligible correlation and clustering, and use network
“rewiring” algorithms, first to increase the correlation while
keeping the clustering coefficient unchanged, and second to
increase the clustering coefficient while keeping the correla-
tion unchanged. In both cases, the node degree distribution
remains constant. This allows us to isolate the impact of two
of the key differences between the simple random graph and
the random geometric graph.
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(a) Simple random graph (b) Re-wired to give 0.59 correlation.

(c) Re-wired to give 0.59 clustering coefficient (d) Random geometric graph

FIG. 5. (Color online) Illustration of the effect of correlation and clustering on network structure.

The algorithm to introduce positive correlation is due to
Xulvi-Brunet and Sokolov [26]. Essentially, the idea is as
follows. The starting point is an uncorrelated network with
a particular degree distribution; here we start with a simple
random graph, with its Poisson degree distribution. At each
step of the algorithm, two edges (with four corresponding
nodes) of the network are chosen at random. With probability
α, the four nodes are rewired by deleting the two edges and
joining the two nodes with the highest degrees, and the two
nodes with the lowest degrees. Otherwise the four nodes are
rewired at random. If one or both new edges already exists,

the step is discarded. The larger α the larger the (limiting)
positive correlation that can be obtained by this algorithm. To
obtain negative correlations, the nodes with the highest and
lowest degrees must be joined, but we will not follow this
option here. For our simple random graph with 1000 nodes
and mean degree 6, this algorithm has no significant effect on
the clustering coefficient, although this is not necessarily the
case for all network structures.

The algorithm to increase the clustering coefficient, due
to Bansal et al. [27], works as follows. Again, the starting
point is a random network with a given degree distribution.

TABLE I. Impact on threshold of adding correlation and clustering.

Network Correlation Clustering Mean geodesic Range for ψ

coefficient coefficient distance threshold

Simple random (ER) 0.02 0.00 4.1 ( 4
6 , 5

6 )
ER with added correlation 0.59 0.01 4.3 ( 5

6 ,1)
ER with added correlation 0.94 0.04 6.1 ( 5

6 ,1)
ER with added clustering 0.04 0.58 7.7 ( 1

6 , 2
6 )

Geometric 0.58 0.59 16.0 (0, 1
6 )
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At each step we pick a random node x with degree greater
than 1, and randomly select two of its neighbors, y1 and
y2 (also with degree greater than 1). We then randomly
select a neighbor z1 of y1, and z2 of y2, and rewire the
nodes by deleting the edges (y1,z1) and (y2,z2), and adding
new edges (y1,y2) and (z1,z2) (assuming these do not exist
already), which creates the triangle (x,y1,y2). If the step
increases the clustering coefficient (which depends on the
other edges of the selected nodes), it is retained; otherwise it is
discarded. The algorithm is continued until the desired level of
clustering is achieved, or a maximal level is reached, if this is
sooner.

Figure 5 illustrates the effect on the network structure of
adding correlation and clustering to a simple random graph
with mean degree 6 and 200 nodes. The Xulvi-Brunet and
Sokolov algorithm is used to add correlation (up to the level,
0.59, of the random geometric graph). Restarting from the
simple random graph, we then use the Bansal algorithm to add
clustering (again up to 0.59, the level of the random geometric
graph). The graphs are plotted using the R-package Igraph
[25]. The random geometric graph with the same number of
nodes and mean degree can be seen to include both the triangles
of Fig. 5(c), and the more linear components of Fig. 5(b).

The impact of adding correlation and clustering on the final
size distribution is shown in Table I, where the starting point is
a simple random graph with n = 1000 nodes, λ = 1, p = 0.1,
and the mean degree is 6. As before, three independent
simulations of each network were used, so that in total we
had 3000 simulations. The table gives the values for the
node degree correlation (0.02), cluster coefficient (0), mean
geodesic distance (4.1), and threshold region for ψ ( 4

6 , 5
6 ).

The Xulvi-Brunet and Sokolov algorithm was then used with
α = 0.8 to give a correlation of 0.59, at which point the sample
cluster coefficient remains almost zero, and the mean geodesic
distance has increased slightly to 4.3. Rewiring with α = 1
to give the maximal correlation further increases the mean
geodesic distance to 6.1, with the clustering coefficient still
close to zero. Figure 6 shows the final size distributions for the
two networks with added correlations.

Although adding correlation can be seen to reduce the
spread for low values of ψ , it increases it for higher values and
ultimately slightly increases the threshold at which the final
size distribution becomes unimodal. Intuitively, the reasoning
is that some of the low-degree nodes that are now connected in
a much more linear structure are likely not to hear the rumor
even when the level of forgetting is low. Conversely, at the
higher levels of forgetting, the dominant impact is that, if the
rumor reaches a highly connected node, it is more likely to
spread, due to the connections to other high-degree nodes.

Increasing the clustering coefficient to 0.58 (the maximum
achievable for our network) using the Bansal algorithm can be
seen to have a much more significant impact, with an increase
in geodesic distance to 7.7, and a reduction in the threshold
to ( 1

6 , 2
6 ) (see also Fig. 6). These results are to be compared

with those for a random geometric graph, where the sample
correlation was 0.58, the clustering coefficient was 0.59, and
the mean geodesic distance was 16. For this graph, there is
substantial rumor spread only for ψ close to zero. Thus we see
that the much lower spread observed for the random geometric
graph compared to the simple random graph, which has a
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(a) Rewired Simple Random Network - correlation coefficient 0.59
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(b) Rewired Simple Random Network - correlation coefficient 0.94
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(c) Rewired Simple Random Network - clustering coefficient 0.58

FIG. 6. (Color online) Final size distributions as a percentage
of total population for the ER network with added correlation or
clustering; 1000 nodes, λ = 1, k = 6, p = 0.1; p sp is the probability
of spreading to above 1% of the population; mean sp is the conditional
mean final size, given that the rumor has spread to above 1% of the
population.
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FIG. 7. (Color online) The impact of correlation and clustering
on the conditional spread (expressed as a percentage of the total
population) for networks with a Poisson degree distribution; networks
have 1000 nodes; λk = 6, p = 0.1.

common degree distribution, is mainly due to clustering, with
correlations having only a weak effect. The relative impacts
can be seen clearly in Fig. 7 where we have plotted the
conditional mean given the rumor spreads to above 1% of the
population for the simple random network, the variants with
added correlation or clustering, and the random geometric
network. Even the maximal degree-degree correlation of
0.94 is seen to have a fairly limited impact, whereas the
addition of clustering significantly reduces the spread of the
rumor.

Analysis of the effect of introducing positive correlation
and clustering to the simple random network has offered
insight into the differences in rumor dynamics of this network
compared with the random geometric graph. The simple
random graph was also particularly suitable for this kind
of analysis, since these features could readily be added
independently of each other. However, social networks are
mainly scale free, and rumor models are of particular
interest on social networks. In the next section therefore
we extend our analysis to the Barabási-Albert scale-free
network.

C. Impact of adding positive correlation and clustering to the
Barabási-Albert scale-free network

Again we start with a 1000-node network and apply the
algorithms described in the section above. For a network
of this type, size, and mean degree, the algorithm for
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FIG. 8. (Color online) The impact of correlation and clustering
on the conditional spread (expressed as a percentage of the total
population) for scale-free networks; networks have 1000 nodes; λk =
6, p = 0.1.

adding positive correlation was found also to increase the
clustering coefficient. Similarly, the algorithm for increasing
the clustering coefficient also increased the correlation. Thus
it is not possible entirely to separate the two. Nevertheless,
by targeting different levels of each coefficient, we gained
useful insights for this network. Table II gives a summary of
the networks in our comparison, showing the algorithm that
created each, the correlation and clustering coefficients, and
the mean geodesic distance. Figure 8 plots the conditional
mean given the rumor spreads to above 1% of the population
for these networks. We start with a Barabási-Albert scale-free
network, with 1000 nodes, and the parameters λ = 1,p = 0.1
as before. As before, three independent simulations of each
network were used. Before rewiring, our network has a slightly
negative correlation coefficient, negligible clustering and a
mean geodesic distance of 3.5. First we used the Xulvi-Brunet
and Sokolov algorithm to add maximal correlation, which was
limited by the size of the network and the highly skewed
degree distribution, giving an average of 0.36 across our three
network simulations. This rewired network was found to have
an average clustering coefficient of 0.24, so we then targeted
a clustering coefficient of 0.24 using the Bansal algorithm,
at which point the correlation coefficient was also at 0.24. A
comparison of the behavior of the rumor on these two rewired
networks gives an indication of the impact of correlation
(since they have the same clustering coefficient). No thresholds
are given, since we found that there was a second mode
even when the conditional spread was very low. However,
in contrast to the results for the simple random graph, here

TABLE II. Summary of BA network variants investigated.

Network Correlation Clustering Mean geodesic
coefficient coefficient distance

Barabási-Albert (BA) −0.07 0.02 3.5
BA rewired to add clustering 0.24 0.24 4.3
BA rewired to add correlation 0.36 0.24 7.6
BA rewired to add further clustering 0.39 0.53 8.2
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increasing correlation reduces both the probability of spread
and the conditional spread of the rumor significantly. This is
in line with intuition, given the degree distribution. In order to
increase the correlation coefficient, the network is rewired such
that the low-degree nodes tend to be connected to each other,
rather than to the hubs. This makes them more likely to become
isolated. The bimodal nature of the final size distribution,
even at high levels of forgetting is due to the fact that if the
rumor starts in one of the well-connected nodes, it will tend
to spread within its (also well-connected) neighbors before
dying out.

In the final network, the maximal level of clustering using
the Bansal algorithm is added. This gave a clustering level
of 0.53, with a correlation coefficient of 0.36. Thus we
can compare two networks with broadly similar levels of
correlation to see the impact of adding clustering. As for the
simple random graph, this is shown to have a highly significant
effect in reducing the spread of the rumor, particularly at the
lower levels of forgetting.

V. DISCUSSION AND CONCLUSIONS

In this paper we have investigated the spreading of
rumors on networks. We examined the approximate stochastic
model, which has been used by a number of earlier authors,
particularly in the physics community. This model does not
require the actual generation of a network, but uses equations
involving just the degree distribution and degree correlation
matrix. Although other authors had found that the approximate
model gave very close results to the full model for the mean
final size, the examples on which such conclusions were based
were limited to homogeneous networks with parameter sets
for which spreading was widespread, i.e., those with ψ far
below the threshold. In order to get a more complete picture,
we undertook a simulation study for a variety of networks
and parameters to investigate the situations in which the
approximate model can be considered to provide a good
solution to the final size distribution, and where it is less
appropriate.

We found that the approximate model is reasonably accurate
at predicting the probability of spread for all the network types.
However, it performs poorly in identifying the position of the
threshold and the conditional mean final size for networks
that are not well connected. This includes networks with low
mean degree of all types. More interestingly, it includes the
random geometric network, with its weakly connected groups
of nodes and high geodesic distances. The performance of the
approximate model improves with increasing mean degree,
and results are close for the small-world type networks with
mean degree of 12 or more. However, although improve-
ment is also seen for the random geometric network, the
quality of the approximation remains very poor even at this
level.

As well as comparing it against the approximate model, we
also used the full stochastic model, where the rumor spreads
along the edges of a network, to investigate how the spreading
process is affected by the nature of the underlying network.
We found the following key results:

(i) For the same level of λk, the rumor will spread to a
greater percentage of the population for networks with higher
k (i.e., higher mean number of edges), assuming the same
network structure, and that all other parameters remain the
same.

(ii) Scale-free networks require a greater level of for-
getting in order to control a rumor than exponential-type
networks (such as the homogeneous or Erdös-Rényi) given
the same spreading rate and mean degree. However, for low
levels of the forgetting parameter δ, the rumor is spread
to a lower proportion of the population with the scale-free
network.

(iii) The simple random and geometric random networks
share a common (Poisson) degree distribution, and yet exhibit
very different behavior in terms of rumor spread. The former
is uncorrelated and has no clustering, whereas the latter has
correlation and clustering coefficients of 0.59. In order to
isolate the effects of these two features, we used edge rewiring
algorithms to introduce each separately to the simple random
network. Our results showed that it was the introduction of
clustering, rather than correlation, that significantly reduced
the threshold. Interestingly, the spreading behavior on the
network with added clustering was very similar to that of
the random geometric network, despite the fact that its mean
geodesic distance was still much lower. Intuitively, this is
because it is the “local” properties such as clustering and
mean number of neighbors that affect the spread of the rumor,
rather than the more “global” properties, such as geodesic
distances.

(iv) Introducing clustering to the Barabási-Albert scale-free
network was similarly found to reduce the spread of a rumor.
However, for this network, adding positive correlation also
reduces the spread, with a bigger impact than for the simple
random graph. This is due to the highly skewed degree
distribution, which has a large number of low-degree nodes. If
the network is rewired in order to increase correlation, these
low-degree nodes become much less likely to hear the rumor
before it is stifled.

In this paper we have focused on the final size distribution.
However, in some cases, for example in a viral marketing
campaign, we may be more interested in achieving a certain
level of spread within a given time. Future work is required
to gain an understanding of how the various network types
perform in terms of the initial speed of spreading and the
overall time pattern.

Here we have isolated the effects of correlation and
clustering. Since we have used specific rewiring algorithms,
in principle it is possible that the effects that we have
observed are due in part to other features introduced into
the networks. Further analysis to identify the components
that uniquely define a network would clarify this and may
suggest additional investigations of interest. Another line of
future work is to look at the connection between the structure
of these networks and their spectra, and in particular their
largest eigenvalues, as these are linked to the thresholds for
spread.

Other possible analyses, not included here, are the impact of
the choice of initial spreader and looking at different possible
modes of spreading (e.g., broadcast rather than the independent
spreading we have assumed here).
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